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Semiparametric regression

so what can | do?’

| model nuisance effects more flexibly?’

[0 Most basic tool is the scatterplot smoother.

[0 Normal linear model has two main aspects:
— systematic variation, E(y) = u, and p = X3 with parameters [3;
- stochastic variation, y ~ N, (u, 021,).

[0 Can relax the stochastic assumption using other distributions or second-order assumptions, but
still have parametric model for the systematic part.

[0 Often want to relax systematic part for more flexible models, for

— exploratory data analysis — ‘will a linear model be adequate?’
— confirmatory data analysis — ‘I've fitted a linear model, is it adequate?’
— general modelling — ‘the data are too complex to expect a simple parametric model to work,

— semiparametric modelling — ‘I will use a parametric model for the effects of interest, but can
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Example: Motorcycle data

used to test crash helmets:

Measurements of head acceleration (g) at time after impact (ms) in a simulated motorcycle accident,

Time after impact (ms)
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Scatterplot smoothing

O Have data (z1,91),. -, (Tn,yn), with z_ <27 < -+ <z, < x4 (ahem) and we wish to estimate
E(y) = p(z), for z € X = [x_, z4].

[0 Suppose that © € M, a function space spanned by n linearly independent basis functions that can
be identified by evaluation at x1,...,x,, and let p; = pu(z;).

[ Can choose a basis {b1(z),...,bn(x)} for M such that p(z) =377, j1;b;(x) interpolates
(.%'1,,&1), ey (wnnu'n)

00 Suppose that M contains the linear functions on X" and that the second derivatives of the b;(x)
are not all zero, so functions in M may also be nonlinear in z.

[0 To estimate p we minimise a penalised sum of squares,

Zm )+ [ @) e, (22)
where the roughness penalty imposes smoothness: if A — 0, then p(z;) = y; and [
interpolates, but when \ — oo even tiny wiggles in 1 will give a huge penalty, making /i linear.

O The penalty does not affect linear functions, so M = L& P, where £ and P are the
two-dimensional vector space of linear functions on X" and an (n — 2)-dimensional vector space of
nonlinear functions on X', and € denotes addition of vector spaces.
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Scatterplot smoothing Il

[0 The roughness term is
Wade = [ 33w o de= 3 s [ @) de = uSn
/. > >
say, where p" = (p1, ..., tn).
O Suxn has (i,5) element [, b7 (2)b] () dz and is symmetric and positive semi-definite of rank
n — 2, because linear functions are unpenalised, so S1,, = S(z1,...,2,)" = 0.
[0 The penalised sum of squares
(y— )" (y —p) + A" Sp = —2p"y + p" (I + AS)p,
is minimised by 7iy = (I,, + AS) "1y
OO As )\ increases from zero, the fitted value [z shrinks from y towards the straight-line regression fit
to y, which is unpenalised.
[ The equivalent degrees of freedom are edfy = tr(Hy) = >_7_, (1 + AS;)7L, where
01 > -+ > 03 > 0o = 61 = 0 are the eigenvalues of S. As A increases edf) decreases
monotonically from edfy = n towards edf, = 2.
Regression Methods Autumn 2024 — slide 205

112



Scatterplot smoothing 11l

[ In principle we might take any basis functions, but in practice we usually take local polynomials
known as splines that have good approximation properties.

O There are many forms of splines, which

— are often cubic polynomials with finite support between values of x known as knots,
x],...,%%, and then S is tri-diagonal,

— sometimes form a natural cubic spline, which has K = n and certain optimality properties,

— are discussed in more detail later.

O If there is no penalisation (A = 0) then we have a standard linear model, and spline basis
functions are called regression splines.
0 Under second-order assumptions we choose A by minimising CV(\) or GCV ().
0 Under normal-theory assumptions we can use REML to estimate o and \.
O Obvious generalisation allows weight matrix W = diag(ws, ..., wy,).
O If the z1,...,x, are not unique, write E(y) = N, xn/ftn'x1 in terms of the means p at the n’
unique elements of x, and minimise
(y = Nu)"W(y — Nu) + Au*Sp.
where S,/ arises as before from the roughness penalty on u(x).
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Linear, quadratic and cubic B-splines

Spline functions
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Example: Motorcycle data

Scatterplot smooths based on natural cubic splines with edf equal to 5 (red), 10 (blue), 20 (green),
and chosen by CV (cyan, edf = 12.8) and GCV (pink, edf = 12.26):
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Example: Motorcycle data

Scatterplot smooths based on natural cubic splines with weights 16 when = < 12 and 1 for x > 12,
and edf chosen by CV (red, edf = 14.7) and GCV (blue, edf = 13.7):
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Choosing K and )\

[0 Above we took K = n basis functions, but for statistical purposes we seek a summary of the
data, so we hope that edf < n, so we hope that K < n, maybe even K < n.

[0 Theory suggests that as n — oo we need K = O(n'/®) or even O(n'/?) to get near-optimal
estimation of p(x), when p lies in reasonable function classes;

O In practice we take K (more than) large enough to give enough flexibility (increasing it if results
are suspect, K = 9 by default in mgcv), and allow A to determine the smoothness of the curve;

0O Typically the knots . are placed at equally-spaced quantiles of x.
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Example: Motorcycle data
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O Left: linear spline fits with A = 0 and K = 10 (black), 20 (red), 40 (blue), and optimal GCV
choice of A with K =40 ( )
O Right: GCV(\) as a function of dfy for K = 40.
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Comments
0 We discuss inference (beyond ‘point’ estimation) and adaptive estimation of weights later . ..
[0 Here we are producing point estimates; later we discuss the construction of confidence sets.
[0 An alternative local averaging approach uses locally weighted fits, such as the Nadaraya—\Watson
estimator "
ey = S Kl =)/,
> K{(w —aj)/h}
where
— the kernel function K is something like the Gaussian density, and
— the bandwidth A plays a role similar to edf.
This is also a linear smoother, and in fact the spline smoothers have representations in terms of
equivalent kernels.
[0 Local averaging can be extended to local likelihood fitting of more complex models.
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3.3 Lasso slide 213

L, penalties

00 The quadratic penalty |||z generalises to other L, penalties

p
18llg = 15:1%
r=1

shown below for p = 2 and (working inwards) ¢ = 100, 10, 3, 2, 1.5, 1, 0.5, 0.2;
IBllo = #{Br # 0} counts the number of non-zero parameters.

o

(Some picture credits here and later: Simon Wood)
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Basic geometry

O If D(B) is a sum of squares or negative log likelihood, then
B = argming {D(5) + AlI8llq} ,

— satisfies || Gy, = t for some ¢, and

— minimises D(/3) on that contour, i.e.,
By = argming D(3) such that 18xllq = t,

because otherwise we could reduce D(3) while leaving the penalty unchanged, i.e., 35 would
not be optimal.

[0 The sets |3y, =t
— have cusps (and thus can set 3, = 0) when ¢ < 1,
— are non-convex (and thus may give non-unique solutions) when ¢ < 1,

so there is a unique solution if the contours of D(/3) and ||3||, are convex, and both a unique
solution and the possibility of choosing variables (sparsity) by setting 3, = 0 when ¢ = 1.
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Basic geometry ||

Penalised solutions (red dots) for ¢ = 2, 1, 0.45, with contours of D(/3) in grey and solution contour
for ||8]|4 in red.
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As A — o0 the constraint tightens and the red contours shrink around the origin, and as A — 0 the
constraint relaxes and the 3y tends to the unconstrained estimate.
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Lasso

0 The lasso (least absolute shrinkage and selection operator) objective function can be written
as

L= 3lly = XBll2 + AIBl1,

so suppose we have minimised this for some \g, giving active set A = {r : 3, # 0} and

L=3(y—XaBa)"(y— Xaba) + XD 15,
rcA
and now we aim to decrease \ (i.e., to relax the constraint).

O Now d|z|/dz = sign(x), so when

dL

R = X4(XaBa —y) + Asign(Ba) = 0,

we have R R
Ba = (XAXa) ' X4y — MX4Xa) 'sign(Ba) = b — Aq,
say, i.e., B4 is linear in A until A changes.
O A changes on deleting a column X, from X 4 or on adding one from its complement X 4e.

O sign(B4) only changes when (say) 3, passes through zero, but r leaves A when 3, = 0.
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Lasso algorithm

[0 A variable in A is deleted if a component of 54 = b — Aa hits zero as \ decreases from \g, which
occurs at A_ = maxy<y, br/a,.
O If X, is the rth column of X, then r will enter A if adding X,.3, decreases L, i.e., if

dL
a8,

<0, Br>0,
>0, Br <0,

XP(XB —y) + Asign(5,) {
so (3, remains inactive if | X" (y — XB)| < A.
[0 Thus as A decreases, A changes when for some r in the complement A€ of A we have
X[ (y — XaBa) = £,
or, setting Ba=0b—\a,
Xhe(y — Xab) + M(X (e Xnaa+1)=0 = c+Ad=x1) =0,

say: the next variable is added when A = Ay = max)<),{—¢/(d, £1)}.
O Hence if s = sign(f3), the algorithm decreases \ from
— the highest A at which the a first variable is active, and defines the A and s, then
— finds the next A at which A changes, stores it and the corresponding 3, updating A and s.
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Practical matters and thresholding

0 Usually

— Ais chosen by dividing the data into training and testing subsets and minimising some
measure of prediction error for the test subset,

— gy is centered and X has no column of ones, and

— the columns of X are standardized to have zero mean and unit variance — what this means in
terms of interpreting the components of (3 is then unclear!

[J We can think of penalised estimators as using different sorts of thresholding functions, where 3
is replaced by 5 = g)() and (conceptually)

— for the lasso there is soft thresholding,

(w) =% ul <A,
u) =
9 sign(u)(|u| — A), otherwise,

— for variable selection there is hard thresholding,

0, |u|l <A,
gA<u>:{ [u

u, otherwise,

— for ridge regression there is shrinkage, g(u) = u/(1 + \).
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Threshold functions
Soft threshold Hard threshold Ridge
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Soft thresholding

Top panels: the sum g(3) of the L; penalty and the least squares function (both in grey) is the black
line, which has a cusp at 5 = 0. If the left- and right-hand derivatives of the sum are equal at zero,
then the minimiser (at the red vertical line) is non-zero, but not otherwise. Bottom panels: the
derivative ¢/(3) = 0 when 3 = .

gamma=0.5, betahat=0.9 gamma=0.5, betahat=0.4
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Example: cement data

O Estimated coefficients for lasso fit against L; norm and A:

Coefficients
05
|

Coefficients
0.5

0.0
0.0

0.0 0.5 1.0 1.5 2.0 -2 -1 0 1 2
L1 Norm Log Lambda
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O

0

Comments

Least angle regression (LAR) is similar to the lasso, and can compute the lasso solution path
for all X in O(n?) operations (faster than ridge, O(np?), when p > n).

Theory: one can ask about the properties of f3y in suitable settings (e.g., n,p — oo with

p/n — ¢ > 0). Then under certain conditions one can show that lasso variable is consistent (i.e.,

the probability that the variables with /3, # 0 are selected tends to 1), but that the By themselves
are inconsistent (because soft thresholding implies that |3, .| is systematically smaller than |5,]).

Many (many!) variants and related procedures exist to overcome such problems.

Computation: lasso and elastic net penalisations available in R package glmnet and extend to
generalized linear models and more general regressions (later).

For any regression model we can define the degrees of freedom as

n
) ~ ~ 2
o2 cov(y;, §;) = tr{cov(y, §)}/o*;
j=1
this reduces to previous definitions but can be computed in more situations.

When D(f3) is a general loss function (e.g., a negative log likelihood for a GLM), the exact
algorithm above is replaced by a coordinate descent algorithm that updates each S, in turn,
with the other components fixed. This too is very efficient.
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3.4 Splines slide 224

Basis functions

0 We seek to estimate a function p(z) based on data (z1,91), ..., (Tn, Yn)-

O There are n parameters pg = pu(x1),. .., tn = p(x,) (plus noise, ...), so we assume that u(z)
belongs to a suitable class of functions, defined for x € X.

[0 Simple linear model is
Hnx1 = BnxpBpx1, rank(B) = p < n,
with the columns of B evaluations at z1,...,z, of basis functions.
[0 The basis functions may be
— global (e.g., polynomials, trigonometric/Fourier functions),
— local (e.g., splines),
— multiscale (e.g., wavelets).
[0 We choose the basis for
— suitability for the problem at hand (e.g., suitably smooth), and
— computational reasons—want fast, preferably O(n), handling of n x n matrices.

0 Focus on spline functions, on which there is a huge literature.
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Aside: Polynomial regression

[0 Classical approach is to fit a polynomial of degree p — 1, i.e.,

play) = o+ B + - + Bpaal

and choose Sy, ..., Bp—1 to minimise the sum of squares
S {us = nlap)¥ =3 {vs = o+ By +--+ Bpaah D)
j=1 j=1

giving //8\p><1 = (BTB)~'B™y, where (j,i) element of n x p matrix B is x;fl.

0 Comments:

easily copes with missing values/unequally spaced observations;

use orthogonal polynomials to avoid numerical problems if n, k large;

sensitivity to observations at extremities of series often leads to poor fit;

usually doesn't work well because infinite differentiability everywhere is generally unnecessarily
restrictive.
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Piecewise linear basis

[0 Place knots of a univariate x at 27 < --- < 2%, and define tent functions

b(x) = @0/ =), o <o <,
0, otherwise,
(x—ap_)/(a —2;_4), 75, <z <7]
b(z) = . k—1 f ki’ 51 *k’ k=2,...,K—1,
(xk:Jrl - x)/(karl - xk), T, <T < Tpaqs
b )@ —ak )/ (@ — T y), Tk <@ <,
K(T) = _
0, otherwise :

these are non-zero only in (z}_, 2}, ;) (compact support) and take value 1 at z,.

[0 An exact linear interpolant of data y1,...,yx at the knots is the function

K
p) = bp(x)yr = B(x)"y,
=1

which by construction
— passes through the points (z},yx) and

— is linear between the knots.

Regression Methods Autumn 2024 — slide 227

Piecewise linear basis Il
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O Left: piecewise linear basis functions by(x) and data (z}, yx).
O Right: functions bg(x)yx and linear interpolant (bold).
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Statistical use

O Aim for summary of the n observations, so interpolation not useful.

[0 Could use K < n knots, but fit tends to depend heavily on their locations, so better to use
high(ish) K and impose structure by penalising roughness of u(x):

K-1
B)\ = argming {Hy — BB+ X Z {,u(:cz_l) —2u(zr) + M(:UZH)}Q} .

k=2
[0 The second term sums squared numerical second derivatives at the internal knots, and X\ imposes
the degree of penalisation:
— A =0 (no penalty) gives the interpolant,
— A — oo forces the second derivatives to be zero, so gives a straight-line fit.

OO On setting f, = p(x}) and writing

81— 2089 + B3 1 -2 1 0O 0 O 51
B2 — 233+ B4 01 -2 1 00 B2
1 0 B3| = D(K72)><K6K><17

B3 —284+08B5| — [0 O 1 -2

the penalty is Y1 ' (Bk—1 — 26 + Bry1)? = (DB)"DB = FD DB = "SB, say.

Regression Methods Autumn 2024 — slide 229

Penalized fit
[0 The penalty matrix S is of side K x K but of rank K — 2, because

the null space of S consists of all straight lines Syl + 12, which are unpenalised.

O Hence (recalling ridge regression),

By = argming {|ly — BA|* + A8"SB} = (B*B +\S)"'B"y

giving
fitted values 7 = Bp\=B(B"B+AS)"'B"y = H,y,
K
equivalent degrees of freedom df, = tr(H)) = Z L
=1+
where

- m <--- <ng €[0,1] are the eigenvalues of (B"B)~'/28(BTB)~1/2,
— n1 =n2 =0, corresponding to the null space of S, so

— dfy is monotone decreasing in A, with

A=0) K>df,>2 (A—o0).
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Higher-order splines
0 The pth degree spline basis with knots 27 < --- <z} is
Lz,...,2 (x —a)), ..., (x —2k)E,

where u; = max(u,0) is the positive part function.
0 The resulting basis matrix B is highly collinear and gives an implausible statistical model.

[0 B-spline bases span the same linear space, but have better numerical properties. They are
defined by adding boundary knots zj and z7,; and setting up an augmented knot sequence

<<yl eg <ty =21 < STk =T S kg S Tr414m <o < TRyoM;

typically the 7 outside [z{, 7} ] are set to the boundary knot values. Then

Bri(r) = I(mp < <tpyr), k=1,...,K+2M -1,
T — Ty Thtm — &
Bim(z) = —— T B i(a)+ T B (@), k=1,...,K+2M —m,
Tk+m—1 — Tk Tk+m — Tk+1

where we set By 1 = 0 if 7, = 73,41 (avoiding division by zero).
0 Cubic splines (p = 3, M = 4) give visually smooth functions.

00 K =10 on the next slide, with M = 2 (linear), M = 3 (quadratic) and M = 4 (cubic), and the
Tk set to equal the boundary knots.
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Linear, quadratic and cubic B-splines

Spline functi
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Natural cubic spline

00 Suppose the z; are distinct (no loss of generality) and
a<z)<--<zp<b, X=]Ja,b CR.

O A natural cubic spline adds the constraint that the function is linear outside [z1, z,,], and thus
avoids high variance due to quadratic and higher terms outside this interval.

0 A natural cubic spline
— has K =n knots, at 1 < --- < Zp,,
— is a cubic polynomial on each interval between knots,
— is continuous, with continuous first and second derivatives at each knot, and
— is linear on [a,z1] and [z, b], with zero second and third derivatives at z; and zy,
- has
2+ 4(n — 1) + 2 parameters — 3n linear constraints =n
degrees of freedom (df), which can be split into
> 2 df for a linear fit, plus

> n — 2 df for the second derivatives u”(x2), ..., 1" (xn—1).
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Natural cubic spline
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[0 A natural cubic spline may be constructed by integrating a linear second derivative function p”(z)
which is determined by /' (x2),..., 1" (xx—1) and because p”"(z) =0 for x & (z1,x k).

[0 On integrating twice we gain two constants: u(x) = o + Sz + [ fox/ w’ (u) duda’.

O Above 1 =1,...,219 = 10, so the spline is determined by 1”(2),...,1”(9) and the line.
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Optimality of natural cubic splines

[0 Let S2(X) denote the set of functions p differentiable on X' = [a, b] with absolutely continuous
first derivative y': i.e., there exists an integrable function p” such that
[F W (u)du = i/ (x) — i/ (a) for z € X.

O Clearly any p with two continuous derivatives on X’ lies in Sa(X).

Theorem 32 Supposen > 2, thata < x1 < --- < x, < b, and that p is the natural cubic spline
interpolating yi,...,Yn at x1,...,xy. If i € So(X) also interpolates the y;, then

/ //2 / ///2
X

O Thus p minimises the roughness penalty X [, 4”2 in a larger class of functions than that to
which it belongs, making it a natural choice as an interpolant, because minimising

Z{yj i) }? +)\/X~"(x)2 dw

for fi € So(X) will automatically result in a natural cubic spline p: if fi(x;) = p(x;), then the
penalty is reduced by using p.

with equality iff i = .
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Note to Theorem 36

Let v = i — p € So(X), and note that v(z;) = 0 for each j, since pu(x;) = fi(x;) = y;. The natural
boundary conditions imply that u”(a) = p”(b) = 0, so integration by parts yields

o= ewert = [y = [ [ .

and hence the facts that p/” is piecewise constant and that v(xz;) = 0 yields

Tjt1 n—1
o == [ i = zw ) [ = = S vty — vlap)) =0,
Zj 7j=1

Hence

/ ~ 112 / M —|—V :/ M//2+2/ N//V//+/ y”2:/ M//2+/ y//22/ ///2
X X X X X

wth equality iff v”(x) = 0. This occurs iff v(z) is linear, but since v(z;) = 0 at at least two points,
v(z) =0 forall z € X.

Regression Methods Autumn 2024 — note 1 of slide 235
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More splines

0 Sometimes cyclic effects (e.g., seasonality, diurnal variation) must be modelled smoothly, so (e.g.)
December joins smoothly onto January. Then the penalty and spline basis must be modified
accordingly, to give a cyclic (cubic) spline.

O P-splines are a version of B-splines (usually with equally-spaced knots) in which a difference
penalty is applied to the parameters to control the wiggliness of u, e.g.,

K-1 -1 1 0 0---
Wi (Br1 — /Bk)Q =p"D*WDB, with D=0 -1 1 0 ---|,
k=1 . . . . e
and W = diag(ws, ..., wx—1). These are easy to set up and flexible, but messy if the knots are

not equi-spaced, and the penalty is less readily interpreted.

O For an adaptive spline we can let wy = wy(z) vary with x, for example setting
w(z) = B(x)ALx1 and thus having D™WD = Y, \;D"diag{B;(z)}D, where B;(x) is the lth
column of B(x), then estimating the vector \.

O Other possibilities include (Wood, 2017, Chapter 5)
— shape-constrained splines to impose, e.g., monotonicity on the fit;
— thin-plate, Duchon and tensor product splines used in spatial problems; and

— soap film splines used when smoothing over complex domains.

Regression Methods Autumn 2024 - slide 236

Motorcycle data: adaptive fit
Standard (left) and adaptive (right) spline fits, the latter with X' =40 and L = 5:
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