Semiparametric regression

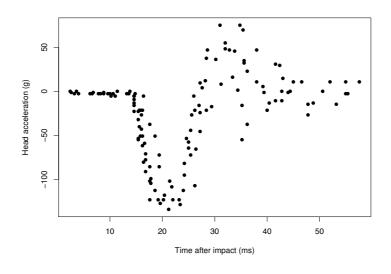
- □ Normal linear model has two main aspects:
 - systematic variation, $E(y) = \mu$, and $\mu = X\beta$ with parameters β ;
 - stochastic variation, $y \sim \mathcal{N}_n(\mu, \sigma^2 I_n)$.
- ☐ Can relax the stochastic assumption using other distributions or second-order assumptions, but still have parametric model for the systematic part.
- \square Often want to relax systematic part for more flexible models, for
 - exploratory data analysis 'will a linear model be adequate?'
 - confirmatory data analysis 'I've fitted a linear model, is it adequate?'
 - general modelling 'the data are too complex to expect a simple parametric model to work, so what can I do?'
 - semiparametric modelling 'I will use a parametric model for the effects of interest, but can I model nuisance effects more flexibly?'
- ☐ Most basic tool is the **scatterplot smoother**.

Regression Methods

Autumn 2024 - slide 202

Example: Motorcycle data

Measurements of head acceleration (g) at time after impact (ms) in a simulated motorcycle accident, used to test crash helmets:



Regression Methods

Scatterplot smoothing

- \square Have data $(x_1, y_1), \ldots, (x_n, y_n)$, with $x_- \le x_1 < \cdots < x_n \le x_+$ (ahem) and we wish to estimate $\mathrm{E}(y) = \mu(x)$, for $x \in \mathcal{X} = [x_-, x_+]$.
- Suppose that $\mu \in \mathcal{M}$, a function space spanned by n linearly independent basis functions that can be identified by evaluation at x_1, \ldots, x_n , and let $\mu_j = \mu(x_j)$.
- \square Can choose a basis $\{b_1(x),\ldots,b_n(x)\}$ for \mathcal{M} such that $\mu(x)=\sum_{j=1}^n\mu_jb_j(x)$ interpolates $(x_1,\mu_1),\ldots,(x_n,\mu_n)$.
- \square Suppose that \mathcal{M} contains the linear functions on \mathcal{X} and that the second derivatives of the $b_j(x)$ are not all zero, so functions in \mathcal{M} may also be nonlinear in x.
- \square To estimate μ we minimise a **penalised sum of squares**,

$$\sum_{j=1}^{n} \{y_j - \mu(x_j)\}^2 + \lambda \int_{\mathcal{X}} \{\mu''(x)\}^2 \, \mathrm{d}x,\tag{22}$$

where the **roughness penalty** imposes smoothness: if $\lambda \to 0$, then $\mu(x_j) \to y_j$ and $\widehat{\mu}$ interpolates, but when $\lambda \to \infty$ even tiny wiggles in μ will give a huge penalty, making $\widehat{\mu}$ linear.

 \square The penalty does not affect linear functions, so $\mathcal{M} = \mathcal{L} \bigoplus \mathcal{P}$, where \mathcal{L} and \mathcal{P} are the two-dimensional vector space of linear functions on \mathcal{X} and an (n-2)-dimensional vector space of nonlinear functions on \mathcal{X} , and \bigoplus denotes addition of vector spaces.

Regression Methods

Autumn 2024 - slide 204

Scatterplot smoothing II

☐ The roughness term is

$$\int_{\mathcal{X}} \{\mu''(x)\}^2 dx = \int_{\mathcal{X}} \left\{ \sum_{j=1}^n \mu_j b_j''(x) \right\}^2 dx = \sum_{i,j=1}^n \mu_i \mu_j \int_{\mathcal{X}} b_i''(x) b_j''(x) dx = \mu^{\mathrm{T}} S \mu,$$

say, where $\mu^{\mathrm{T}}=(\mu_1,\ldots,\mu_n)$.

- \square $S_{n \times n}$ has (i,j) element $\int_{\mathcal{X}} b_i''(x)b_j''(x)\,\mathrm{d}x$ and is symmetric and positive semi-definite of rank n-2, because linear functions are unpenalised, so $S1_n=S(x_1,\ldots,x_n)^\mathrm{T}=0$.
- ☐ The penalised sum of squares

$$(y - \mu)^{\mathrm{T}}(y - \mu) + \lambda \mu^{\mathrm{T}} S \mu \equiv -2\mu^{\mathrm{T}} y + \mu^{\mathrm{T}} (I_n + \lambda S) \mu,$$

is minimised by $\widehat{\mu}_{\lambda} = (I_n + \lambda S)^{-1} y$.

- \square As λ increases from zero, the fitted value $\widehat{\mu}_{\lambda}$ shrinks from y towards the straight-line regression fit to y, which is unpenalised.
- The equivalent degrees of freedom are $\mathrm{edf}_{\lambda} = \mathrm{tr}(H_{\lambda}) = \sum_{j=1}^{n} (1+\lambda \delta_{j})^{-1}$, where $\delta_{1} \geq \cdots \geq \delta_{3} > \delta_{2} = \delta_{1} = 0$ are the eigenvalues of S. As λ increases edf_{λ} decreases monotonically from $\mathrm{edf}_{0} = n$ towards $\mathrm{edf}_{\infty} = 2$.

Regression Methods

Scatterplot smoothing III

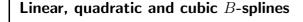
- ☐ In principle we might take any basis functions, but in practice we usually take local polynomials known as **splines** that have good approximation properties.
- ☐ There are many forms of splines, which
 - are often cubic polynomials with finite support between values of x known as **knots**, x_1^*, \ldots, x_K^* , and then S is tri-diagonal,
 - sometimes form a **natural cubic spline**, which has K = n and certain optimality properties,
 - are discussed in more detail later.
- If there is no penalisation ($\lambda = 0$) then we have a standard linear model, and spline basis functions are called **regression splines**.
- \square Under second-order assumptions we choose λ by minimising $CV(\lambda)$ or $GCV(\lambda)$.
- \Box Under normal-theory assumptions we can use REML to estimate σ^2 and λ .
- \square Obvious generalisation allows weight matrix $W = \operatorname{diag}(w_1, \dots, w_n)$.
- \square If the x_1, \ldots, x_n are not unique, write $\mathrm{E}(y) = N_{n \times n'} \mu_{n' \times 1}$ in terms of the means μ at the n' unique elements of x, and minimise

$$(y - N\mu)^{\mathrm{T}}W(y - N\mu) + \lambda\mu^{\mathrm{T}}S\mu.$$

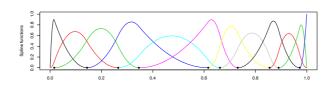
where $S_{n'\times n'}$ arises as before from the roughness penalty on $\mu(x)$.

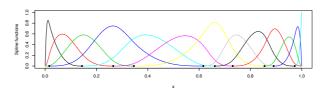
Regression Methods

Autumn 2024 - slide 206





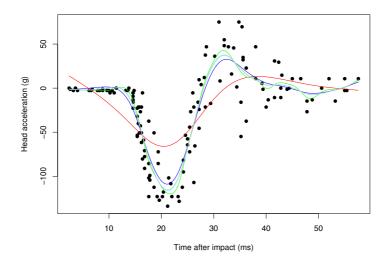




Regression Methods

Example: Motorcycle data

Scatterplot smooths based on natural cubic splines with edf equal to 5 (red), 10 (blue), 20 (green), and chosen by CV (cyan, edf = 12.8) and GCV (pink, edf = 12.26):

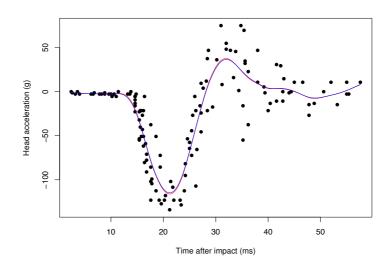


Regression Methods

Autumn 2024 - slide 208

Example: Motorcycle data

Scatterplot smooths based on natural cubic splines with weights 16 when $x \le 12$ and 1 for x > 12, and edf chosen by CV (red, edf = 14.7) and GCV (blue, edf = 13.7):



Regression Methods

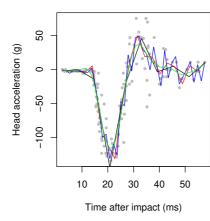
Choosing K and λ

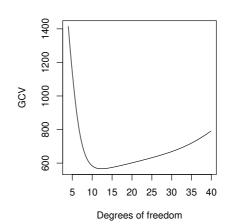
- \square Above we took K=n basis functions, but for statistical purposes we seek a summary of the data, so we hope that $\mathrm{edf} \ll n$, so we hope that K < n, maybe even $K \ll n$.
- \square Theory suggests that as $n \to \infty$ we need $K = O(n^{1/5})$ or even $O(n^{1/9})$ to get near-optimal estimation of $\mu(x)$, when μ lies in reasonable function classes;
- In practice we take K (more than) large enough to give enough flexibility (increasing it if results are suspect, K=9 by default in mgcv), and allow λ to determine the smoothness of the curve;
- Typically the knots x_k^* are placed at equally-spaced quantiles of x.

Regression Methods

Autumn 2024 - slide 210

Example: Motorcycle data





Left: linear spline fits with $\lambda=0$ and K=10 (black), 20 (red), 40 (blue), and optimal GCV choice of λ with K=40 (green)

 \square Right: $GCV(\lambda)$ as a function of df_{λ} for K=40.

Regression Methods

Autumn 2024 - slide 211

Comments

☐ We discuss inference (beyond 'point' estimation) and adaptive estimation of weights later . . .

☐ Here we are producing point estimates; later we discuss the construction of confidence sets.

☐ An alternative local averaging approach uses locally weighted fits, such as the **Nadaraya**—**Watson estimator**

 $\widehat{\mu}(x) = \frac{\sum_{j=1}^{n} K\{(x - x_j)/h\} y_j}{\sum_{j=1}^{n} K\{(x - x_j)/h\}},$

where

– the **kernel function** K is something like the Gaussian density, and

the bandwidth h plays a role similar to edf.

This is also a linear smoother, and in fact the spline smoothers have representations in terms of equivalent kernels.

☐ Local averaging can be extended to **local likelihood** fitting of more complex models.

Regression Methods

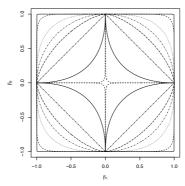
3.3 Lasso slide 213

L_q penalties

 \square The quadratic penalty $\|eta\|_2$ generalises to other L_q penalties

$$\|\beta\|_q = \sum_{r=1}^p |\beta_r|^q,$$

shown below for p=2 and (working inwards) $q=100,\ 10,\ 3,\ 2,\ 1.5,\ 1,\ 0.5,\ 0.2;$ $\|\beta\|_0=\#\{\beta_r\neq 0\}$ counts the number of non-zero parameters.



(Some picture credits here and later: Simon Wood)

Regression Methods Autumn 2024 – slide 214

Basic geometry

 \square If $D(\beta)$ is a sum of squares or negative log likelihood, then

$$\tilde{\beta}_{\lambda} = \operatorname{argmin}_{\beta} \left\{ D(\beta) + \lambda \|\beta\|_{q} \right\},\,$$

- satisfies $\| ilde{eta}_{\lambda}\|_q=t$ for some t, and
- minimises $D(\beta)$ on that contour, i.e.,

$$\tilde{\beta}_{\lambda} = \mathrm{argmin}_{\beta} D(\beta) \quad \text{such that} \quad \|\tilde{\beta}_{\lambda}\|_q = t,$$

because otherwise we could reduce $D(\beta)$ while leaving the penalty unchanged, i.e., $\tilde{\beta}_{\lambda}$ would not be optimal.

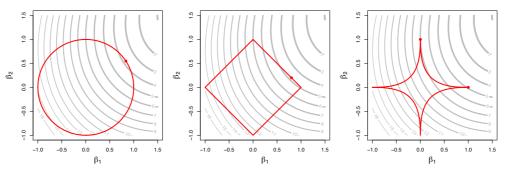
- \square The sets $\|\tilde{\beta}_{\lambda}\|_q = t$
 - have cusps (and thus can set $\beta_r=0$) when $q\leq 1$,
 - are non-convex (and thus may give non-unique solutions) when q < 1,

so there is a unique solution if the contours of $D(\beta)$ and $\|\beta\|_q$ are convex, and both a unique solution and the possibility of choosing variables (sparsity) by setting $\beta_r = 0$ when q = 1.

Regression Methods

Basic geometry II

Penalised solutions (red dots) for q=2, 1, 0.45, with contours of $D(\beta)$ in grey and solution contour for $\|\beta\|_q$ in red.



As $\lambda \to \infty$ the constraint tightens and the red contours shrink around the origin, and as $\lambda \to 0$ the constraint relaxes and the $\tilde{\beta}_{\lambda}$ tends to the unconstrained estimate.

Regression Methods

Autumn 2024 - slide 216

Lasso

☐ The lasso (least absolute shrinkage and selection operator) objective function can be written as

$$L = \frac{1}{2} ||y - X\beta||_2 + \lambda ||\beta||_1,$$

so suppose we have minimised this for some λ_0 , giving active set $A=\{r:\tilde{\beta}_r\neq 0\}$ and

$$L = \frac{1}{2}(y - X_A \tilde{\beta}_A)^{\mathrm{T}}(y - X_A \tilde{\beta}_A) + \lambda \sum_{r \in A} |\tilde{\beta}_r|,$$

and now we aim to decrease λ (i.e., to relax the constraint).

 \square Now $\mathrm{d}|x|/\mathrm{d}x = \mathrm{sign}(x)$, so when

$$\frac{\mathrm{d}L}{\mathrm{d}\tilde{\beta}_A} = X_A^{\mathrm{T}}(X_A\tilde{\beta}_A - y) + \lambda \operatorname{sign}(\tilde{\beta}_A) = 0,$$

we have

$$\tilde{\beta}_A = (X_A^{\mathrm{T}} X_A)^{-1} X_A^{\mathrm{T}} y - \lambda (X_A^{\mathrm{T}} X_A)^{-1} \mathrm{sign}(\tilde{\beta}_A) = b - \lambda a,$$

say, i.e., $\tilde{\beta}_A$ is linear in λ until A changes.

- \square A changes on deleting a column X_r from X_A or on adding one from its complement X_{A^c} .
- $\square \quad \mathrm{sign}(\tilde{\beta}_A)$ only changes when (say) $\tilde{\beta}_r$ passes through zero, but r leaves A when $\tilde{\beta}_r=0$.

Regression Methods

Lasso algorithm

- \square A variable in A is deleted if a component of $\tilde{\beta}_A = b \lambda a$ hits zero as λ decreases from λ_0 , which occurs at $\lambda_- = \max_{\lambda < \lambda_0} b_r/a_r$.
- \square If X_r is the rth column of X, then r will enter A if adding $X_r\beta_r$ decreases L, i.e., if

$$\frac{\mathrm{d}L}{\mathrm{d}\beta_r} = X_r^{\mathrm{\scriptscriptstyle T}}(X\beta - y) + \lambda \mathrm{sign}(\beta_r) \quad \begin{cases} <0, & \beta_r > 0, \\ >0, & \beta_r < 0, \end{cases}$$

so β_r remains inactive if $|X_r^{\mathrm{T}}(y-X\beta)| \leq \lambda$.

 \square Thus as λ decreases, A changes when for some r in the complement A^c of A we have

$$X_r^{\mathrm{T}}(y - X_A \tilde{\beta}_A) = \pm \lambda,$$

or, setting $\tilde{\beta}_A = b - \lambda a$,

$$X_{A^c}^{\mathrm{T}}(y - X_A b) + \lambda (X_{A^c}^{\mathrm{T}} X_A a \pm 1) = 0 \implies c + \lambda (d \pm 1) = 0,$$

say: the next variable is added when $\lambda = \lambda_+ = \max_{\lambda < \lambda_0} \{-c_r/(d_r \pm 1)\}$.

- \square Hence if $s = \operatorname{sign}(\beta)$, the algorithm decreases λ from
 - the highest λ at which the a first variable is active, and defines the A and s, then
 - finds the next λ at which A changes, stores it and the corresponding $\tilde{\beta}$, updating A and s.

Regression Methods

Autumn 2024 - slide 218

Practical matters and thresholding

- □ Usually
 - λ is chosen by dividing the data into training and testing subsets and minimising some measure of prediction error for the test subset,
 - -y is centered and X has no column of ones, and
 - the columns of X are standardized to have zero mean and unit variance what this means in terms of interpreting the components of β is then unclear!
- \square We can think of penalised estimators as using different sorts of **thresholding** functions, where $\widehat{\beta}$ is replaced by $\widetilde{\beta} = g_{\lambda}(\widehat{\beta})$ and (conceptually)
 - for the lasso there is soft thresholding,

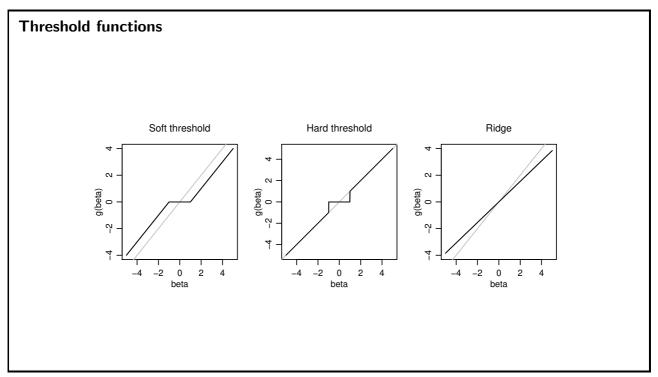
$$g_{\lambda}(u) = \begin{cases} 0, & |u| < \lambda, \\ \operatorname{sign}(u)(|u| - \lambda), & \text{otherwise,} \end{cases}$$

for variable selection there is hard thresholding,

$$g_{\lambda}(u) = \begin{cases} 0, & |u| < \lambda, \\ u, & \text{otherwise,} \end{cases}$$

- for ridge regression there is shrinkage, $g(u) = u/(1 + \lambda)$.

Regression Methods

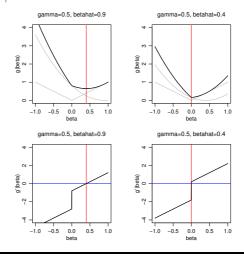


Regression Methods

Autumn 2024 - slide 220

Soft thresholding

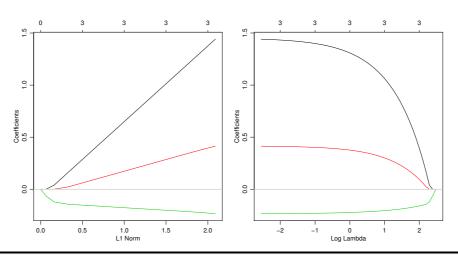
Top panels: the sum $g(\beta)$ of the L_1 penalty and the least squares function (both in grey) is the black line, which has a cusp at $\beta=0$. If the left- and right-hand derivatives of the sum are equal at zero, then the minimiser (at the red vertical line) is non-zero, but not otherwise. Bottom panels: the derivative $g'(\beta)=0$ when $\beta=\tilde{\beta}$.



Regression Methods

Example: cement data

 \square Estimated coefficients for lasso fit against L_1 norm and λ :



Regression Methods

Autumn 2024 - slide 222

Comments

Least angle regression (LAR) is similar to the lasso, and can compute the lasso solution path for all λ in $O(n^3)$ operations (faster than ridge, $O(np^2)$, when $p \gg n$).

Theory: one can ask about the properties of $\tilde{\beta}_{\lambda}$ in suitable settings (e.g., $n,p\to\infty$ with $p/n\to c>0$). Then under certain conditions one can show that lasso variable is consistent (i.e., the probability that the variables with $\beta_r\neq 0$ are selected tends to 1), but that the $\tilde{\beta}_{\lambda}$ themselves are inconsistent (because soft thresholding implies that $|\tilde{\beta}_{\lambda,r}|$ is systematically smaller than $|\beta_r|$).

☐ Many (many!) variants and related procedures exist to overcome such problems.

Computation: lasso and elastic net penalisations available in R package glmnet and extend to generalized linear models and more general regressions (later).

☐ For any regression model we can define the **degrees of freedom** as

$$\sigma^{-2} \sum_{j=1}^{n} \operatorname{cov}(y_j, \widehat{y}_j) = \operatorname{tr}\{\operatorname{cov}(y, \widehat{y})\} / \sigma^2;$$

this reduces to previous definitions but can be computed in more situations.

When $D(\beta)$ is a general loss function (e.g., a negative log likelihood for a GLM), the exact algorithm above is replaced by a **coordinate descent algorithm** that updates each $\tilde{\beta}_r$ in turn, with the other components fixed. This too is very efficient.

Regression Methods

3.4 Splines slide 224

Basis functions

 \square We seek to estimate a function $\mu(x)$ based on data $(x_1, y_1), \ldots, (x_n, y_n)$.

There are n parameters $\mu_1 = \mu(x_1), \dots, \mu_n = \mu(x_n)$ (plus noise, ...), so we assume that $\mu(x)$ belongs to a suitable class of functions, defined for $x \in \mathcal{X}$.

 \square Simple linear model is

$$\mu_{n\times 1} = B_{n\times p}\beta_{n\times 1}, \quad \operatorname{rank}(B) = p \le n,$$

with the columns of B evaluations at x_1, \ldots, x_n of basis functions.

 \square The basis functions may be

- **global** (e.g., polynomials, trigonometric/Fourier functions),
- local (e.g., splines),
- multiscale (e.g., wavelets).
- \square We choose the basis for
 - suitability for the problem at hand (e.g., suitably smooth), and
 - computational reasons—want fast, preferably $\mathcal{O}(n)$, handling of $n \times n$ matrices.
- ☐ Focus on **spline functions**, on which there is a huge literature.

Regression Methods

Autumn 2024 - slide 225

Aside: Polynomial regression

 \square Classical approach is to fit a polynomial of degree p-1, i.e.,

$$\mu(x_j) = \beta_0 + \beta_1 x_j + \dots + \beta_{p-1} x_j^{p-1},$$

and choose $\beta_0,\ldots,\beta_{p-1}$ to minimise the sum of squares

$$\sum_{j=1}^{n} \{y_j - \mu(x_j)\}^2 = \sum_{j=1}^{n} \{y_j - (\beta_0 + \beta_1 x_j + \dots + \beta_{p-1} x_j^{p-1})\}^2,$$

giving $\widehat{\beta}_{p \times 1} = (B^{\mathrm{T}}B)^{-1}B^{\mathrm{T}}y$, where (j,i) element of $n \times p$ matrix B is x_j^{i-1} .

☐ Comments:

- easily copes with missing values/unequally spaced observations;
- use orthogonal polynomials to avoid numerical problems if n, k large;
- sensitivity to observations at extremities of series often leads to poor fit;
- usually doesn't work well because infinite differentiability everywhere is generally unnecessarily restrictive.

Regression Methods

Piecewise linear basis

 \square Place **knots** of a univariate x at $x_1^* < \cdots < x_K^*$, and define **tent functions**

$$b_1(x) = \begin{cases} (x_2^* - x)/(x_2^* - x_1^*), & x_1^* \le x \le x_2^*, \\ 0, & \text{otherwise}, \end{cases}$$

$$b_k(x) = \begin{cases} (x - x_{k-1}^*)/(x_k^* - x_{k-1}^*), & x_{k-1}^* < x \le x_k^*, \\ (x_{k+1}^* - x)/(x_{k+1}^* - x_k^*), & x_k^* < x \le x_{k+1}^*, \end{cases}$$

$$b_K(x) = \begin{cases} (x - x_{K-1}^*)/(x_K^* - x_{K-1}^*), & x_{K-1}^* \le x \le x_K^*, \\ 0, & \text{otherwise} : \end{cases}$$

$$correspondent conductors and take value 1 at x^* .$$

these are non-zero only in (x_{k-1}^*, x_{k+1}^*) (compact support) and take value 1 at x_k^* .

 \square An exact linear interpolant of data y_1,\ldots,y_K at the knots is the function

$$\mu(x) = \sum_{k=1}^{K} b_k(x) y_k = B(x)^{\mathrm{T}} y,$$

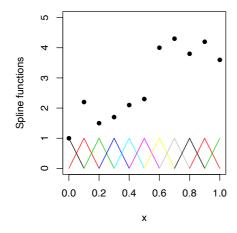
which by construction

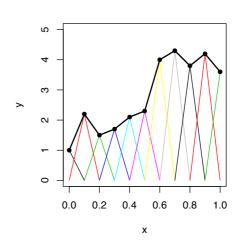
- passes through the points (x_k^st,y_k) and
- is linear between the knots.

Regression Methods

Autumn 2024 – slide 227

Piecewise linear basis II





- \square Left: piecewise linear basis functions $b_k(x)$ and data (x_k^*, y_k) .
- \square Right: functions $b_k(x)y_k$ and linear interpolant (bold).

Regression Methods

Statistical use

- \square Aim for summary of the n observations, so interpolation not useful.
- \square Could use K < n knots, but fit tends to depend heavily on their locations, so better to use high(ish) K and impose structure by penalising roughness of $\mu(x)$:

$$\widehat{\beta}_{\lambda} = \operatorname{argmin}_{\beta} \left\{ \|y - B\beta\|^2 + \lambda \sum_{k=2}^{K-1} \left\{ \mu(x_{k-1}^*) - 2\mu(x_k^*) + \mu(x_{k+1}^*) \right\}^2 \right\}.$$

- \Box The second term sums squared numerical second derivatives at the internal knots, and λ imposes the degree of penalisation:
 - $\lambda = 0$ (no penalty) gives the interpolant,
 - $-\lambda \to \infty$ forces the second derivatives to be zero, so gives a straight-line fit.
- \square On setting $\beta_k = \mu(x_k^*)$ and writing

$$\begin{pmatrix} \beta_1 - 2\beta_2 + \beta_3 \\ \beta_2 - 2\beta_3 + \beta_4 \\ \beta_3 - 2\beta_4 + \beta_5 \\ \vdots \end{pmatrix} = \begin{pmatrix} 1 & -2 & 1 & 0 & 0 & 0 & \cdots \\ 0 & 1 & -2 & 1 & 0 & 0 & \cdots \\ 0 & 0 & 1 & -2 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \\ \vdots \end{pmatrix} = D_{(K-2)\times K}\beta_{K\times 1},$$

the penalty is $\sum_{k=2}^{K-1} (\beta_{k-1} - 2\beta_k + \beta_{k+1})^2 = (D\beta)^{\mathrm{T}} D\beta = \beta^{\mathrm{T}} D^{\mathrm{T}} D\beta = \beta^{\mathrm{T}} S\beta$, say.

Regression Methods

—— Autumn 2024 – slide 229

Penalized fit

 \square The penalty matrix S is of side $K \times K$ but of rank K-2, because

$$S1_K = Sx_{K \times 1}^* = 0_K$$
:

the null space of S consists of all straight lines $\beta_0 1_K + \beta_1 x^*$, which are unpenalised.

☐ Hence (recalling ridge regression),

$$\widehat{\beta}_{\lambda} = \operatorname{argmin}_{\beta} \left\{ \|y - B\beta\|^2 + \lambda \beta^{\mathrm{T}} S\beta \right\} = (B^{\mathrm{T}} B + \lambda S)^{-1} B^{\mathrm{T}} y$$

giving

$$\widehat{y} \ = \ B\widehat{\beta}_{\lambda} = B(B^{ \mathrm{\scriptscriptstyle T} }B + \lambda S)^{-1}B^{ \mathrm{\scriptscriptstyle T} }y = H_{\lambda}y,$$

equivalent degrees of freedom
$$\mathrm{df}_{\lambda} = \mathrm{tr}(H_{\lambda}) = \sum_{k=1}^{K} \frac{1}{1 + \eta_k \lambda},$$

where

- $\eta_1 \leq \cdots \leq \eta_K \in [0,1]$ are the eigenvalues of $(B^{\mathrm{T}}B)^{-1/2}S(B^{\mathrm{T}}B)^{-1/2}$,
- $\eta_1 = \eta_2 = 0$, corresponding to the null space of S, so
- df_{λ} is monotone decreasing in λ , with

$$(\lambda = 0)$$
 $K \ge \mathrm{df}_{\lambda} \ge 2$ $(\lambda \to \infty)$.

Regression Methods

Higher-order splines

 $\ \square$ The pth degree spline basis with knots $x_1^* < \cdots < x_K^*$ is

$$1, x, \ldots, x^p, (x - x_1^*)_+^p, \ldots, (x - x_K^*)_+^p,$$

where $u_+ = \max(u, 0)$ is the **positive part function**.

- \Box The resulting basis matrix B is highly collinear and gives an implausible statistical model.
- \square B-spline bases span the same linear space, but have better numerical properties. They are defined by adding boundary knots x_0^* and x_{K+1}^* and setting up an augmented knot sequence

$$\tau_1 \le \dots \le \tau_M \le x_0^* \le \tau_{M+1} = x_1^* \le \dots \le \tau_{M+K} = x_K^* \le x_{K+1}^* \le \tau_{K+1+M} \le \dots \le \tau_{K+2M};$$

typically the τ_k outside $[x_0^*, x_{K+1}^*]$ are set to the boundary knot values. Then

$$B_{k,1}(x) = I(\tau_k \le x < \tau_{k+1}), \quad k = 1, \dots, K + 2M - 1,$$

$$B_{k,m}(x) = \frac{x - \tau_k}{\tau_{k+m-1} - \tau_k} B_{k,m-1}(x) + \frac{\tau_{k+m} - x}{\tau_{k+m} - \tau_{k+1}} B_{k+1,m-1}(x), \quad k = 1, \dots, K + 2M - m,$$

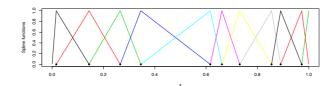
where we set $B_{k,1} \equiv 0$ if $\tau_k = \tau_{k+1}$ (avoiding division by zero).

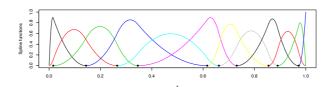
- \square Cubic splines (p=3, M=4) give visually smooth functions.
- \square K=10 on the next slide, with M=2 (linear), M=3 (quadratic) and M=4 (cubic), and the au_k set to equal the boundary knots.

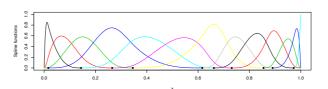
Regression Methods

Autumn 2024 - slide 231

Linear, quadratic and cubic B-splines







Regression Methods

Natural cubic spline

 \square Suppose the x_j are distinct (no loss of generality) and

$$a < x_1 < \dots < x_n < b, \quad \mathcal{X} = [a, b] \subset \mathbb{R}.$$

- A **natural cubic spline** adds the constraint that the function is linear outside $[x_1, x_n]$, and thus avoids high variance due to quadratic and higher terms outside this interval.
- ☐ A natural cubic spline
 - has K = n knots, at $x_1 < \cdots < x_n$,
 - is a cubic polynomial on each interval between knots,
 - is continuous, with continuous first and second derivatives at each knot, and
 - is linear on $[a, x_1]$ and $[x_n, b]$, with zero second and third derivatives at x_1 and x_n ,
 - has

$$2+4(n-1)+2$$
 parameters $-3n$ linear constraints $=n$

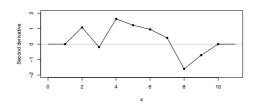
degrees of freedom (df), which can be split into

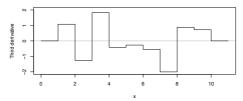
- ≥ 2 df for a linear fit, plus
- \triangleright n-2 df for the second derivatives $\mu''(x_2), \ldots, \mu''(x_{n-1})$.

Regression Methods

Autumn 2024 - slide 233

Natural cubic spline





- A natural cubic spline may be constructed by integrating a linear second derivative function $\mu''(x)$ which is determined by $\mu''(x_2), \ldots, \mu''(x_{K-1})$ and because $\mu''(x) \equiv 0$ for $x \notin (x_1, x_K)$.
- On integrating twice we gain two constants: $\mu(x) = \beta_0 + \beta_1 x + \int_0^x \int_0^{x'} \mu''(u) du dx'$.
- \square Above $x_1=1,\ldots,x_{10}=10$, so the spline is determined by $\mu''(2),\ldots,\mu''(9)$ and the line.

Regression Methods

Optimality of natural cubic splines

- Let $S_2(\mathcal{X})$ denote the set of functions μ differentiable on $\mathcal{X} = [a,b]$ with absolutely continuous first derivative μ' : i.e., there exists an integrable function μ'' such that $\int_a^x \mu''(u) du = \mu'(x) \mu'(a) \text{ for } x \in \mathcal{X}.$
- \square Clearly any μ with two continuous derivatives on \mathcal{X} lies in $\mathcal{S}_2(\mathcal{X})$.

Theorem 32 Suppose $n \geq 2$, that $a < x_1 < \cdots < x_n < b$, and that μ is the natural cubic spline interpolating y_1, \ldots, y_n at x_1, \ldots, x_n . If $\tilde{\mu} \in \mathcal{S}_2(\mathcal{X})$ also interpolates the y_j , then

$$\int_{\mathcal{X}} \tilde{\mu}''^2 \ge \int_{\mathcal{X}} \mu''^2,$$

with equality iff $\tilde{\mu} \equiv \mu$.

 \square Thus μ minimises the **roughness penalty** $\lambda \int_{\mathcal{X}} \mu''^2$ in a larger class of functions than that to which it belongs, making it a natural choice as an interpolant, because minimising

$$\sum_{j=1}^{n} \{y_j - \tilde{\mu}(x_j)\}^2 + \lambda \int_{\mathcal{X}} \tilde{\mu}''(x)^2 dx$$

for $\tilde{\mu} \in \mathcal{S}_2(\mathcal{X})$ will automatically result in a natural cubic spline μ : if $\tilde{\mu}(x_j) = \mu(x_j)$, then the penalty is reduced by using μ .

Regression Methods

Autumn 2024 - slide 235

Note to Theorem 36

Let $\nu = \tilde{\mu} - \mu \in \mathcal{S}_2(\mathcal{X})$, and note that $\nu(x_j) = 0$ for each j, since $\mu(x_j) = \tilde{\mu}(x_j) = y_j$. The natural boundary conditions imply that $\mu''(a) = \mu''(b) = 0$, so integration by parts yields

$$0 = \left[\mu''(x)\nu'(x) \right]_a^b = \int_{\mathcal{X}} (\mu''\nu')' = \int_{\mathcal{X}} \mu''\nu'' + \int_{\mathcal{X}} \mu'''\nu',$$

and hence the facts that μ''' is piecewise constant and that $\nu(x_i) = 0$ yields

$$\int_{\mathcal{X}} \mu'' \nu'' = -\int_{\mathcal{X}} \mu''' \nu' = -\sum_{j=1}^{n-1} \mu'''(x_j^+) \int_{x_j}^{x_{j+1}} \nu' = -\sum_{j=1}^{n-1} \mu'''(x_j^+) \{\nu(x_{j+1}) - \nu(x_j)\} = 0.$$

Hence

$$\int_{\mathcal{X}} \tilde{\mu}''^2 = \int_{\mathcal{X}} (\mu'' + \nu'')^2 = \int_{\mathcal{X}} \mu''^2 + 2 \int_{\mathcal{X}} \mu'' \nu'' + \int_{\mathcal{X}} \nu''^2 = \int_{\mathcal{X}} \mu''^2 + \int_{\mathcal{X}} \nu''^2 \geq \int_{\mathcal{X}} \mu''^2,$$

wth equality iff $\nu''(x) \equiv 0$. This occurs iff $\nu(x)$ is linear, but since $\nu(x_j) = 0$ at at least two points, $\nu(x) = 0$ for all $x \in \mathcal{X}$.

Regression Methods

Autumn 2024 - note 1 of slide 235

More splines

- □ Sometimes cyclic effects (e.g., seasonality, diurnal variation) must be modelled smoothly, so (e.g.) December joins smoothly onto January. Then the penalty and spline basis must be modified accordingly, to give a cyclic (cubic) spline.
- \square P-splines are a version of B-splines (usually with equally-spaced knots) in which a difference penalty is applied to the parameters to control the wiggliness of μ , e.g.,

$$\sum_{k=1}^{K-1} w_k (\beta_{k+1} - \beta_k)^2 = \beta^{\mathrm{T}} D^{\mathrm{T}} W D \beta, \quad \text{with} \quad D = \begin{pmatrix} -1 & 1 & 0 & 0 \cdots \\ 0 & -1 & 1 & 0 & \cdots \\ \cdot & \cdot & \cdot & \cdot & \cdots \end{pmatrix},$$

and $W = \operatorname{diag}(w_1, \dots, w_{K-1})$. These are easy to set up and flexible, but messy if the knots are not equi-spaced, and the penalty is less readily interpreted.

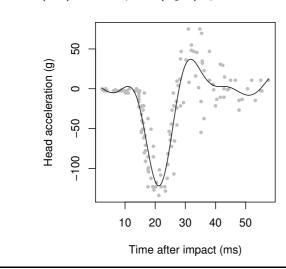
- \square For an adaptive spline we can let $w_k \equiv w_k(x)$ vary with x, for example setting $w(x) = B(x)\lambda_{L\times 1}$ and thus having $D^{\mathrm{T}}WD = \sum_l \lambda_l D^{\mathrm{T}}\mathrm{diag}\{B_l(x)\}D$, where $B_l(x)$ is the lth column of B(x), then estimating the vector λ .
- ☐ Other possibilities include (Wood, 2017, Chapter 5)
 - shape-constrained splines to impose, e.g., monotonicity on the fit;
 - thin-plate, Duchon and tensor product splines used in spatial problems; and
 - soap film splines used when smoothing over complex domains.

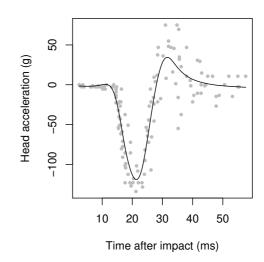
Regression Methods

Autumn 2024 - slide 236

Motorcycle data: adaptive fit

Standard (left) and adaptive (right) spline fits, the latter with K=40 and L=5:





Regression Methods