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Tall and wide regressions
[0 So far we have supposed that we have a tall regression:
— the number of units n exceeds the number of variables p,
— the design matrix X has rank p.
[J In many ‘modern’ settings we instead have a wide regression:
— n and p are comparable, p > n, maybe even p > n;
— in genomics, for example (typically) n = O(102,10?), p = O(10°,10%);
— hence rank(X) = min(n,p) = n.
[0 Even tall X may be ‘almost singular’, making 8 ‘almost inestimable’.
0 Solutions:
— subset selection (drop certain columns of X);
— seek different good explanations of response variation, not single model;
— regularisation (often with prediction in mind).
O  Certain regularisation methods (e.g., lasso) also perform subset selection.
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Different good explanations

0 With p > n, perhaps p > n, X is rank-deficient and many 8 may give X3 = y.
O To find important variables we include intrinsic variables (gender, ...) in all models, and then
— choose some k (preferably < 15) such that k£ < n and suppose that p < k% (let a = 3 for easy
visualisation);

— assign each variable to a cell of a hyper-cube with coordinates {1,..., k}%;

— fit a linear model containing each set of k variables corresponding to the ak®~! rows,
columns, ... of the cube, so each variable appears in a distinct models;

— for each such model, retain the two variables that are most significant.

[0 Iterate the above procedure, retaining only the most significant variables at each stage, aiming for
a final set of 10-20 variables, for which a careful analysis is performed, perhaps leading to several
different good explanations of the response variation.

[0 Some cells of the hyper-cube may be empty, and important variables might be assigned to several
cells.

0 The above design is a form of balanced incomplete block design (BIBD) (with &% treatments
and ak®~! blocks).

[0 See Cox and Battey (2017, PNAS)
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Collinearity

00 Columns of X collinear if there exists a non-zero vy, such that Xv =0, i.e., rank(X) < p, so
there is no unique 3 minimising ||y — X 3||%.

[0 Software deals with this by dropping columns of X, but it may be better to write X5 = X4,
where X C' is full rank and  has a clear interpretation.

O If X is nearly collinear, its SVD Uy xp DixpVpsp, With dy > -+ > dp, > 0, gives

p
B=(X"X)'X"y =VD Uy = (uly/d.)v,,

r=1
so 3 is a linear combination of the vectors v, with coefficients uly/d,. As var(U%y) = o021,
R P
var(B) = e’V DI D_V" = o2 Z d2v,07,
r=1

i.e., B is unstable in the directions corresponding to the v, with small singular values d,.

O In numerical analysis, collinearity often measured using condition number (dl/dp)l/Q, but its
statistical meaning is unclear.
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Regularisation

O Stop 3 from fluctuating too wildly in directions with small eigenvalues d,., by adding a
non-negative penalty p)(5) and choosing /3 to minimise the penalised sum of squares

ly — XBI[* + pA(B)- (16)
O The strength of the penalty depends on a positive parameter A that constrains 8 more as A
increases.
O  Often pa(B) = Ap(S), where, for example,
- p(B) = |1BlI3 = >_P_, B? gives ridge regression (aka Tikhonov regularisation);
- p(B) =8Il = XP_, |B:| gives the lasso (aka L; regularisation);
- p(B) = (1— )83 + a||B]]1 for 0 < a <1 gives the elastic net;

- p(B) = 25:1 p;ﬂHﬂgHQ, with 3, being p, x 1 sub-vectors of 3, gives the grouped lasso,

which penalises factors with parameters (3.
[0 It is useful to see regularisation through the lens of Bayesian inference, with the regularising term
equivalent to the prior density.
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Bound form
[0 Equivalently we can take the bound form of the minimisation problem, i.e.,
minimises ||y — X 8|3 subject to p(3) <t,

for some t > 0, where setting ¢t = oo just gives the least squares estimates.

[0 Below: constraint balls for ridge (left), lasso (centre) and elastic-net (right) regularisation. The
sharp corners of the last two allow for variable selection as well as shrinkage.
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Bayesian setting

[0 Treat all unknowns as random variables, and compute conditional distribution of unobserved
unknowns conditional on observed unknowns.

0 Requires prior density on 3, and if o2 is known, then a simple combination of data model and
prior model is

y | B,0% ~ N(XB,0%L,), B|0*~Ny(Bs,o?Vi), (17)

where the prior model is determined by 5, and V.
O Full specification would require prior on o2, but we don't need this.
[0 Let = mean we have dropped additive constants not involving the argument of a density.

0 The log multivariate normal density is
log £ | 1,2) =~ log2m — log || — Sz — )"z — )
= 2Ty — %xTQflx
= Qx)=2"a— %xTBx,
say, and as exp Q(x) is proportional to a unique probability density function,

E(X)=p=DBta, var(X)=Q=DB"!, where B is the precision matrix.
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Bayesian linear model |

O The model (17) gives
2 _ fyl1B,0*) (B0
log f(B|y,0%) = log{ 7] 0% }

= log f(y|8,0°) +log f(8|o?)
- (y B X/B)T(y B X/B) o (/8 B /8*)TV>;1(/8 B /8*)
202 202
oy = XBI3+ (8- BV (B~ B).
O Comparison with (16) shows that py(3) represents prior beliefs about the likely values of 3:
before seeing the data, the most plausible value is /3., with precision V7!

[0 Dropping more constants,

log (8] y,0?)

S {BTX Ty~ T (XTX)B/2 4+ BTV B — TV 2)
= 5 287Xy 4 V8 - BTXTX 4 V)Y, (18)

which is Q(x) with z, a and B replaced by 3, (X"y + V,715,)/0? and (X*X + V1) /02,

O Hence f(B|y,0?) is multivariate normal with mean vector and variance matrix

E(B|y,0%) = (X" X +V,H) N (XTy +V,'8,), var(B|y,0?) =c?(X"X + V1)L

Regression Methods Autumn 2024 - slide 188

Bayesian linear model Il

0 The maximum a posteriori (MAP) estimator of 3 is E(3 | y,02), and the MAP estimator of
AgxpB is AE(B | y,0?), which has a posterior normal density.

O When XTX is invertible,
B=E(B|y,0%) = (X"X +V, ) (X" XB+V,'B.)

is an average of 3 and B, weighted by XX and VL.

[0 The posterior precision matrix
var(B | y,0%) ' = X" X/o? + V. /o?

adds the Fisher information and the prior precision matrix, V, 1 /o?.
[0 High precision corresponds to small variance, and conversely:
— letting V,”! — 0 yields an improper prior density; and

— for large V7! the posterior precision is essentially determined by the prior precision.

Thus the prior density regularises 3 by including 5, and V.
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Improper prior density

[0 We only need V, to add information in directions corresponding to small singular values of X, so
we might use an improper prior in which V, is singular:
1
F(B10%) = —————pexp{~(8—5.)V.7 (8- B:)/(20%)}, (19)
(@mp2 Vi
where V, has spectral decomposition ED,ET,
—  |Vi|+ denotes the product of the non-zero elements of D,, and
= Vi =2 4..506r6r /dir is a generalized inverse of V.

[0 Below we write V,” even when V, is invertible.

O (19) is improper because it is not integrable in the directions of the columns of E for which the
corresponding d} equal zero, but we need only that the posterior density of 5 be proper, i.e., that
the posterior precision matrix

var(B | y,0%) " = X" X/o? + V. 1 /o?
is invertible.
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Empirical Bayes

[J Use the data to estimate the prior: construct estimators using Bayesian arguments, but assess
their properties using classical criteria (bias, MSE, ...)
[0 The estimator 3 = E(8 | y,02) has mean and variance
E@8) = (X'X+V,) HXTXB+V,B)
= /8 + (XTX + V*_)_lv*_(ﬁ* - 6)7
var(B | 8) = (XX + V) XX (XTX 4+ V) (20)
[1 Hence B
— is biased unless 3, = 3,
— has smaller variance than 3
so maybe there is a bias-variance tradeoff when estimating Af.
O If we write u = E(3 | 8), then the MSE is
B (43— 4817 |8) = E{(B-B)"A"A(B-B) | B}
= elu{aB-B-pa} |4
= w[B{AB—p+u-B)B-p+n-pTA"|B}].
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Empirical Bayes Il

[0 The expectation above is
Alvar(F | B) + (XTX + V)W (B = B)(8 — B)7V (XX + Vo)7L AT,
giving the MSE when estimating a fixed S.
[0 Taking expectations over the prior model for 3 gives
E (1143 - 48)?) = 0% {A(X™X + V) 71AT}, (21)
which is larger than Avar(B | B)A™ and does not depend on f,.
0 This computation uses only the mean and variance, so holds under second-order assumptions, but
under normal-theory assumptions gives the mean and variance of 5.
[0 From now on we set 3, = 0, unless we state otherwise.
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Equivalent degrees of freedom

O If we set B, = 0, then the fitted values are
§=XB=X(X"X+V,)"'X"y = H.y,
say.
[0 We define the equivalent degrees of freedom of the fit as
edf = tr(H,) = tr{X (X" X + V) ' X"} = p — tr{( X" X + V,)) "1V},
[0 This is lower than p unless V,” = 0, so regularisation reduces the degrees of freedom by an
amount that depends on V.
[0 The penalised estimate is a linear function of the unpenalised one (if it exists), as we can write
B=(X"X+V,)"'X"X3 = P.Jj,
say. As
edf = tr(H,) = tr(Py),
this gives an alternative formula useful in complex models.
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How much penalisation?
0 Often V,~ depends on some \ > 0 that must be chosen, as well as o2, which is usually estimated
by a (penalised) residual sum of squares.

00 To estimate A, we compare y; with its predicted value g’j):j = x}BA,,j, where 3,\,,]» is
Br=(X"X +V,) ' X"y
computed with the jth rows z; and y; of X and y omitted.

O Using Lemma 14, the leave-one-out cross-validation sum of squares is then

n n

A_ . (Y5 — rj)’
CVa =3 (o~ 0, = Iy =5 1P = 20 (75
=1 j=1 AJd

where 7y ; is the jth element of the complete-data fitted value Hyy and h,) j; is the jth diagonal
element of Hy = X (XTX + V,7)"LXT™ for the overall fit.

[0 More often we use the generalized cross-validation criterion

~ (Y — )’
VA= 2 Tt e

[0  Whichever criterion is used, it is typically minimised numerically over a grid of values of .
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REML

[0 Cross-validation makes only second-order assumptions.

0 Under normality, the marginal density of y is N{XB,,0%(I, + XV, X7)}, so we could estimate
Bs, 0% and A by maximising the corresponding likelihood.

O If n and p are large, this results in biased estimates of A and o2, so we prefer to eliminate 3.,
resulting in a log restricted likelihood whose form is given below, with W;l =1I,+ XV, X"

Lemma 31 In a model in which y ~ N (X}, O'QW;l), where W depends on a parameter \, a log
restricted likelihood for 0 and \ is

n—op 1 ~ P
log 0 — = (y = Ux)"Wa(y — In),
2 20

1
fre (0%, 3) = 5 log(IWAl/|X WAX]) -

where By = (X"W,X) "' X™W,y and § = X Bx. For fixed X the restricted maximum likelihood

estimator of o2 is therefore 1

n—p
and the resulting profile log restricted likelihood for X is

ox = (v —90)" Wiy — ),

n— ~
() = 2 1og(Wal/ X Wi X)) - L P 10g 52,

DN | =
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Note on Lemma 31

O Suppose that f(y;«, 5) depends on two parameters, that interest is focused on «, and that for
fixed « there is a minimal sufficient statistic s,, for 5. Then f(y;,8) = f(y | sa; @) f(sa; @, 8),
and since the first density on the right is a proper conditional density not depending on (3, we can
use it for inference on «, in the form

log f(y | sa; ) = log f(y; a, B) —log f(sa: @, B).

As the left-hand side of this expression does not depend on 3, we may be able to simplify the
right-hand side by an astute choice of 5.

O In the normal model we take a = (02, \). If « is fixed, then s, = B = (XTWyX) 1 XTWyy is
sufficient for 3; its distribution is N,{3, c*(XTW,X)~1}. Hence

rEnL(0?,A) =log f(y | Bxi o, A) = log f(y; 0%, A, B) — log f(Br; 0%, A, B)
which equals
~Rlogo? + Hlog Wl - 55y~ X6 Waly - X5)
+ Dlogo? — Log | XTWAX] + 5By — 6" X WX (B - ),
or equivalently, on setting 8 =0 and ) = Xﬁ)\,

Stog(Wal/x Wax)) - U Piogo? - L rwy — gixtmgy).
00 The last term reduces to the given form because 7} W (y — y\) = 0, so the term in brackets in
the last displayed equation is the residual sum of squares (y — y\)"Wa(y — U»)-
[0 The restricted maximum likelihood estimator 3?\ and the profile log restricted likelihood for A are
obtained by maximising fremr (02, \), for fixed A and then dropping constant terms from
(rEML(T%, N).
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3.2 Simple Applications

slide 196

Br=(X"X +A9) " HX"X + AS — AS)(X"X) "' X"y = B— A(X"X + AS) 'S5,

Ridge regression

By = (X" 4+ AS) X"y,

and effective degrees of freedom

[0 Used for prediction when X is close to singular.
O  If the first column of X is 1,,, we set 8, =0 and V,” = AS = Adiag(0, I,—1), giving

U= XB\ = X(XT+AS) " X"y = Hyy,

p
edfy = tr(Hy) = tr{(X"X + AS) ' XX} = >
r=1

where &, > - > d5 > §; = 0 are the eigenvalues of (X" X)~1/28(XTX)~1/2.
O As X increases from zero to infinity, edfy decreases from p = rank(X) to 1. The two are
equivalent, but edfy is more easily interpreted, because it is not related to the scale of X.

OO The inverse exists even if X*X is singular, but if it is invertible then

so as A — oo all the elements of BA tend to zero, other than the first. This corresponds to
reducing the prior variance to zero, thereby giving the data themselves less and less influence on
the elements of 3y other than the first, and thus stabilises the estimator.

14+ A5,
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x1
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11
7
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3
1
2
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11 1
12 11
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x2
26
29
56
31
52
55
71
31
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x3
6
15
8
8
6
9
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4
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9
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x4
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52
20
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33
22

6
44
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95.
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115.
83.
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109.

Example: Cement data
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Example: Cement data

Full model

Reduced model

Parameter Estimate Standard error Estimate Standard error
Bo 62.41 70.07 71.64 14.14
51 1.55 0.74 1.45 0.12
Bo 0.51 0.72 0.42 0.19
B3 0.10 0.75
B4 -0.14 0.71 —0.24 0.17
[0 The next slide shows results for ridge fits for these models.
[0 Looks like 3 df is optimal for prediction.
[0 Software often preprocesses X and y by either
— centering both, by subtracting column means, or
— centering y and centering and scaling X, so the column means are zero and the column
variances are unity.
[0 The singular values for the centred X matrix are 78.8, 28.5, 12.2, 1.7, and those for the centred
and scaled X matrix are 5.18, 4.35, 1.50, 0.14, so it matters which is used.
0 The singular values for the (centred) reduced matrix are 78.8, 19.8 and 9.15.
[0 The shrinkage due to increasing A occurs more slowly for the reduced model.
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Example: Cement data/Ridge analysis

Top left: CV (black) and GCV (red) as functions of degrees of freedom df. Top right: dependence of
dfy on \. Bottom left: ) as a function of A, with all four covariates. Bottom right: 8y as a function
of A, with x1, x2, and x4 only.
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Comments

[0 The literature on ridge regression is very large and very dispersed, with many variants and many
connections to ML techniques.

[0 Be careful with software: any pre-processing of X is not always described.
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