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Generalisations

! We’ve discussed estimation of a single function µ(x), but in applications we may have

– covariates to be treated parametrically,

– several smooth functions,

– non-normal response variable,

– random effects (later).

! To include ordinary covariates and allow for weights, we write

y | b ∼ (Bθ,σ2W ), Bθ = Xβ + Zb,

where B = (X,Z) is n× d, θ = (βT, bT)T is d× 1, d = p+ q and

– the n× p matrix X represents the ordinary covariates, plus any unpenalised columns for
smooth components,

– the p× 1 parameter vector β is unpenalized,

– the n× q matrix Z represents the bases for any smooth functions,

– the q × 1 vector b is penalized,

– the n× n diagonal matrix W = diag(w1, . . . , wn) contains positive weights,

and everything ‘goes through as before’.
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Additivity and identifiability

! Consider the additive model
E(y) = µ1(x) + µ2(z),

where µ1, µ2 belong to suitable classes of smooth functions; if

x ≡ time, z ≡ space,

then µ1 is defined on X1 ⊂ R and µ2 is defined on X2 ⊂ R2.

! There is an identifiability problem, since we could map

µ1(x) %→ µ1(x) + a, µ2(z) %→ µ2(z)− a, a ∈ R,

and the fitted values would not change, so we must constrain µ1 and µ2.

! As before, we use bases for µ1 and µ2, writing

y = Bθ + ε =
(
X1 X2

)(β1
β2

)
+
(
Z1(x) Z2(z)

)(b1
b2

)
+ ε,

where we penalise the q1 elements of b1 and the q2 elements of b2.
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Ensuring identifiability

! The identifiability problem is solved by centering the fitted smooth, i.e., enforcing

1T

nZn×qbq×1 = 0

for each smooth term.

! In general we can use a QR decomposition. If Ca×qbq×1 = 0a×1, with a < q, write

CT

q×a = Qq×qRq×a =
(
Q1 Q2

)(R1

0

)
,

where Q is orthogonal,

– Q1 has dimension q × a,

– Q2 has dimension q × (q − a), and

– R1 has dimension a× a and is upper triangular.

Then if we set bq×1 = Q2b′(q−a)×1, we have

Cb = RTQTb =
(
RT

1 0
)(QT

1
QT

2

)
Q2b

′ =
(
RT

1 0
)( 0

Iq−m

)
b′ = 0.

! Thus the constraint is satisfied if we replace Zn×q by (ZQ2)n×(q−1); this reduces b to dimension
(q − 1)× 1.
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Penalty formulation

! Minimise

(y −Bθ)TW (y −Bθ) + θTSλθ = (y −Xβ − Zb)TW (y −Xβ − Zb) + θTSλθ

where Sλ is a sum of symmetric positive semi-definite d× d matrices Sm, such that

θTSλθ = θT

(
M∑

m=1

λmSm

)

θ =
M∑

m=1

λmbTmS∗
mbm, λm ≥ 0,

where S∗
m is the non-zero diagonal block of Sm and b has sub-vectors b1, . . . , bM .

! With M = 2, β, b1 and b2 are vectors of respective lengths p, q1 and q2, and S∗
1 and S∗

2 are
square matrices of sides q1 and q2, so

θ =

⎛

⎝
β
b1
b2

⎞

⎠ , Sλ = λ1S1 + λ2S2 = λ1

⎛

⎝
0 0 0
0 S∗

1 0
0 0 0

⎞

⎠+ λ2

⎛

⎝
0 0 0
0 0 0
0 0 S∗

2

⎞

⎠ ,

with S1 and S2 partitioned conformably with θ.

! Let S∗
λ denote the q × q corner of Sλ corresponding to b; here S∗

λ = diag(λ1S∗
1 ,λ2S

∗
2).

! Note that |Sλ|+ = |S∗
λ|+.
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Estimation

! For fixed λ, the minimiser and fitted values for

(y −Bθ)TW (y −Bθ) + θTSλθ

are
θ̂λ = (BTWB + Sλ)

−1BTWy, ŷλ = Bθ̂λ = B(BTWB + Sλ)
−1BTWy = Hλy.

! If the unpenalized least squares estimator θ̂ = (BTWB)−1BTWy exists, then

θ̂λ = (BTWB + Sλ)
−1BTWBθ̂ = θ̂ − (BTWB + Sλ)

−1Sλθ̂ = Pλθ̂,

and if ŷ is the unpenalised fitted value, then

ŷλ = ŷ −B(BTWB + Sλ)
−1Sλθ̂.

! Now we must decide

– how many degrees of freedom for each smooth?

– how to select the smoothing parameters?
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Amount of smoothing

! We write
θ̂λ = Pλθ̂,

say, where Pλ shows how penalisation shrinks θ̂ towards θ̂∞ = (β̂T, 0T)T.

! If λ ≈ 0, then Pλ ≈ Ip+q and the degrees of freedom of the two fits are both ≈ p+ q, but as
λ→ ∞, Pλ tends to the projection matrix onto the column space of Xn×p.

! On slide 193 with just one smooth term we defined

edfλ = tr(Hλ) = tr(Pλ) =
p+q∑

r=1

Pλ,rr ∈ (p, p + q),

which gives the usual definition for a linear model.

! If θT = (βT, bT1 , . . . , b
T

M ), we define the effective degrees of freedom edfλm associated to the
mth smooth as being the sum of those Pλ,rr that correspond to the elements of bm in θ.

! To choose the vector λ we use either

– CV(λ) or GCV(λ) (second-order assumptions),

– REML (normal-theory assumptions).

! Must optimise over (log) λ, e.g., by grid search (CV/GCV) or other methods (REML).
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Inference

! So far we have discussed only ‘point estimation’ of a smooth function µ(x), but in applications
we also want

– pointwise confidence intervals for smooth functions,

– overall confidence bands for (say) {µ(x) : x ∈ S}, where S is some subset of X , and

– tests of hypotheses such as ‘is the spline part needed?’ and ‘is the curve monotonic?’

! Under the normal model we have the Bayesian interpretation from slide 191,

θ | y,σ2,λ ∼ Nd

(
θ̂λ, Vλ

)
, Vλ = σ2(BTWB + Sλ)

−1,

from which we can simulate to find bounds for any function A(θ).

! If A(θ) = Am×dθ, then
Aθ | y,σ2,λ ∼ Nm(Aθ̂λ, AVλA

T), ,

and generalisation of (21) gives that its mean square error is

MSE = E
(
∥Aθ̂λ −Aθ∥2

)
= tr(AVλA

T),

which takes into account both estimation error and prior uncertainty about θ.
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Average coverage probabilities

! Bayesian credible intervals have good frequentist properties, averaged over the domain of x.

! Let the random index variable J choose the m rows aT

j of A with equal probabilities, and aim to
choose constants d and cj such that the average coverage probability

ACP = P
{
|aT

J θ̂λ − aT

Jθ| ≤ dcJ
}
= 1− α;

i.e., ACP has a desired value averaged over y, θ and J .

! The random variable

aT

J(θ̂λ − θ)/cJ = aT

J{θ̂λ − E(θ̂λ)}/cJ + aT

J{E(θ̂λ)− θ}/cJ = S + T,

say, has a mixture of normal distributions, where

– S is approximately normal and E(S) = 0,

– T is random (because of J) with E(T ) ≈ 0, but var(T ) ≪ var(S).

! We now choose C = diag(c1, . . . , cm) = diag(AVλAT)1/2, so that

var(S + T ) ≈ m−1E
{
∥C−1A(θ̂λ − θ)∥2

}
= m−1tr

(
C−1AVλA

TC−1
)
= 1,

and then setting d = z1−α/2 gives the required value for ACP.

! This ignores estimation error for σ2 and λ.
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Example: Average coverage probability

(Wood, 2017)
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Example: Motorcycle data

Standard (left) and adaptive (right) spline fits, the latter with K = 40 and L = 5, and 95% pointwise
confidence intervals:

10 20 30 40 50

−
1
0
0

−
5
0

0
5
0

Time after impact (ms)

H
e
a
d
 a

cc
e
le

ra
tio

n
 (

g
)

10 20 30 40 50

−
1
0
0

−
5
0

0
5
0

Time after impact (ms)

H
e
a
d
 a

cc
e
le

ra
tio

n
 (

g
)

Regression Methods Autumn 2024 – slide 249

133



Example: Spring barley data

Plot yield at harvest for 75 varieties of spring barley sown in 3 blocks each of 75 plots:

Location x Block 1 Block 2 Block 3
Variety Yield y Variety Yield y Variety Yield y

1 57 9.29 49 7.99 63 11.77
2 39 8.16 18 9.56 38 12.05
3 3 8.97 8 9.02 14 12.25
4 48 8.33 69 8.91 71 10.96
5 75 8.66 29 9.17 22 9.94
6 21 9.05 59 9.49 46 9.27
7 66 9.01 19 9.73 6 11.05
8 12 9.40 39 9.38 30 11.40
9 30 10.16 67 8.80 16 10.78
10 32 10.30 57 9.72 24 10.30
11 59 10.73 37 10.24 40 11.27
12 50 9.69 26 10.85 64 11.13
13 5 11.49 16 9.67 8 10.55
14 23 10.73 6 10.17 56 12.82
15 14 10.71 47 11.46 32 10.95
16 68 10.21 36 10.05 48 10.92
17 41 10.52 64 11.47 54 10.77
18 1 11.09 63 10.63 37 11.08
...

...
...

...
...

...
...
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Example: Spring barley data
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Yield as a function of location for the three blocks, with yields for blocks 2 and 3 offset by the
addition of 4 and of 7 respectively. Value 37 in block 3 is missing.
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Spring barley data and polynomial fits
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Yield as a function of location for the three blocks, with yields for blocks 2 and 3 offset by the
addition of 4 and of 7 respectively, with fitted polynomials of degrees 20, 10 and 50.
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Example: Spring barley data

! We fit a model with parametric variety effects and smooth effects for the fertility patterns in the
blocks,

yn×1 ∼ (Xn×75β75×1 + Z1b1 + Z2b2 + Z3b3,σ
2In),

where

– n = 224, as one of the responses is missing,

– X is a matrix of indicators (0/1) of which variety is in which plot in each block,

– β are the variety effects, with the model parametrized without an overall mean,

– Zm of dimension n× (pm + qm) corresponds to the basis functions for the smooth in block m,
and

– bm are of dimensions (pm + qm)× 1, for m = 1, 2, 3, corresponding to the smooth effects, and

– pm + qm = 9 by default (after centering) when using gam in R package mgcv.

! Taking pm = 2 would correspond to null smooth β0 + β1x for each block (i.e., linear fertility
pattern), but the identifiability constraints impose β0 = 0. Hence in fact pm = 1 for a linear
baseline smooth and the degrees of freedom for the smooth terms lie in [1, 9] (see slide 255).
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Example: Spring barley data

library(SMPracticals)

data(barley)

library(mgcv)

# ML fit of variety as fixed effect, with GCV estimation of lambdas,

# with splines for fertility gradients within each block

fit.gcv <- gam(y~Variety-1+s(Location,by=Block),data=barley)

# fit of variety as fixed effect, with REML estimation of lambdas,

# with splines for fertility gradients within each block

fit <- gam(y~Variety-1+s(Location,by=Block),method="REML",data=barley)

# REML fit with variety as a random effect and splines for fertilities

fit.re <- gam(y~s(Variety,bs="re")+s(Location,by=Block),method="REML",

data=barley)
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Example: Spring barley data

! Using GCV the smooths have dfλ = 8.3, 6.8, 6.3, with σ̂ = 0.65 and AIC = 513.1, the residual
degrees of freedom is 224 − 75− 8.3− 6.8− 6.3 ≈ 130.6, with SEs around 0.4 for the estimated
variety effects (0.54 for variety 27).

! Using REML the smooths have dfλ = 7.2, 3, 6.1, with σ̂ = 0.66 and AIC = 518.3, the residual
degrees of freedom is 132.7, with SEs around 0.4 for the estimated variety effects (0.53 for variety
27).

! The estimated smoothing parameters are λ̂1 = 0.0029, λ̂2 = 0.18 and λ̂3 = 0.0078.

! The effective degrees of freedom for the smooth terms, with the totals:

Block Pλ,rr Total
1 1.00 1.07 0.90 0.7 0.65 0.17 0.38 1.31 1 7.18
2 0.61 0.21 0.12 −0.2 0.03 −0.26 0.01 1.49 1 3.00
3 0.99 1.04 0.76 0.4 0.41 −0.18 0.18 1.47 1 6.07

! The Pλ,rr need not be positive, though their total for each smooth is positive.

! In applications it would be wise to check whether increasing qm would lead to very different fits.
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Example: Spring barley data
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Left: data (offset by adding 4 and 8 to blocks 2 and 3).
Right: estimated fertility patterns (with estimated df 7.2, 3, 6.1) and 95% unconditional pointwise
confidence intervals, fitted using REML. The intervals are wider for blocks 1 and 3.
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Example: Spring barley data
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Left: data (offset by adding 4 and 8 to blocks 2 and 3).
Center: Estimated variety effects (also offset)
Right: residuals (also offset, and showing serial autocorrelation?)
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Example: Spring barley data
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Left: data (offset by adding 4 and 8 to blocks 2 and 3).
Center: estimated fertility patterns (REML), also offset.
Right: residuals.
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Example: Spring barley data

! Should the varieties be treated as randomly selected from a population of varieties?

! If so, we use the same basis matrix X as in the previous model, but add a penalty matrix λβSβ
and minimise the penalised sum of squares

(y −Bθ)T(y −Bθ) + θTSλθ,

where
Sλ = λβSβ + λ1S1 + λ2S2 + λ3S3,

where Sβ = diag(I75, 0).

! The effective degrees of freedom are then 44.8 for β and 7.5, 3.9 and 6.4 for the splines.

! The optimal smoothing parameters are λ̂β = 1.76, λ̂1 = 0.0027, λ̂2 = 0.073 and λ̂3 = 0.0070.

! The fixed-effects model has 75 degrees of freedom for β, so this is substantial shrinkage; the
estimated standard deviation drops from 0.65 to 0.39.

! The estimates under the random-effects model have standard errors around 0.31 (0.36 for variety
27), compared to 0.41 (0.54 for variety 27) for the fixed-effects model.

! The next slide compares the estimates.
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Example: Spring barley data

Comparison of estimated variety effects under fixed-effects and random-effects models:
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Comments

! Penalised estimation extends the basic smoothers to include

– parametric terms in models,

– several smooth terms,

– spatial and more complex smoothing,

– ‘random effect’ parameters,

and extends to generalized additive models in a natural way.

! The baseline variance σ2 and smoothing parameter(s) λ are estimated using cross-validation
under second-order assumptions or REML under normality.

! The empirical Bayes formulation allows inference on parameters and smooth functions in a unified
way — usually ignoring the uncertainty for σ2 and λ is not too critical.

! In practice n and d may be very big, so direct matrix inversion is computationally painful, and
then indirect methods (e.g., based on the Woodbury formula) are needed to compute θ̂λ and Vλ.
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3.6 Components of Variance slide 262

Background and motivation

! All the models so far have involved just one level of randomness, corresponding to ‘measurement
error’ on individual responses.

! Complex layering of randomness can arise in applications, and then conclusions may depend on
how it is dealt with.

! Two conceptually different set-ups (which may give the same models):

– observational/experimental setup generates several layers of randomness;

– we find it useful to treat the parameters of some model as drawn from a distribution.

The first concerns logical properties of the data, whereas the second is a modelling assumption.
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Example: Blood pressure

! Blood pressure data: P = 25 patients each made V = 16 visits to a clinic, and on each occasion
their systolic and diastolic blood pressures were measured twice.

! Consider just the diastolic pressure. We expect there to be variation

– between patients,

– between visits within patients, and

– between measurements within visits,

which we could model as

ypvm = µ+ bp + epv + εpvm, p = 1, . . . , P, v = 1, . . . , V,m = 1, . . . ,M,

where

– µ is the population mean diastolic blood pressure (DBP),

– bp is the difference between the patient and population mean DBP,

– epv is the difference between this and the mean DBP on the vth visit, and

– εpvm is the difference between the mean DBP for the pth patient at the vth visit and the mth
measurement on that visit,

and
bp

iid∼ N (0,σ2b ) ⊥⊥ epv
iid∼ N (0,σ2e) ⊥⊥ εpvm

iid∼ N (0,σ2).
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Example: Blood pressure

patno patient visno dbp1 dbp2 sbp1 sbp2

1307 1 7 95 85 150 130

1307 1 8 85 85 140 140

1307 1 9 90 90 150 150

1307 1 10 80 80 135 135

1307 1 11 80 80 130 125

1307 1 12 85 85 150 155

.

.

1307 1 19 80 80 130 130

1307 1 20 80 80 140 140

1307 1 21 90 85 145 140

1307 1 22 75 75 130 130

1418 2 7 104 106 160 148

1418 2 8 98 104 158 162

.

.

9202 25 21 91 90 142 139

9202 25 22 80 78 162 160
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Fixed and random effects

Chimpanzee Word
1 2 3 4 5 6 7 8 9 10

1 178 60 177 36 225 345 40 2 287 14
2 78 14 80 15 10 115 10 12 129 80
3 99 18 20 25 15 54 25 10 476 55
4 297 20 195 18 24 420 40 15 372 190

! Times (min) for four chimpanzees to learn each of ten words.

! A possible model for log time is

ycw | αc,βw
ind∼ N (µ+ αc + βw,σ

2), c = 1, . . . , C = 4, w = 1, . . . ,W = 10.

! The αc and/or the βw would be considered as constant fixed effects if we were interested in the
relative linguistic abilities of these particular chimps and/or if we planned further tests with these
particular words.

! Either (or both) of the αc and βw might be considered to be random effects if they were
thought to be sampled from a larger population whose variation is of interest.
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Two distinctions

! We distinguish fixed and random effects (above).

! We distinguish nested and crossed effects:

– in the blood pressure data, replicate measurements at each visit are nested within visit,
because there is no logical connection between yp,v1,1 and yp,v2,1 (we could permute the final
index m within each patient/visit combination without changing the data structure). Likewise
if we ignore any possible time effects between visits, we could consider that visits are nested
within patients;

– in the chimp data, the effects are crossed, because permuting chimps or words would entail
permuting entire rows or columns of the data table: there is a logical connection between yc1w
and yc2w, and between ycw1

and ycw2
;

! In R syntax, with patient and visit number declared as factors, for nested effects we write

y ~ patient/visno

read as ‘separate effects for visit number within the levels of patient’ and for crossed effects with
chimp and word declared as factors we write

y ~ chimp + word
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Nested model ANOVA

! For the nested model

ypvm = µ+ bp + epv + εpvm, p = 1, . . . , P, v = 1, . . . , V,m = 1, . . . ,M,

and with a dot and bar denoting averaging over that index, we write

ypvm − y··· = ypvm − ypv· + ypv· − yp·· + yp·· − y···,

and note that

ypvm − ypv· = εpvm − εpv·,

ypv· − yp·· = epv + εpv· − (ep· + εp··),

yp·· − y··· = bp + ep· + εp·· − (b· + e·· + ε···),

so the overall sum of squares is∑

p,v,m

(ypvm − y···)
2 =

∑

p,v,m

(ypvm − ypv·)
2 +

∑

p,v,m

(ypv· − yp··)
2 +

∑

p,v,m

(yp·· − y···)
2

=
∑

p,v,m

(ypvm − ypv·)
2 +M

∑

p,v

(ypv· − yp··)
2 + VM

∑

p

(yp·· − y···)
2,

where these terms are independent sums of squares for variables that are

N (0,σ2), N (0,σ2e + σ2/M), N{0,σ2b + σ2e/V + σ2/(VM)}.
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Nested model ANOVA II

! Hence∑

p,v,m

(ypvm − ypv·)
2 ∼ σ2χ2

PV (M−1),

∑

p,v,m

(ypv· − yp··)
2 ∼ M(σ2e + σ2/M)χ2

P (V −1)
D
= (Mσ2e + σ2)χ2

P (V−1),

∑

p,v,m

(yp·· − y···)
2 ∼ VM

(
σ2b +

σ2e
V + σ2

VM

)
χ2
P−1

D
= (VMσ2b +Mσ2e + σ2)χ2

P−1,

and we can estimate the components of variance σ2, σ2e and σ2b from the ANOVA table.

! The interpretation of the ANOVA depends on whether we regard δ2b =
∑

p(bp − b·)2 and

δ2e =
∑

p,v(epv − ep·)2 as random or fixed:

Term df Sum of squares E(Mean square) when terms below random
ε ε, e ε, e, b

Between patients P − 1
∑

(yp·· − y···)
2 VMδ2b +Mδ2e VMδ2b +Mσ2e VMσ2b +Mσ2e

+σ2 +σ2 +σ2

Between visits P (V − 1)
∑

(ypv· − yp··)
2 Mδ2e + σ2 Mσ2e + σ2 Mσ2e + σ2

within patients
Between measures PV (M − 1)

∑
(ypvm − ypv·)

2 σ2 σ2 σ2

within visits
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Nested and crossed ANOVA

! Nested analysis of the blood pressure data:

summary( aov(dbp ~ patient/visno, data=blood.dia) )

Df Sum Sq Mean Sq F value Pr(>F)

patient 24 23059 960.8 124.29 <2e-16 ***

patient:visno 375 39082 104.2 13.48 <2e-16 ***

Residuals 400 3092 7.7

! Likewise, crossed analysis of the chimpanzee data:

summary( aov(log(y)~chimp+word,data=chimps) )

Df Sum Sq Mean Sq F value Pr(>F)

chimp 3 5.33 1.778 2.719 0.0642 .

word 9 45.69 5.077 7.765 1.5e-05 ***

Residuals 27 17.65 0.654

There are C − 1 degrees of freedom for chimps, W − 1 for words, and (C − 1)(W − 1) for the
residual.

! In both cases, we can use the ANOVA table to estimate the variance components and then
perform synthesis of variance: e.g., how large would W need to be to distinguish the learning
abilities of two chimps with probability 0.95?
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Example: Blood pressure

! Solving the equations

σ2 = 7.7, Mσ2e + σ2 = 104.2, V Mσ2b +Mσ2e + σ2 = 960.8,

gives (in units of millimeters of mercury, mmHg)

σ̂ = 2.8, σ̂e = 6.9, σ̂b = 5.2,

so the largest variation is between different visits within patients, while that between
measurements on a single visit is smallest.

! Different comparisons require appropriate baseline variances:

– if we are interested in how patient p’s response varies from visit to visit, we use

ypv1· − ypv2· = µ+ bp + epv1 + εpv1· − (µ + bp + epv2 + εpv2·) ∼ N (0, 2σ2e + 2σ2/M),

as a basis for a test of a significant difference, whereas to compare average blood pressures for
two different patients we use

yp1·· − yp2·· = bp1 + ep1· + εp1·· − (bp2 + ep2· + εp2··) ∼ N{0, 2σ2b + 2σ2e/V + 2σ2/(VM)}.

! Split-unit designs are set up to make the most important comparisons within units (here
patients) and less important ones between units, and the ANOVA reflects this.
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General form

! We could have written the nested model above as

y = 1nµ+Xbb+Xee+ ε,

with design matrices Xb and Xe for the patient and visit-within-patient effects.

! Then if

– b and e are treated as fixed (ordinary parameters),

y ∼ Nn(1nµ+Xbb+Xee,σ
2In),

– b is treated as fixed but e ∼ NPV (0,σ2eIPV ), then

y ∼ Nn(1nµ+Xbb,σ
2
eXeX

T

e + σ2In),

– and if b ∼ NP (0,σ2b IP ) independent of e ∼ NPV (0,σ2eIPV ), then

y ∼ Nn(1nµ,σ
2
bXbX

T

b + σ2eXeX
T

e + σ2In).

! Hence random e or b give patterned covariance matrices depending on their variances.
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Summary

! Components of variance ANOVA is easily performed directly for balanced data.

! Standard ANOVA tables have different interpretations, depending on which components of
variance are taken to be random or fixed.

! Extensions are needed to deal with more complex settings, with unbalanced data, or with
non-linear or non-normal errors — hence mixed models, i.e., models with both random and fixed
parts, arising in many different settings (and with different names):

– components of variance (as above),

– classical experimental design (split-plot designs, . . . ),

– repeated measures,

– longitudinal models,

– multi-level models,

– hierarchical models.

! Can subsume linear versions into the linear mixed model, which can be extended to nonlinear
models, GLMs, . . .
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3.7 Linear Mixed Model slide 274

Linear mixed model

! The linear mixed model may be written as

yn×1 = Xn×pβp×1 + Zn×qbq×1 + εn×1, b ∼ Nq(0,Ωb), ε ∼ Nn(0,Ω),

where

– β represents the fixed effects,

– b represents the random effects, and

– usually Ω = σ2In.

! This has the same structure as when smoothing, with the columns of Z giving the structure of
the random effects.

! Equivalently,
y | b ∼ Nn(Xβ + Zb,Ω), b ∼ Nq(0,Ωb),

which gives marginal response distribution

y ∼ Nn(Xβ, ZΩbZ
T +Ω), ZΩbZ

T + Ω = σ2∆−1(ψ),

say, with ψ the vector of distinct variance ratios appearing in ∆−1 (e.g., σ2b/σ
2, . . .).

! Although Ω is often diagonal, ZΩbZT is not, so inverting ZΩbZT + Ω involves O(n3) flops in
general, and we should avoid working with ∆.
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Maximum likelihood estimation

! Let b̃ denote the MLE of b for fixed β (and ψ). Then

f(y;β,σ2,ψ) =

∫
f(y | b;β,σ2,ψ)f(b;σ2,ψ) db

= f(y, b̃;β,σ2,ψ)× (2π)q/2

|ZTΩ−1Z + Ω−1
b |1/2

∝ f(y | b̃;β,σ2,ψ)f(b̃ | σ2,ψ)
|ZTΩ−1Z + Ω−1

b |1/2
,

so (apart from additive constants) −2 log f(y;β,σ2,ψ) equals

(y −Xβ − Zb̃)TΩ−1(y −Xβ − Zb̃) + b̃TΩ−1
b b̃+ log{|Ω||Ωb||ZTΩ−1Z + Ω−1

b |}.

! The first two (quadratic) terms here depend on β and b, so given ψ and σ2 we can find β̂ψ and

b̃(β̂,ψ) explicitly, and thus obtain ℓp(ψ).

! By noting that

f(b | y;β,σ2,ψ) = f(y | b;β,σ2,ψ)f(b;σ2,ψ)/f(y;β,σ2,ψ)

and taking logs, we obtain

b | y ∼ Nq

{
b̃, (ZTΩ−1Z + Ω−1

b )−1
}
, b̃ =

(
ZTΩ−1Z + Ω−1

b

)−1
ZTΩ−1 (y −Xβ) .
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Note on maximum likelihood estimation

! Suppressing the parameters β, σ2 and ψ for now, we write the log integrand in

f(y) =

∫
f(y, b) db =

∫
f(y | b)f(b) db

in the form
log f(y, b) = log f(y, b̃)− 1

2(b− b̃)TH(b̃)(b− b̃),

where the linear term of the Taylor series equals zero, because it is evaluated at the maximising
value b̃, and the given Taylor series is exact because the log likelihood is quadratic.

! On ignoring terms not involving b we have

−2 log f(y, b) = −2 log f(y | b)− 2 log f(b) ≡ (y −Xβ − Zb)TΩ−1(y −Xβ − Zb) + bTΩ−1
b b,

so
H(b) ≡ H = ZTΩ−1Z + Ω−1

b

does not depend on b, and thus

f(y) = f(y, b̃)

∫
exp

{
−1

2(b− b̃)TH(b− b̃)
}

db

= f(y, b̃)× (2π)q/2|H|−1/2 = f(y, b̃)× (2π)q/2

|ZTΩ−1Z + Ω−1
b |1/2

,

as announced; the integral equals the normalising constant for a Nq(b̃, H−1) density.
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Inference on β

! Since
y ∼ Nn(Xβ, ZΩbZ

T + Ω),

weighted least squares gives

β̂ = {XT(ZΩbZ
T + Ω)−1X}−1XT(ZΩbZ

T + Ω)−1y,

with
β̂ ∼ Np

[
β, {XT(ZΩbZ

T + Ω)−1X}−1
]
,

where in general we need O(n3) flops to invert the n× n matrix ZΩbZT + Ω.

! For cheaper calculation of var(β̂), we use the inversion formulae and obtain

(
var(β̂)p×p ·

· ·

)
=

(
XTΩ−1X XTΩ−1Z
ZTΩ−1X ZTΩ−1Z + Ω−1

b

)−1

d×d

,

where d = p+ q, which involves only O{nd2} flops, as Ω is usually diagonal.

! Note that var(b | y) = (ZTΩ−1Z + Ω−1
b )−1 can be obtained as a by-product.

! In practice these formulae are evaluated at the MLEs σ̂2 and ψ̂ and used to compute confidence
intervals etc. for elements of β.
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Inference on random effects

! Conventional terminology: we estimate parameters β and predict random variables b.

! To find the best predictor b̃(y) of b we minimise

Eb,y

[{
b̃(y)− b

}
T
{
b̃(y)− b

}]
,

which gives b̃(y) = E(b | y), with (Woodbury formula):

E(b | y) =
(
ZTΩ−1Z +Ω−1

b

)−1
ZTΩ−1 (y −Xβ) ,

var(b | y) =
(
ZTΩ−1Z +Ω−1

b

)−1
.

! Replace parameters β, σ2, ψ by estimates to get best linear unbiased predictor (BLUP) b̃ and
its estimated variance.

! Residuals

y −Xβ̂ = Zb̃+ y −Xβ̂ − Zb̃

= Zb̃+

{
In − Z

(
ZTΩ̂−1Z + Ω̂−1

b

)−1
ZTΩ̂−1

}(
y −Xβ̂

)
,

split into two parts, with Zb̃ attributable to random effects, and the second the usual residual
y −Xβ̂ shrunk towards zero; this estimates ε.
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Note on conditional mean and variance

! First we write
b̃(y)− b = b̃(y)− E(b | y) + E(b | y)− b,

expand {b̃(y)− b}T{b̃(y)− b} and take expectation over b conditional on y to get

E
[
{b̃(y)− b}T{b̃(y)− b} | y

]
=
{
b̃(y)− E(b | y)

}
T
{
b̃(y)− E(b | y)

}
+ var(b | y),

which is minimised when b̃(y) = E(b | y). Any other choice will give a larger expectation when we
take Ey, so this is optimal.

! To obtain E(b | y), we note that

(
y
b

)
∼ Nn+q

{(
Xβ
0

)
,

(
Ω+ ZΩbZT ZΩb

ΩbZT Ωb

)}
,

so using standard formulae for conditional normal distributions, we have

E(b | y) = ΩbZ
T (Ω+ ZΩbZ

T)−1 (y −Xβ),

var(b | y) = Ωb − ΩbZ
T (Ω+ ZΩbZ

T)−1 ZΩb.

! The Woodbury formula applied to the conditional variance gives

var(b | y) =
(
ZTΩ−1Z + Ω−1

b

)−1

as required.

! For the conditional mean we apply the Woodbury formula to (Ω+ ZΩbZT)−1 and get

E(b | y) = ΩbZ
T

{
Ω−1 − Ω−1Z

(
Ω−1
b + ZTΩ−1Z

)−1
ZTΩ−1

}
(y −Xβ)

= Ωb

{
Iq − ZTΩ−1Z

(
Ω−1
b + ZTΩ−1Z

)−1
}
ZTΩ−1(y −Xβ)

= Ωb

{
Ω−1
b

(
Ω−1
b + ZTΩ−1Z

)−1
}
ZTΩ−1(y −Xβ),

as required, where we wrote the term in braces in the second line as
I −B(A+B)−1 = A(A+B)−1, with A = Ω−1

b and B = ZTΩ−1Z.
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Example: Rat growth

Weights (units unknown) of 30 young rats over a five-week period

Week Week
1 2 3 4 5 1 2 3 4 5

1 151 199 246 283 320 16 160 207 248 288 324
2 145 199 249 293 354 17 142 187 234 280 316
3 147 214 263 312 328 18 156 203 243 283 317
4 155 200 237 272 297 19 157 212 259 307 336
5 135 188 230 280 323 20 152 203 246 286 321
6 159 210 252 298 331 21 154 205 253 298 334
7 141 189 231 275 305 22 139 190 225 267 302
8 159 201 248 297 338 23 146 191 229 272 302
9 177 236 285 340 376 24 157 211 250 285 323
10 134 182 220 260 296 25 132 185 237 286 331
11 160 208 261 313 352 26 160 207 257 303 345
12 143 188 220 273 314 27 169 216 261 295 333
13 154 200 244 289 325 28 157 205 248 289 316
14 171 221 270 326 358 29 137 180 219 258 291
15 163 216 242 281 312 30 153 200 244 286 324
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Example: Rat growth

Week 

W
ei

gh
t (

?)

150
200
250
300
350

0 1 2 3 4

29 10

0 1 2 3 4

4 22

0 1 2 3 4

23 7

0 1 2 3 4

15 12

17 28 18 1 20 5 24

150
200
250
300
350

16
150
200
250
300
350

30 13 3 6 25 27 21 19

8

0 1 2 3 4

26 11

0 1 2 3 4

2 14

0 1 2 3 4

150
200
250
300
350

9
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Example: Rat growth

Example 33 (Rat growth data)

! Write
yjt = β0 + bj0 + (β1 + bj1)xjt + εjt, t = 1, . . . 5, j = 1, . . . , 30,

where the random variables (bj0, bj1) have a joint normal distribution with mean vector zero and

unknown variance matrix and the εjt
iid∼ N (0,σ2). In matrix terms,

⎛

⎜⎝
yj1
...

yj5

⎞

⎟⎠ =

⎛

⎜⎝
1 xj1
...

...
1 xj5

⎞

⎟⎠
(
β0
β1

)
+

⎛

⎜⎝
1 xj1
...

...
1 xj5

⎞

⎟⎠
(
bj0
bj1

)
+

⎛

⎜⎝
εj1
...
εj5

⎞

⎟⎠ , j = 1, . . . , 30;

the overall model with n = 150 is obtained by stacking these expressions.

! We set (xj1, . . . , xj5) = (0, . . . , 4), so that β0 is the mean weight in week 1.

! p = 2 parameters; q = 60 since two random variables per rat.
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Example: Rat growth

> rat.growth

rat week y

1 1 0 151

2 1 1 199

3 1 2 246

4 1 3 283

5 1 4 320

6 2 0 145

...

> fit.reml <- lme(fixed= y~week, random=~week|rat, data=rat.growth)

> summary(fit.reml)

Linear mixed-effects model fit by REML

Data: rat.growth

AIC BIC logLik

1096.58 1114.563 -542.2899

Random effects:

Formula: ~week | rat

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 10.932986 (Intr)

week 3.534747 0.184

Residual 5.817426

Fixed effects: y ~ week

Value Std.Error DF t-value p-value

(Intercept) 156.05333 2.1589786 119 72.28109 0

week 43.26667 0.7275228 119 59.47122 0

Correlation:

(Intr)

week 0.007

Regression Methods Autumn 2024 – slide 282

151



Example: Rat growth

Results from fit of mixed model to rat growth data, using REML. Values in parentheses are for ML fit.
In each case σ̂2 = 5.822.

Parameter Fixed Random
Estimate Standard error Variance Correlation

Intercept 156.05 2.16 (2.13) 10.932 (10.712)
Slope 43.27 0.73 (0.72) 3.532 (3.462) 0.18 (0.19)

! REML estimates of Ωb slightly larger than ML estimates, but effect is small since p = 2.

! Estimated mean weight in week 1 is 156, but SD of individual rats around this is 11.

! Correlation between slope and intercept is small but positive: initially heavier rats tend to gain
weight faster.

! Variation around individual slopes is given by σ̂, smaller than for the intercept variance.

! Shrinkage of intercept estimates, shown on next page, is small in this case.

! Residuals look acceptably normal.
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Example: Rat growth

Residuals and random effects
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Comments

! Testing for non-zero variance components involves tests on the boundary of the parameter space,
which have nasty asymptotic properties: if ψ = 0, then a likelihood ratio statistic for testing
ψ = 0 satisfies W

·∼ 1
2χ

2
0 +

1
2χ

2
1 as n → ∞, meaning that

P0(W = 0) = 1
2 , P0(W > w) = 1

2P(χ
2
1 > w), w > 0.

Unfortunately,

– P0(W = 0) can be very different from 1
2 even in large samples, and

– in more complex problems, the limiting distribution can be much more complex.

! Sometimes clearer to write a mixed model in multi-level model form

y = Xβ + ZLbL + · · ·+ Z0b0,

where the ql × 1 vectors bl are all mutually independent with means zero and variance matrices
Ωl, so Y ∼ Nn(Xβ,

∑L
l=0 ZlΩlZT

l ), where Z0 = In, b0 = ε and Ω0 = σ2In.

! The same basic approaches apply in nonlinear mixed models and generalized linear mixed
models (GLMMs), but integrals appear everywhere and have to be approximated numerically,
leading to nastier computations.

Regression Methods Autumn 2024 – slide 285

3.8 Generalized Additive Models slide 286

Generalized additive model

! Now we write
E(y) = µ, g(µ) = η = Bθ = Xβ + Zb,

where

– y follows a GLM (or more general) distribution,

– g(·) is a link function,

– the rest is as before . . .

giving a generalized additive model (GAM).

! For a general treatment, suppose we have a penalized log likelihood,

ℓλ(θ) = ℓ(θ)− 1
2θ

TSλθ =
n∑

j=1

ℓj{ηj(θ)}− 1
2θ

TSλθ,

where θd×1 (with d = p+ q) contains βp×1 and bq×1, the latter penalized using a symmetric
positive semidefinite d× d matrix Sλ, and the underlying observations y1, . . . , yn giving likelihood
contributions ℓ1, . . . , ℓn are assumed to be independent.

! Now we apply the argument leading to the IWLS algorithm to ℓλ, leading to the penalized
iterative weighted least squares (PIWLS) algorithm.
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PIWLS

! For fixed λ, we apply (ridge regression) iterative weighted least squares with update step

θ̂λ = (BTWB + Sλ)
−1BTWz,

where Sλ is the penalty matrix, and

Bn×d = ∂η/∂θT, (design matrix)

Wn×n = diag(w1, . . . , wn), wj = {E(−∂2ℓj/∂η2j )}, (weights)

un×1 = ∂ℓ/∂η, (score vector),

zn×1 = Bθ +W−1u, (adjusted dependent variable).

It is easier (but less stable) to use the (random) −∂2ℓj/∂η2j in place of E(−∂2ℓj/∂η2j ).

! Thus to obtain (penalized) MLEs θ̂λ we use the PIWLS algorithm:

! fix λ and take an initial θ̂λ. Repeat

– compute η, B,W, u, z;

– compute new θ̂λ = (BTWB + Sλ)−1BTWz;

until changes in ℓλ(θ̂λ) (or θ̂λ, or both) are lower than some tolerance.

! We may add a line search: if ℓλ(θ̂λ,new) < ℓλ(θ̂λ,old), halve the step length and try again.
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Note: Derivation of PIWLS algorithm

! To find the estimate θ̂λ starting from a trial value θ, we make a Taylor series expansion in the
score equation

0 =
∂ℓλ(θ̂λ)

∂θ
.
=
∂ℓλ(θ)

∂θ
+
∂2ℓλ(θ)

∂θ∂θT
(θ̂λ − θ),

where

∂ℓλ(θ)

∂θ
= BTu(θ)− Sλθ,

∂2ℓλ(θ)

∂θr∂θs
=

n∑

j=1

∂ηj(θ)

∂θr

∂2ℓj(θ)

∂η2j

∂ηj(θ)

∂θs
+

n∑

j=1

∂2ηj(θ)

∂θr∂θs
uj(θ) + Sλ,r,s,

where B ≡ B(θ) = ∂η/∂θT. If we use the approximation

−∂
2ℓλ(θ)

∂θ∂θT

.
= BTWB + Sλ, W = diag

{
−E

(
∂2ℓj/∂η

2
j

)}
,

where the diagonal matrix of second derivatives is replaced by its expectation, then

0
.
= BTu(θ)− Sλθ − (BTWB + Sλ)(θ̂λ − θ)

= BTu(θ) +BTWBθ − (BTWB + Sλ)θ̂λ.

If BTWB + Sλ is invertible, this gives

θ̂λ
.
= (BTWB + Sλ)

−1BT(u+WBθ) = (BTWB + Sλ)
−1BTWz,

where z = Bθ +W−1u, as required.
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Relation with least squares

! With fixed λ, the penalized MLE

θ̂λ = (BTWB + Sλ)
−1BTWz

results from fixing θ, and then iteratively solving the minimization problem

min
θ

∥∥∥∥∥

(
W 1/2z

0

)

(n+d)×1

−
(
W 1/2B
Qλ

)

(n+d)×d

θd×1

∥∥∥∥∥

2

,

where Qλ is a matrix square root of Sλ, i.e., QT

λQλ = Sλ.

! The corresponding smoothing matrix is taken to be

Hλ = B(BTWB + Sλ)
−1BTW,

and the effective degrees of freedom for a smooth component are defined as the sum of the
corresponding diagonal elements of

Pλ = (BTWB + Sλ)
−1BTWB,

with both Hλ and Pλ evaluated at the final step of the iteration.

Regression Methods Autumn 2024 – slide 289

Numerical example from Wood (2011, JRSSB)

The usual methods (AIC, GCV, . . . ) for choosing λ are available, but we focus on likelihood methods;
see below.

0.0 0.4 0.8

−
4

0
2

4
6

8

x

(a) (b) (c) (d)

(e) (f) (g) (h)

s
(x

,1
2
.0

4
)

−15 −10 −5 0 5

0
.0

0
.5

1
.0

1
.5

log(λ)

lo
g
(G

C
V

)

−15 −10 −5 0 5 5

5

1
.0

1
.5

2
.0

2
.5

log(λ)

A
IC

c

−15 −10 −5 0

5
.7

5
.9

6
.1

log(λ)

lo
g
(−

R
E

M
L
)

0.0 0.4 0.8

−
2

0
1

2

x

s
(x

,1
)

0
.0

0
.2

log(λ)

lo
g
(G

C
V

)

1
.0

1
.2

log(λ)

A
IC

c

−15 −10 −5 0 5 −15 −10 −5 0 5 −15 −10 −5 0

5
.6

5
5
.8

0
5
.9

5

log(λ)

lo
g
(−

R
E

M
L
)

Fig. 1. Example comparison of GCV, AICc and REML criteria: (a) some .x,y/-data modelled as yi D f .xi /C

"i , "i independent and identically distributed N.0,σ2/ where smooth function f was represented by using
a rank 20 thin plate regression spline (Wood, 2003); (b)–(d) various smoothness selection criteria plotted
against logarithmic smoothing parameters, for 10 replicates of the data (each generated from the same
‘truth’) (note how shallow the GCV and AICc minima are relative to the sampling variability, resulting in rather
variable optimal λ-values (which are shown as a rug plot), and a propensity to undersmooth; in contrast the
REML optima are much better defined, relative to the sampling variability, resulting in a smaller range of
λ-estimates); (e)–(h) are equivalent to (a)–(d), but for data with no signal, so that the appropriate smoothing
parameter should tend to 1 (note GCV’s and AICc’s occasional multiple minima and undersmoothing in
this case, compared with the excellent behaviour of REML; ML (which is not shown) has a similar shape to
REML)
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Approaches to iteration

! Having chosen how to choose λ for fixed θ, there are two main algorithms:

– performance iteration — repeat { fix λ, update θ with one step of PIWLS, update λ } to
convergence;

– outer iteration — repeat { fix λ, iterate PIWLS to convergence, update λ } to convergence.

! Performance iteration

– can be faster,

– but since the objective function for θ changes at each step, it may not converge—especially in
the context of concurvity (collinearity for curves . . . ), when two or more smooth functions
are (almost) confounded.

! Outer iteration

– is computationally more burdensome,

– but will converge to a (local) optimum.
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Choice of λ

! The choice of λ can be based on the marginal density of y,

f(y;β,λ) =

∫
f(y | b;β)f(b;λ) db,

which has no closed form in general (but is Gaussian if both f s are Gaussian).

! Various ways to approximate the integral:

– quadrature (doesn’t work well when dim(b) is high);

– simulation (e.g., importance sampling, same problems as quadrature);

– Laplace approximation;

– use the EM algorithm to avoid approximating the integral.

! We focus on Laplace approximation.
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Laplace approximation

Lemma 34 Let h(u) be a smooth convex function defined for u ∈ Rd, with a minimum at u = ũ,
where ∂h(ũ)/∂u = 0 and the matrix of partial derivatives h2 ≡ ∂2h(ũ)/∂u∂uT is positive definite,
and let

In =

∫

Rd
e−nh(u) du.

Then In = Ĩn
{
1 +O(n−1)

}
, and its Laplace approximation is

Ĩn =
(2π)d/2

|nh2|1/2
e−nh(ũ).

! For marginal density approximation we let θ = (βT

p×1, b
T

q×1)
T ∼ Nd(0, S

−
λ ), and write

f(y;β,λ) =

∫
f(y; θ)f(θ;λ) dθ =

|Sλ|
1/2
+

(2π)d/2

∫
exp {ℓλ(θ)} dθ,

where β is unpenalised, |Sλ|+ is the product of the non-negative eigenvalues of Sλ, and

ℓλ(θ) = ℓ(θ)− 1
2θ

TSλθ = O(n);

the assumptions of Lemma 34 should be satisfied by h(u) ≡ −n−1ℓλ(θ).
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Note on Lemma 34

! Close to ũ a Taylor series expansion gives

h(u)
.
= h(ũ) + h′(ũ)T(u− ũ) + 1

2(u− ũ)Th′′(ũ)(u− ũ) = h(ũ) + 1
2 (u− ũ)Th2(u− ũ)

so if we set z = (nh2)1/2(u− ũ) then u = ũ+ (nh2)1/2z, du/dz = (nh2)−1/2, and arguing
heuristically (ignoring the third and higher terms),

In
.
= e−nh(ũ)

∫
e−n(u−ũ)Th2(u−ũ)/2 du

= e−nh(ũ)
∫ ∞

−∞
e−z2/2du

dz
dz

=

(
(2πd

|nh2|

)1/2

e−nh(ũ),

because the d-dimensional normal density has unit integral.

! A more detailed accounting is needed to get the error term. Take the scalar case (d = 1) for
simplicity. We start by writing

nh(u)
.
= nh(ũ) + 1

2nh2(u− ũ)2 + 1
6nh3(u− ũ)3 + 1

24nh4(u− ũ)4 + · · ·

= nh(ũ) + 1
2z

2 + 1
6

h3/h
3/2
2

n1/2
z3 + 1

24

h4/h22
n

z4 +O(n−3/2)

= nh(ũ) + 1
2z

2 +
A

n1/2
z3 +

B

n
z4 +O(n−3/2)

say. Hence

e−nh(u) = e−nh(ũ)−
1
2 z

2

{

1− A

n1/2
z3 − B

n
z4 + 1

2

(
− A

n1/2
z3 − B

n
z4
)2

+O(n−3/2)

}

= e−nh(ũ)−
1
2 z

2

{
1− A

n1/2
z3 − B

n
z4 + 1

2

A2

n
z6 +O(n−3/2)

}
.

! As the odd moments of the normal density are zero, integration with respect to z leaves only the
n−1 term and the next remaining term is O(n−2). The fourth and sixth moments of the standard
normal distribution are respectively 3 and 15, and

15A2/2− 3B = 15(h3/h
3/2
2 /6)2/2− 3{h4/(24h2)} =

15h23
72h32

− h4
8h22

=
5h23
24h32

− h4
8h22

,

as required. The same argument works for m > 1, but it is more of a bloodbath.
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Comments on Laplace approximations

! The O(1/n) error is relative, so the approximation is often surprisingly accurate;

! since the odd moments of the normal density are all zero, the expansion has only terms whose
orders are even powers of n−1/2, i.e., n−1, n−2, . . .;

! Ĩn involves only h and the hessian matrix h2 at ũ, so is easily found, numerically if necessary;

! the series is asymptotic, so the partial sums may not converge, and including additional terms
may not be useful;

! as most of the normal probability lies within ±3 standard deviations of the mean, the limits of the
integral are almost irrelevant provided they are far enough away from ũ;

! if

In =

∫ ∞

−∞
e−nh(u) du, Jn =

∫ ∞

−∞
e−nh∗(u) du,

where h∗(u) = h(u) +O(n−1), then

(In/Jn)÷ (Ĩn/J̃n) = 1 +O(n−2),

so two Laplace approximations can be better than one.
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Approximate REML

! Laplace approximation gives the approximate restricted log likelihood

ℓp(λ) ≡ 1
2 log |Sλ|+ − 1

2 log |B
TWBT + Sλ|+ ℓ(θ̂λ)− 1

2 θ̂
T

λSλθ̂λ +Op(n
−1),

where Op(n−1) is a (random) term of order n−1 and

θ̂λ = (BTWB + Sλ)
−1BTWz

results from iterating PIWLS to convergence for fixed λ and satisfies ∂ℓλ(θ̂λ)/∂θ = 0.

! The expression for θ̂λ contains

B ≡ B(θ̂λ), W ≡ W (θ̂λ), z = B(θ̂λ)θ̂λ +W−1(θ̂λ)u(θ̂λ),

which involve the first two derivatives of the log likelihood contributions ℓj.

! Newton–Raphson maximization of ℓp(λ) requires its first two derivatives, so we need

∂θ̂λ
∂λ

,
∂2θ̂λ
∂λ∂λT

,

which will involve the third and fourth derivatives of the ℓj . . . could be painful.

! A version of this is implemented in mgcv.
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UK monthly AIDS reports 1983–1992

Diagnosis Reporting-delay interval (quarters): Total
period reports

to end
Year Quarter 0† 1 2 3 4 5 6 · · · ≥14 of 1992

...
...

...
...

...
...

...
...

...
...

...

1988 1 31 80 16 9 3 2 8 · · · 6 174
2 26 99 27 9 8 11 3 · · · 3 211
3 31 95 35 13 18 4 6 · · · 3 224
4 36 77 20 26 11 3 8 · · · 2 205

1989 1 32 92 32 10 12 19 12 · · · 2 224
2 15 92 14 27 22 21 12 · · · 1 219
3 34 104 29 31 18 8 6 · · · 253
4 38 101 34 18 9 15 6 · · · 233

1990 1 31 124 47 24 11 15 8 · · · 281
2 32 132 36 10 9 7 6 · · · 245
3 49 107 51 17 15 8 9 · · · 260
4 44 153 41 16 11 6 5 · · · 285

1991 1 41 137 29 33 7 11 6 · · · 271
2 56 124 39 14 12 7 10 · · · 263
3 53 175 35 17 13 11 2 306
4 63 135 24 23 12 1 258

1992 1 71 161 48 25 5 310
2 95 178 39 6 318
3 76 181 16 273
4 67 66 133
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AIDS data

! Chain-ladder model: number of reports in row j and column k is Poisson, with mean

µjk = exp(αj + βk),

but

– why should there be different parameters αj and βk for every row and column?

– Wouldn’t smooth variation be more plausible?

! Better models (maybe?):

µjk = exp{s(j) + βk}, µjk = exp{s(j) + s(k)},

where the time effect s(j) and the delay effect s(k) vary smoothly.

! Should also account for the overdispersion . . .
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Example: AIDS data

library(mgcv); library(boot)

data(aids)

aids.in <- aids[c(1:570)[as.logical(1-aids$dud)],] # these are elements in the two-way table

aids.glm <- glm(y~factor(time)+factor(delay),family=quasipoisson,data=aids.in)

aids.gam1 <- mgcv::gam(y~s(time,k=20)+factor(delay)-1,family=quasipoisson,data=aids.in)

plot(aids.gam1,page=1)

> anova(aids.gam1)

Formula:

y ~ s(time, k = 20) + factor(delay)

Parametric Terms:

df F p-value

factor(delay) 14 261.6 <2e-16

Approximate significance of smooth terms: # Ref.df can be ignored

edf Ref.df F p-value

s(time) 4.891 6.129 189.1 <2e-16

aids.gam2 <- mgcv::gam(y~s(time,k=20)+s(delay,k=15),family=quasipoisson,data=aids.in)

> anova(aids.gam2)

Formula:

y ~ s(time, k = 20) + s(delay, k = 15)

Approximate significance of smooth terms:

edf Ref.df F p-value

s(time) 4.896 6.134 189.0 <2e-16

s(delay) 11.453 12.754 285.5 <2e-16

The fits are very similar, but aids.gam2 has slightly lower AIC of 792.0 compared to 792.1 — these
are so similar that the choice should be based on interpretability rather than on AIC.
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Example: AIDS data
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Estimates of (centered) smooth functions s(j) and parameters based on plot(aids.gam1) and
coef(aids.gam1).
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Example: AIDS data
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Estimates of (centered) smooth functions s(j) and s(k) based on plot(aids.gam2).
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Example: AIDS data
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Numbers of recorded deaths (+), with estimated mean deaths per quarter based on chain-ladder
model (solid) and on Poisson (black dashes) and quasi-likelihood GAMs with Poisson variance
function V (µ) = µ (red dashes). The last two estimates have 95% pointwise confidence intervals
(dots) based on the fit (treating the smoothing parameters as fixed). To make these I had to compute
the fitted means for the missing lower right triangle of the data table.
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Closing

! The basic ideas of regression, dependence of a response on explanatory variables, extend far
beyond the linear model, to

– non-linear dependence on explanatory variables;

– general response distributions (Poisson, binomial, . . . );

– random effects models—some parameters treated as random, and others as fixed;

– smooth curve fitting by basis function methods in (generalized) additive models.

! Unifying themes are:

– (semi-)parametric modelling using basis functions;

– maximum likelihood inference;

– estimation using iterative weighted least squares algorithms;

– penalized fitting to allow for random effects/basis functions;

– analysis of deviance;

– residuals and other diagnostics.
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