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Semiparametric regression

! Normal linear model has two main aspects:

– systematic variation, E(y) = µ, and µ = Xβ with parameters β;

– stochastic variation, y ∼ Nn(µ,σ2In).

! Can relax the stochastic assumption using other distributions or second-order assumptions, but
still have parametric model for the systematic part.

! Often want to relax systematic part for more flexible models, for

– exploratory data analysis — ‘will a linear model be adequate?’

– confirmatory data analysis — ‘I’ve fitted a linear model, is it adequate?’

– general modelling — ‘the data are too complex to expect a simple parametric model to work,
so what can I do?’

– semiparametric modelling — ‘I will use a parametric model for the effects of interest, but can
I model nuisance effects more flexibly?’

! Most basic tool is the scatterplot smoother.
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Example: Motorcycle data

Measurements of head acceleration (g) at time after impact (ms) in a simulated motorcycle accident,
used to test crash helmets:
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Scatterplot smoothing

! Have data (x1, y1), . . . , (xn, yn), with x− ≤ x1 < · · · < xn ≤ x+ (ahem) and we wish to estimate
E(y) = µ(x), for x ∈ X = [x−, x+].

! Suppose that µ ∈M, a function space spanned by n linearly independent basis functions that can
be identified by evaluation at x1, . . . , xn, and let µj = µ(xj).

! Can choose a basis {b1(x), . . . , bn(x)} for M such that µ(x) =
∑n

j=1 µjbj(x) interpolates
(x1, µ1), . . . , (xn, µn).

! Suppose that M contains the linear functions on X and that the second derivatives of the bj(x)
are not all zero, so functions in M may also be nonlinear in x.

! To estimate µ we minimise a penalised sum of squares,

n∑

j=1

{yj − µ(xj)}2 + λ

∫

X
{µ′′(x)}2 dx, (22)

where the roughness penalty imposes smoothness: if λ→ 0, then µ(xj)→ yj and µ̂
interpolates, but when λ→∞ even tiny wiggles in µ will give a huge penalty, making µ̂ linear.

! The penalty does not affect linear functions, so M = L
⊕

P, where L and P are the
two-dimensional vector space of linear functions on X and an (n− 2)-dimensional vector space of
nonlinear functions on X , and

⊕
denotes addition of vector spaces.
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Scatterplot smoothing II

! The roughness term is

∫

X
{µ′′(x)}2 dx =

∫

X

⎧
⎨

⎩

n∑

j=1

µjb
′′
j (x)

⎫
⎬

⎭

2

dx =
n∑

i,j=1

µiµj

∫

X
b′′i (x)b

′′
j (x) dx = µTSµ,

say, where µT = (µ1, . . . , µn).

! Sn×n has (i, j) element
∫
X b′′i (x)b

′′
j (x) dx and is symmetric and positive semi-definite of rank

n− 2, because linear functions are unpenalised, so S1n = S(x1, . . . , xn)T = 0.

! The penalised sum of squares

(y − µ)T(y − µ) + λµTSµ ≡ −2µTy + µT(In + λS)µ,

is minimised by µ̂λ = (In + λS)−1y.

! As λ increases from zero, the fitted value µ̂λ shrinks from y towards the straight-line regression fit
to y, which is unpenalised.

! The equivalent degrees of freedom are edfλ = tr(Hλ) =
∑n

j=1(1 + λδj)−1, where
δ1 ≥ · · · ≥ δ3 > δ2 = δ1 = 0 are the eigenvalues of S. As λ increases edfλ decreases
monotonically from edf0 = n towards edf∞ = 2.
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Scatterplot smoothing III

! In principle we might take any basis functions, but in practice we usually take local polynomials
known as splines that have good approximation properties.

! There are many forms of splines, which

– are often cubic polynomials with finite support between values of x known as knots,
x∗1, . . . , x

∗
K , and then S is tri-diagonal,

– sometimes form a natural cubic spline, which has K = n and certain optimality properties,

– are discussed in more detail later.

! If there is no penalisation (λ = 0) then we have a standard linear model, and spline basis
functions are called regression splines.

! Under second-order assumptions we choose λ by minimising CV(λ) or GCV(λ).

! Under normal-theory assumptions we can use REML to estimate σ2 and λ.

! Obvious generalisation allows weight matrix W = diag(w1, . . . , wn).

! If the x1, . . . , xn are not unique, write E(y) = Nn×n′µn′×1 in terms of the means µ at the n′

unique elements of x, and minimise

(y −Nµ)TW (y −Nµ) + λµTSµ.

where Sn′×n′ arises as before from the roughness penalty on µ(x).
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Linear, quadratic and cubic B-splines
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Example: Motorcycle data

Scatterplot smooths based on natural cubic splines with edf equal to 5 (red), 10 (blue), 20 (green),
and chosen by CV (cyan, edf = 12.8) and GCV (pink, edf = 12.26):

10 20 30 40 50

−
1

0
0

−
5

0
0

5
0

Time after impact (ms)

H
e

a
d

 a
cc

e
le

ra
tio

n
 (

g
)

Regression Methods Autumn 2024 – slide 208

Example: Motorcycle data

Scatterplot smooths based on natural cubic splines with weights 16 when x ≤ 12 and 1 for x > 12,
and edf chosen by CV (red, edf = 14.7) and GCV (blue, edf = 13.7):
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Choosing K and λ

! Above we took K = n basis functions, but for statistical purposes we seek a summary of the
data, so we hope that edf ≪ n, so we hope that K < n, maybe even K ≪ n.

! Theory suggests that as n→∞ we need K = O(n1/5) or even O(n1/9) to get near-optimal
estimation of µ(x), when µ lies in reasonable function classes;

! In practice we take K (more than) large enough to give enough flexibility (increasing it if results
are suspect, K = 9 by default in mgcv), and allow λ to determine the smoothness of the curve;

! Typically the knots x∗k are placed at equally-spaced quantiles of x.
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Example: Motorcycle data

10 20 30 40 50

−
1
0
0

−
5
0

0
5
0

Time after impact (ms)

H
e
a
d
 a

cc
e
le

ra
tio

n
 (

g
)

5 10 15 20 25 30 35 40

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

Degrees of freedom

G
C

V

! Left: linear spline fits with λ = 0 and K = 10 (black), 20 (red), 40 (blue), and optimal GCV
choice of λ with K = 40 (green)

! Right: GCV(λ) as a function of dfλ for K = 40.
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Comments

! We discuss inference (beyond ‘point’ estimation) and adaptive estimation of weights later . . .

! Here we are producing point estimates; later we discuss the construction of confidence sets.

! An alternative local averaging approach uses locally weighted fits, such as the Nadaraya–Watson
estimator

µ̂(x) =

∑n
j=1K{(x− xj)/h}yj∑n
j=1K{(x− xj)/h}

,

where

– the kernel function K is something like the Gaussian density, and

– the bandwidth h plays a role similar to edf.

This is also a linear smoother, and in fact the spline smoothers have representations in terms of
equivalent kernels.

! Local averaging can be extended to local likelihood fitting of more complex models.
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3.3 Lasso slide 213

Lq penalties

! The quadratic penalty ∥β∥2 generalises to other Lq penalties

∥β∥q =
p∑

r=1

|βr|q,

shown below for p = 2 and (working inwards) q = 100, 10, 3, 2, 1.5, 1, 0.5, 0.2;
∥β∥0 = #{βr ̸= 0} counts the number of non-zero parameters.
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(Some picture credits here and later: Simon Wood)
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Basic geometry

! If D(β) is a sum of squares or negative log likelihood, then

β̃λ = argminβ {D(β) + λ∥β∥q} ,

– satisfies ∥β̃λ∥q = t for some t, and

– minimises D(β) on that contour, i.e.,

β̃λ = argminβD(β) such that ∥β̃λ∥q = t,

because otherwise we could reduce D(β) while leaving the penalty unchanged, i.e., β̃λ would
not be optimal.

! The sets ∥β̃λ∥q = t

– have cusps (and thus can set βr = 0) when q ≤ 1,

– are non-convex (and thus may give non-unique solutions) when q < 1,

so there is a unique solution if the contours of D(β) and ∥β∥q are convex, and both a unique
solution and the possibility of choosing variables (sparsity) by setting βr = 0 when q = 1.
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Basic geometry II

Penalised solutions (red dots) for q = 2, 1, 0.45, with contours of D(β) in grey and solution contour
for ∥β∥q in red.

P

β1

β 2

 2 

 3 

 4 

 5 

 6 

 7 
 8 
 9  10 

 11 
 12 

 13 

 14 

 15 

 16 

−1.0 −0.5 0.0 0.5 1.0 1.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

●

β1
β 2

 2 

 3 

 4 

 5 

 6 

 7 
 8 
 9  10 

 11 
 12 

 13 

 14 

 15 

 16 

−1.0 −0.5 0.0 0.5 1.0 1.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

●

β1

β 2

 2 

 3 

 4 

 5 

 6 

 7 
 8 
 9  10 

 11 
 12 

 13 

 14 

 15 

 16 

−1.0 −0.5 0.0 0.5 1.0 1.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

●

●

As λ→∞ the constraint tightens and the red contours shrink around the origin, and as λ→ 0 the
constraint relaxes and the β̃λ tends to the unconstrained estimate.
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Lasso

! The lasso (least absolute shrinkage and selection operator) objective function can be written
as

L = 1
2∥y −Xβ∥2 + λ∥β∥1,

so suppose we have minimised this for some λ0, giving active set A = {r : β̃r ̸= 0} and

L = 1
2(y −XAβ̃A)

T(y −XAβ̃A) + λ
∑

r∈A

|β̃r|,

and now we aim to decrease λ (i.e., to relax the constraint).

! Now d|x|/dx = sign(x), so when

dL

dβ̃A
= XT

A(XAβ̃A − y) + λ sign(β̃A) = 0,

we have
β̃A = (XT

AXA)
−1XT

Ay − λ(XT

AXA)
−1sign(β̃A) = b− λa,

say, i.e., β̃A is linear in λ until A changes.

! A changes on deleting a column Xr from XA or on adding one from its complement XAc .

! sign(β̃A) only changes when (say) β̃r passes through zero, but r leaves A when β̃r = 0.
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Lasso algorithm

! A variable in A is deleted if a component of β̃A = b− λa hits zero as λ decreases from λ0, which
occurs at λ− = maxλ<λ0 br/ar.

! If Xr is the rth column of X, then r will enter A if adding Xrβr decreases L, i.e., if

dL

dβr
= XT

r (Xβ − y) + λsign(βr)

{
< 0, βr > 0,

> 0, βr < 0,

so βr remains inactive if |XT

r (y −Xβ)| ≤ λ.
! Thus as λ decreases, A changes when for some r in the complement Ac of A we have

XT

r (y −XAβ̃A) = ±λ,

or, setting β̃A = b− λa,

XT

Ac(y −XAb) + λ(XT

AcXAa± 1) = 0 =⇒ c+ λ(d± 1) = 0,

say: the next variable is added when λ = λ+ = maxλ<λ0{−cr/(dr ± 1)}.
! Hence if s = sign(β), the algorithm decreases λ from

– the highest λ at which the a first variable is active, and defines the A and s, then

– finds the next λ at which A changes, stores it and the corresponding β̃, updating A and s.
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Practical matters and thresholding

! Usually

– λ is chosen by dividing the data into training and testing subsets and minimising some
measure of prediction error for the test subset,

– y is centered and X has no column of ones, and

– the columns of X are standardized to have zero mean and unit variance — what this means in
terms of interpreting the components of β is then unclear!

! We can think of penalised estimators as using different sorts of thresholding functions, where β̂
is replaced by β̃ = gλ(β̂) and (conceptually)

– for the lasso there is soft thresholding,

gλ(u) =

{
0, |u| < λ,

sign(u)(|u| − λ), otherwise,

– for variable selection there is hard thresholding,

gλ(u) =

{
0, |u| < λ,

u, otherwise,

– for ridge regression there is shrinkage, g(u) = u/(1 + λ).
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Threshold functions

−4 −2 0 2 4

−
4

−
2

0
2

4

Soft threshold

beta

g
(b

e
ta

)

−4 −2 0 2 4
−

4
−

2
0

2
4

Hard threshold

beta

g
(b

e
ta

)

−4 −2 0 2 4

−
4

−
2

0
2

4

Ridge

beta

g
(b

e
ta

)

Regression Methods Autumn 2024 – slide 220

Soft thresholding

Top panels: the sum g(β) of the L1 penalty and the least squares function (both in grey) is the black
line, which has a cusp at β = 0. If the left- and right-hand derivatives of the sum are equal at zero,
then the minimiser (at the red vertical line) is non-zero, but not otherwise. Bottom panels: the
derivative g′(β) = 0 when β = β̃.
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Example: cement data

! Estimated coefficients for lasso fit against L1 norm and λ:

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

L1 Norm

C
o
e
ff
ic

ie
n
ts

0 3 3 3 3

−2 −1 0 1 2

0
.0

0
.5

1
.0

1
.5

Log Lambda

C
o
e
ff
ic

ie
n
ts

3 3 3 3 3

Regression Methods Autumn 2024 – slide 222

Comments

! Least angle regression (LAR) is similar to the lasso, and can compute the lasso solution path
for all λ in O(n3) operations (faster than ridge, O(np2), when p≫ n).

! Theory: one can ask about the properties of β̃λ in suitable settings (e.g., n, p→∞ with
p/n→ c > 0). Then under certain conditions one can show that lasso variable is consistent (i.e.,
the probability that the variables with βr ̸= 0 are selected tends to 1), but that the β̃λ themselves
are inconsistent (because soft thresholding implies that |β̃λ,r| is systematically smaller than |βr|).

! Many (many!) variants and related procedures exist to overcome such problems.

! Computation: lasso and elastic net penalisations available in R package glmnet and extend to
generalized linear models and more general regressions (later).

! For any regression model we can define the degrees of freedom as

σ−2
n∑

j=1

cov(yj , ŷj) = tr{cov(y, ŷ)}/σ2;

this reduces to previous definitions but can be computed in more situations.

! When D(β) is a general loss function (e.g., a negative log likelihood for a GLM), the exact
algorithm above is replaced by a coordinate descent algorithm that updates each β̃r in turn,
with the other components fixed. This too is very efficient.
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3.4 Splines slide 224

Basis functions

! We seek to estimate a function µ(x) based on data (x1, y1), . . . , (xn, yn).

! There are n parameters µ1 = µ(x1), . . . , µn = µ(xn) (plus noise, . . . ), so we assume that µ(x)
belongs to a suitable class of functions, defined for x ∈ X .

! Simple linear model is
µn×1 = Bn×pβp×1, rank(B) = p ≤ n,

with the columns of B evaluations at x1, . . . , xn of basis functions.

! The basis functions may be

– global (e.g., polynomials, trigonometric/Fourier functions),

– local (e.g., splines),

– multiscale (e.g., wavelets).

! We choose the basis for

– suitability for the problem at hand (e.g., suitably smooth), and

– computational reasons—want fast, preferably O(n), handling of n× n matrices.

! Focus on spline functions, on which there is a huge literature.
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Aside: Polynomial regression

! Classical approach is to fit a polynomial of degree p− 1, i.e.,

µ(xj) = β0 + β1xj + · · ·+ βp−1x
p−1
j ,

and choose β0, . . . ,βp−1 to minimise the sum of squares

n∑

j=1

{yj − µ(xj)}2 =
n∑

j=1

{
yj − (β0 + β1xj + · · ·+ βp−1x

p−1
j )

}2
,

giving β̂p×1 = (BTB)−1BTy, where (j, i) element of n× p matrix B is xi−1
j .

! Comments:

– easily copes with missing values/unequally spaced observations;

– use orthogonal polynomials to avoid numerical problems if n, k large;

– sensitivity to observations at extremities of series often leads to poor fit;

– usually doesn’t work well because infinite differentiability everywhere is generally unnecessarily
restrictive.
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Piecewise linear basis

! Place knots of a univariate x at x∗1 < · · · < x∗K , and define tent functions

b1(x) =

{
(x∗2 − x)/(x∗2 − x∗1), x∗1 ≤ x ≤ x∗2,

0, otherwise,

bk(x) =

{
(x− x∗k−1)/(x

∗
k − x∗k−1), x∗k−1 < x ≤ x∗k,

(x∗k+1 − x)/(x∗k+1 − x∗k), x∗k < x ≤ x∗k+1,
k = 2, . . . ,K − 1,

bK(x) =

{
(x− x∗K−1)/(x

∗
K − x∗K−1), x∗K−1 ≤ x ≤ x∗K ,

0, otherwise :

these are non-zero only in (x∗k−1, x
∗
k+1) (compact support) and take value 1 at x∗k.

! An exact linear interpolant of data y1, . . . , yK at the knots is the function

µ(x) =
K∑

k=1

bk(x)yk = B(x)Ty,

which by construction

– passes through the points (x∗k, yk) and

– is linear between the knots.
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Piecewise linear basis II
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! Left: piecewise linear basis functions bk(x) and data (x∗k, yk).

! Right: functions bk(x)yk and linear interpolant (bold).
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Statistical use

! Aim for summary of the n observations, so interpolation not useful.

! Could use K < n knots, but fit tends to depend heavily on their locations, so better to use
high(ish) K and impose structure by penalising roughness of µ(x):

β̂λ = argminβ

{

∥y −Bβ∥2 + λ
K−1∑

k=2

{
µ(x∗k−1)− 2µ(x∗k) + µ(x∗k+1)

}2
}

.

! The second term sums squared numerical second derivatives at the internal knots, and λ imposes
the degree of penalisation:

– λ = 0 (no penalty) gives the interpolant,

– λ→∞ forces the second derivatives to be zero, so gives a straight-line fit.

! On setting βk = µ(x∗k) and writing

⎛

⎜⎜⎜⎝

β1 − 2β2 + β3
β2 − 2β3 + β4
β3 − 2β4 + β5

...

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

1 −2 1 0 0 0 · · ·
0 1 −2 1 0 0 · · ·
0 0 1 −2 1 0 · · ·
...

...
...

...
...

...
. . .

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

β1
β2
β3
...

⎞

⎟⎟⎟⎠
= D(K−2)×KβK×1,

the penalty is
∑K−1

k=2 (βk−1 − 2βk + βk+1)2 = (Dβ)TDβ = βTDTDβ = βTSβ, say.
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Penalized fit

! The penalty matrix S is of side K ×K but of rank K − 2, because

S1K = Sx∗K×1 = 0K :

the null space of S consists of all straight lines β01K + β1x∗, which are unpenalised.

! Hence (recalling ridge regression),

β̂λ = argminβ
{
∥y −Bβ∥2 + λβTSβ

}
= (BTB + λS)−1BTy

giving

fitted values ŷ = Bβ̂λ = B(BTB + λS)−1BTy = Hλy,

equivalent degrees of freedom dfλ = tr(Hλ) =
K∑

k=1

1

1 + ηkλ
,

where

– η1 ≤ · · · ≤ ηK ∈ [0, 1] are the eigenvalues of (BTB)−1/2S(BTB)−1/2,

– η1 = η2 = 0, corresponding to the null space of S, so

– dfλ is monotone decreasing in λ, with

(λ = 0) K ≥ dfλ ≥ 2 (λ→∞).
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Higher-order splines

! The pth degree spline basis with knots x∗1 < · · · < x∗K is

1, x, . . . , xp, (x− x∗1)
p
+, . . . , (x− x∗K)p+,

where u+ = max(u, 0) is the positive part function.

! The resulting basis matrix B is highly collinear and gives an implausible statistical model.

! B-spline bases span the same linear space, but have better numerical properties. They are
defined by adding boundary knots x∗0 and x∗K+1 and setting up an augmented knot sequence

τ1 ≤ · · · ≤ τM ≤ x∗0 ≤ τM+1 = x∗1 ≤ · · · ≤ τM+K = x∗K ≤ x∗K+1 ≤ τK+1+M ≤ · · · ≤ τK+2M ;

typically the τk outside [x∗0, x
∗
K+1] are set to the boundary knot values. Then

Bk,1(x) = I(τk ≤ x < τk+1), k = 1, . . . ,K + 2M − 1,

Bk,m(x) =
x− τk

τk+m−1 − τk
Bk,m−1(x) +

τk+m − x

τk+m − τk+1
Bk+1,m−1(x), k = 1, . . . ,K + 2M −m,

where we set Bk,1 ≡ 0 if τk = τk+1 (avoiding division by zero).

! Cubic splines (p = 3, M = 4) give visually smooth functions.

! K = 10 on the next slide, with M = 2 (linear), M = 3 (quadratic) and M = 4 (cubic), and the
τk set to equal the boundary knots.
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Linear, quadratic and cubic B-splines
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Natural cubic spline

! Suppose the xj are distinct (no loss of generality) and

a < x1 < · · · < xn < b, X = [a, b] ⊂ R.

! A natural cubic spline adds the constraint that the function is linear outside [x1, xn], and thus
avoids high variance due to quadratic and higher terms outside this interval.

! A natural cubic spline

– has K = n knots, at x1 < · · · < xn,

– is a cubic polynomial on each interval between knots,

– is continuous, with continuous first and second derivatives at each knot, and

– is linear on [a, x1] and [xn, b], with zero second and third derivatives at x1 and xn,

– has
2 + 4(n− 1) + 2 parameters − 3n linear constraints = n

degrees of freedom (df), which can be split into

◃ 2 df for a linear fit, plus

◃ n− 2 df for the second derivatives µ′′(x2), . . . , µ′′(xn−1).
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Natural cubic spline
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! A natural cubic spline may be constructed by integrating a linear second derivative function µ′′(x)
which is determined by µ′′(x2), . . . , µ′′(xK−1) and because µ′′(x) ≡ 0 for x ̸∈ (x1, xK).

! On integrating twice we gain two constants: µ(x) = β0 + β1x+
∫ x
0

∫ x′

0 µ′′(u) dudx′.

! Above x1 = 1, . . . , x10 = 10, so the spline is determined by µ′′(2), . . . , µ′′(9) and the line.
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Optimality of natural cubic splines

! Let S2(X ) denote the set of functions µ differentiable on X = [a, b] with absolutely continuous
first derivative µ′: i.e., there exists an integrable function µ′′ such that∫ x
a µ′′(u)du = µ′(x)− µ′(a) for x ∈ X .

! Clearly any µ with two continuous derivatives on X lies in S2(X ).

Theorem 32 Suppose n ≥ 2, that a < x1 < · · · < xn < b, and that µ is the natural cubic spline
interpolating y1, . . . , yn at x1, . . . , xn. If µ̃ ∈ S2(X ) also interpolates the yj, then

∫

X
µ̃′′2 ≥

∫

X
µ′′2,

with equality iff µ̃ ≡ µ.

! Thus µ minimises the roughness penalty λ
∫
X µ′′2 in a larger class of functions than that to

which it belongs, making it a natural choice as an interpolant, because minimising

n∑

j=1

{yj − µ̃(xj)}2 + λ

∫

X
µ̃′′(x)2 dx

for µ̃ ∈ S2(X ) will automatically result in a natural cubic spline µ: if µ̃(xj) = µ(xj), then the
penalty is reduced by using µ.
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Note to Theorem 36

Let ν = µ̃− µ ∈ S2(X ), and note that ν(xj) = 0 for each j, since µ(xj) = µ̃(xj) = yj. The natural
boundary conditions imply that µ′′(a) = µ′′(b) = 0, so integration by parts yields

0 =
[
µ′′(x)ν ′(x)

]b
a
=

∫

X
(µ′′ν ′)′ =

∫

X
µ′′ν ′′ +

∫

X
µ′′′ν ′,

and hence the facts that µ′′′ is piecewise constant and that ν(xj) = 0 yields

∫

X
µ′′ν ′′ = −

∫

X
µ′′′ν ′ = −

n−1∑

j=1

µ′′′(x+j )

∫ xj+1

xj

ν ′ = −
n−1∑

j=1

µ′′′(x+j ){ν(xj+1)− ν(xj)} = 0.

Hence
∫

X
µ̃′′2 =

∫

X
(µ′′ + ν ′′)2 =

∫

X
µ′′2 + 2

∫

X
µ′′ν ′′ +

∫

X
ν ′′2 =

∫

X
µ′′2 +

∫

X
ν ′′2 ≥

∫

X
µ′′2,

wth equality iff ν ′′(x) ≡ 0. This occurs iff ν(x) is linear, but since ν(xj) = 0 at at least two points,
ν(x) = 0 for all x ∈ X .
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More splines

! Sometimes cyclic effects (e.g., seasonality, diurnal variation) must be modelled smoothly, so (e.g.)
December joins smoothly onto January. Then the penalty and spline basis must be modified
accordingly, to give a cyclic (cubic) spline.

! P-splines are a version of B-splines (usually with equally-spaced knots) in which a difference
penalty is applied to the parameters to control the wiggliness of µ, e.g.,

K−1∑

k=1

wk(βk+1 − βk)2 = βTDTWDβ, with D =

⎛

⎝
−1 1 0 0 · · ·
0 −1 1 0 · · ·
· · · · · · ·

⎞

⎠ ,

and W = diag(w1, . . . , wK−1). These are easy to set up and flexible, but messy if the knots are
not equi-spaced, and the penalty is less readily interpreted.

! For an adaptive spline we can let wk ≡ wk(x) vary with x, for example setting
w(x) = B(x)λL×1 and thus having DTWD =

∑
l λlD

Tdiag{Bl(x)}D, where Bl(x) is the lth
column of B(x), then estimating the vector λ.

! Other possibilities include (Wood, 2017, Chapter 5)

– shape-constrained splines to impose, e.g., monotonicity on the fit;

– thin-plate, Duchon and tensor product splines used in spatial problems; and

– soap film splines used when smoothing over complex domains.

Regression Methods Autumn 2024 – slide 236

Motorcycle data: adaptive fit

Standard (left) and adaptive (right) spline fits, the latter with K = 40 and L = 5:
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