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Tall and wide regressions

! So far we have supposed that we have a tall regression:

– the number of units n exceeds the number of variables p,

– the design matrix X has rank p.

! In many ‘modern’ settings we instead have a wide regression:

– n and p are comparable, p > n, maybe even p≫ n;

– in genomics, for example (typically) n = O(102, 103), p = O(105, 106);

– hence rank(X) = min(n, p) = n.

! Even tall X may be ‘almost singular’, making β ‘almost inestimable’.

! Solutions:

– subset selection (drop certain columns of X);

– seek different good explanations of response variation, not single model;

– regularisation (often with prediction in mind).

! Certain regularisation methods (e.g., lasso) also perform subset selection.
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Different good explanations

! With p > n, perhaps p≫ n, X is rank-deficient and many β may give Xβ = y.

! To find important variables we include intrinsic variables (gender, . . . ) in all models, and then

– choose some k (preferably ≤ 15) such that k < n and suppose that p < ka (let a = 3 for easy
visualisation);

– assign each variable to a cell of a hyper-cube with coordinates {1, . . . , k}a;
– fit a linear model containing each set of k variables corresponding to the aka−1 rows,

columns, . . . of the cube, so each variable appears in a distinct models;

– for each such model, retain the two variables that are most significant.

! Iterate the above procedure, retaining only the most significant variables at each stage, aiming for
a final set of 10–20 variables, for which a careful analysis is performed, perhaps leading to several
different good explanations of the response variation.

! Some cells of the hyper-cube may be empty, and important variables might be assigned to several
cells.

! The above design is a form of balanced incomplete block design (BIBD) (with ka treatments
and aka−1 blocks).

! See Cox and Battey (2017, PNAS)
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Collinearity

! Columns of X collinear if there exists a non-zero vp×1 such that Xv = 0, i.e., rank(X) < p, so

there is no unique β̂ minimising ∥y −Xβ∥2.
! Software deals with this by dropping columns of X, but it may be better to write Xβ = XCγ,

where XC is full rank and γ has a clear interpretation.

! If X is nearly collinear, its SVD Un×nDn×pV T

p×p, with d1 ≥ · · · ≥ dp ≥ 0, gives

β̂ = (XTX)−1XTy = V DT

−U
Ty =

p∑

r=1

(uT

r y/dr)vr,

so β̂ is a linear combination of the vectors vr with coefficients uT

r y/dr. As var(U
Ty) = σ2In,

var(β̂) = σ2V DT

−D−V
T = σ2

p∑

r=1

d−2
r vrv

T

r ,

i.e., β̂ is unstable in the directions corresponding to the vr with small singular values dr.

! In numerical analysis, collinearity often measured using condition number (d1/dp)1/2, but its
statistical meaning is unclear.
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Regularisation

! Stop β̂ from fluctuating too wildly in directions with small eigenvalues dr, by adding a
non-negative penalty pλ(β) and choosing β to minimise the penalised sum of squares

∥y −Xβ∥2 + pλ(β). (16)

! The strength of the penalty depends on a positive parameter λ that constrains β more as λ
increases.

! Often pλ(β) = λp(β), where, for example,

– p(β) = ∥β∥22 =
∑p

r=1 β
2
r gives ridge regression (aka Tikhonov regularisation);

– p(β) = ∥β∥1 =
∑p

r=1 |βr| gives the lasso (aka L1 regularisation);

– p(β) = (1− α)∥β∥22 + α∥β∥1 for 0 ≤ α ≤ 1 gives the elastic net;

– p(β) =
∑G

g=1 p
1/2
g ∥βg∥2, with βg being pg × 1 sub-vectors of β, gives the grouped lasso,

which penalises factors with parameters βg.

! It is useful to see regularisation through the lens of Bayesian inference, with the regularising term
equivalent to the prior density.
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Bound form

! Equivalently we can take the bound form of the minimisation problem, i.e.,

minimiseβ ∥y −Xβ∥22 subject to p(β) ≤ t,

for some t ≥ 0, where setting t =∞ just gives the least squares estimates.

! Below: constraint balls for ridge (left), lasso (centre) and elastic-net (right) regularisation. The
sharp corners of the last two allow for variable selection as well as shrinkage.
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Bayesian setting

! Treat all unknowns as random variables, and compute conditional distribution of unobserved
unknowns conditional on observed unknowns.

! Requires prior density on β, and if σ2 is known, then a simple combination of data model and
prior model is

y | β,σ2 ∼ N (Xβ,σ2In), β | σ2 ∼ Np(β∗,σ
2V∗), (17)

where the prior model is determined by β∗ and V∗.

! Full specification would require prior on σ2, but we don’t need this.

! Let ≡ mean we have dropped additive constants not involving the argument of a density.

! The log multivariate normal density is

log f(x | µ,Ω) = −m

2
log 2π − 1

2
log |Ω|− 1

2
(x− µ)TΩ−1(x− µ)

≡ xTΩ−1µ− 1

2
xTΩ−1x

≡ Q(x) = xTa− 1

2
xTBx,

say, and as expQ(x) is proportional to a unique probability density function,

E(X) = µ = B−1a, var(X) = Ω = B−1, where B is the precision matrix.
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Bayesian linear model I

! The model (17) gives

log f(β | y,σ2) = log

{
f(y | β,σ2)f(β | σ2)

f(y | σ2)

}

≡ log f(y | β,σ2) + log f(β | σ2)

≡ −(y −Xβ)T(y −Xβ)

2σ2
− (β − β∗)TV −1

∗ (β − β∗)
2σ2

∝ ∥y −Xβ∥22 + (β − β∗)TV −1
∗ (β − β∗).

! Comparison with (16) shows that pλ(β) represents prior beliefs about the likely values of β:
before seeing the data, the most plausible value is β∗, with precision V −1

∗ .

! Dropping more constants,

log f(β | y,σ2) ≡ 1

σ2
{
βTXTy − βT(XTX)β/2 + βTV −1

∗ β∗ − βTV −1
∗ β/2

}

=
1

2σ2
{
2βT(XTy + V −1

∗ β∗)− βT(XTX + V −1
∗ )β

}
, (18)

which is Q(x) with x, a and B replaced by β, (XTy + V −1
∗ β∗)/σ2 and (XTX + V −1

∗ )/σ2.

! Hence f(β | y,σ2) is multivariate normal with mean vector and variance matrix

E(β | y,σ2) = (XTX + V −1
∗ )−1(XTy + V −1

∗ β∗), var(β | y,σ2) = σ2(XTX + V −1
∗ )−1.
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Bayesian linear model II

! The maximum a posteriori (MAP) estimator of β is E(β | y,σ2), and the MAP estimator of
Aq×pβ is AE(β | y,σ2), which has a posterior normal density.

! When XTX is invertible,

β̃ = E(β | y,σ2) = (XTX + V −1
∗ )−1(XTXβ̂ + V −1

∗ β∗)

is an average of β̂ and β∗, weighted by XTX and V −1
∗ .

! The posterior precision matrix

var(β | y,σ2)−1 = XTX/σ2 + V −1
∗ /σ2

adds the Fisher information and the prior precision matrix, V −1
∗ /σ2.

! High precision corresponds to small variance, and conversely:

– letting V −1
∗ → 0 yields an improper prior density; and

– for large V −1
∗ the posterior precision is essentially determined by the prior precision.

Thus the prior density regularises β̂ by including β∗ and V∗.
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Improper prior density

! We only need V∗ to add information in directions corresponding to small singular values of X, so
we might use an improper prior in which V∗ is singular:

f(β | σ2) = 1

(2π)p/2|V∗|1/2+

exp
{
−(β − β∗)TV −

∗ (β − β∗)/(2σ2)
}
, (19)

where V∗ has spectral decomposition ED∗ET,

– |V∗|+ denotes the product of the non-zero elements of D∗, and

– V −
∗ =

∑
r:d∗r>0 ere

T

r /d∗r is a generalized inverse of V∗.

! Below we write V −
∗ even when V∗ is invertible.

! (19) is improper because it is not integrable in the directions of the columns of E for which the
corresponding d∗r equal zero, but we need only that the posterior density of β be proper, i.e., that
the posterior precision matrix

var(β | y,σ2)−1 = XTX/σ2 + V −1
∗ /σ2

is invertible.
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Empirical Bayes

! Use the data to estimate the prior: construct estimators using Bayesian arguments, but assess
their properties using classical criteria (bias, MSE, . . . )

! The estimator β̃ = E(β | y,σ2) has mean and variance

E(β̃ | β) = (XTX + V −
∗ )−1(XTXβ + V −

∗ β∗)

= β + (XTX + V −
∗ )−1V −

∗ (β∗ − β),
var(β̃ | β) = σ2(XTX + V −

∗ )−1XTX(XTX + V −
∗ )−1. (20)

! Hence β̃

– is biased unless β∗ = β,

– has smaller variance than β̂,

so maybe there is a bias-variance tradeoff when estimating Aβ.

! If we write µ = E(β̃ | β), then the MSE is

E
(
∥Aβ̃ −Aβ∥2 | β

)
= E{(β̃ − β)TATA(β̃ − β) | β}

= E
[
tr
{
A(β̃ − β)(β̃ − β)TAT

}
| β
]

= tr
[
E
{
A(β̃ − µ+ µ− β)(β̃ − µ+ µ− β)TAT | β

}]
.
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Empirical Bayes II

! The expectation above is

A
{
var(β̃ | β) + (XTX + V −

∗ )−1V −
∗ (β − β∗)(β − β∗)TV −

∗ (XTX + V −
∗ )−1

}
AT,

giving the MSE when estimating a fixed β.

! Taking expectations over the prior model for β gives

E
(
∥Aβ̃ −Aβ∥2

)
= σ2tr

{
A(XTX + V −

∗ )−1AT
}
, (21)

which is larger than Avar(β̃ | β)AT and does not depend on β∗.

! This computation uses only the mean and variance, so holds under second-order assumptions, but
under normal-theory assumptions gives the mean and variance of β̃.

! From now on we set β∗ = 0, unless we state otherwise.
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Equivalent degrees of freedom

! If we set β∗ = 0, then the fitted values are

ỹ = Xβ̃ = X(XTX + V −
∗ )−1XTy = H∗y,

say.

! We define the equivalent degrees of freedom of the fit as

edf = tr(H∗) = tr{X(XTX + V −
∗ )−1XT} = p− tr{(XTX + V −

∗ )−1V −
∗ },

! This is lower than p unless V −
∗ = 0, so regularisation reduces the degrees of freedom by an

amount that depends on V∗.

! The penalised estimate is a linear function of the unpenalised one (if it exists), as we can write

β̃ = (XTX + V −
∗ )−1XTXβ̂ = P∗β̂,

say. As
edf = tr(H∗) = tr(P∗),

this gives an alternative formula useful in complex models.
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How much penalisation?

! Often V −
∗ depends on some λ > 0 that must be chosen, as well as σ2, which is usually estimated

by a (penalised) residual sum of squares.

! To estimate λ, we compare yj with its predicted value ŷ−λ,j = xT

j β̂λ,−j, where β̂λ,−j is

β̂λ = (XTX + V −
∗ )−1XTy

computed with the jth rows xj and yj of X and y omitted.

! Using Lemma 14, the leave-one-out cross-validation sum of squares is then

CVλ =
n∑

j=1

(yj − ŷ−λ,j)
2 = ∥y − ŷ−λ ∥

2 =
n∑

j=1

(yj − ŷλ,j)2

(1− hλ,jj)2
,

where ŷλ,j is the jth element of the complete-data fitted value Hλy and hλ,jj is the jth diagonal
element of Hλ = X(XTX + V −

∗ )−1XT for the overall fit.

! More often we use the generalized cross-validation criterion

GCVλ =
n∑

j=1

(yj − ŷλ,j)2

{1 − tr(Hλ)/n}2
.

! Whichever criterion is used, it is typically minimised numerically over a grid of values of λ.
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REML

! Cross-validation makes only second-order assumptions.

! Under normality, the marginal density of y is N{Xβ∗,σ2(In +XV∗XT)}, so we could estimate
β∗, σ2 and λ by maximising the corresponding likelihood.

! If n and p are large, this results in biased estimates of λ and σ2, so we prefer to eliminate β∗,
resulting in a log restricted likelihood whose form is given below, with W−1

λ = In +XV∗XT.

Lemma 31 In a model in which y ∼ N (Xβ,σ2W−1
λ ), where Wλ depends on a parameter λ, a log

restricted likelihood for σ2 and λ is

ℓREML(σ
2,λ) ≡ 1

2
log(|Wλ|/|XTWλX|) − n− p

2
log σ2 − 1

2σ2
(y − ŷλ)

TWλ(y − ŷλ),

where β̂λ = (XTWλX)−1XTWλy and ŷλ = Xβ̂λ. For fixed λ the restricted maximum likelihood
estimator of σ2 is therefore

σ̂2λ =
1

n− p
(y − ŷλ)

TWλ(y − ŷλ),

and the resulting profile log restricted likelihood for λ is

ℓp(λ) ≡
1

2
log(|Wλ|/|XTWλX|)− (n− p)

2
log σ̂2λ.
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Note on Lemma 31

! Suppose that f(y;α,β) depends on two parameters, that interest is focused on α, and that for
fixed α there is a minimal sufficient statistic sα for β. Then f(y;α,β) = f(y | sα;α)f(sα;α,β),
and since the first density on the right is a proper conditional density not depending on β, we can
use it for inference on α, in the form

log f(y | sα;α) = log f(y;α,β) − log f(sα;α,β).

As the left-hand side of this expression does not depend on β, we may be able to simplify the
right-hand side by an astute choice of β.

! In the normal model we take α = (σ2,λ). If α is fixed, then sα = β̂α = (XTWλX)−1XTWλy is
sufficient for β; its distribution is Np{β,σ2(XTWλX)−1}. Hence

ℓREML(σ
2,λ) = log f(y | β̂λ;σ2,λ) = log f(y;σ2,λ,β)− log f(β̂λ;σ

2,λ,β)

which equals

−n

2
log σ2 + 1

2 log |Wλ|−
1

2σ2
(y −Xβ)TWλ(y −Xβ)

+
p

2
log σ2 − 1

2 log |X
TWλX|+ 1

2σ2
(β̂λ − β)TXTWλX(β̂λ − β),

or equivalently, on setting β = 0 and ŷλ = Xβ̂λ,

1
2 log(|Wλ|/|XTWλX|)− (n− p)

2
log σ2 − 1

2σ2
(yTWλy − ŷT

λX
TWλŷλ) .

! The last term reduces to the given form because ŷT

λWλ(y − ŷλ) = 0, so the term in brackets in
the last displayed equation is the residual sum of squares (y − ŷλ)TWλ(y − ŷλ).

! The restricted maximum likelihood estimator σ̂2λ and the profile log restricted likelihood for λ are
obtained by maximising ℓREML(σ2,λ), for fixed λ and then dropping constant terms from
ℓREML(σ̂2λ,λ).

Regression Methods Autumn 2024 – note 1 of slide 195

108



3.2 Simple Applications slide 196

Ridge regression

! Used for prediction when X is close to singular.

! If the first column of X is 1n, we set β∗ = 0 and V −
∗ = λS = λdiag(0, Ip−1), giving

β̂λ = (XT + λS)−1XTy, ŷλ = Xβ̂λ = X(XT + λS)−1XTy = Hλy,

and effective degrees of freedom

edfλ = tr(Hλ) = tr{(XTX + λS)−1XTX} =
p∑

r=1

1

1 + λδr
,

where δp ≥ · · · ≥ δ2 > δ1 = 0 are the eigenvalues of (XTX)−1/2S(XTX)−1/2.

! As λ increases from zero to infinity, edfλ decreases from p = rank(X) to 1. The two are
equivalent, but edfλ is more easily interpreted, because it is not related to the scale of X.

! The inverse exists even if XTX is singular, but if it is invertible then

β̂λ = (XTX + λS)−1(XTX + λS − λS)(XTX)−1XTy = β̂ − λ(XTX + λS)−1Sβ̂,

so as λ→∞ all the elements of β̂λ tend to zero, other than the first. This corresponds to
reducing the prior variance to zero, thereby giving the data themselves less and less influence on
the elements of β̂λ other than the first, and thus stabilises the estimator.
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Example: Cement data

> cement

x1 x2 x3 x4 y

1 7 26 6 60 78.5

2 1 29 15 52 74.3

3 11 56 8 20 104.3

4 11 31 8 47 87.6

5 7 52 6 33 95.9

6 11 55 9 22 109.2

7 3 71 17 6 102.7

8 1 31 22 44 72.5

9 2 54 18 22 93.1

10 21 47 4 26 115.9

11 1 40 23 34 83.8

12 11 66 9 12 113.3

13 10 68 8 12 109.4
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Example: Cement data

Full model Reduced model
Parameter Estimate Standard error Estimate Standard error

β0 62.41 70.07 71.64 14.14
β1 1.55 0.74 1.45 0.12
β2 0.51 0.72 0.42 0.19
β3 0.10 0.75
β4 –0.14 0.71 –0.24 0.17

! The next slide shows results for ridge fits for these models.

! Looks like 3 df is optimal for prediction.

! Software often preprocesses X and y by either

– centering both, by subtracting column means, or

– centering y and centering and scaling X, so the column means are zero and the column
variances are unity.

! The singular values for the centred X matrix are 78.8, 28.5, 12.2, 1.7, and those for the centred
and scaled X matrix are 5.18, 4.35, 1.50, 0.14, so it matters which is used.

! The singular values for the (centred) reduced matrix are 78.8, 19.8 and 9.15.

! The shrinkage due to increasing λ occurs more slowly for the reduced model.
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Example: Cement data/Ridge analysis

Top left: CV (black) and GCV (red) as functions of degrees of freedom dfλ. Top right: dependence of
dfλ on λ. Bottom left: β̂λ as a function of λ, with all four covariates. Bottom right: β̂λ as a function
of λ, with x1, x2, and x4 only.
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Comments

! The literature on ridge regression is very large and very dispersed, with many variants and many
connections to ML techniques.

! Be careful with software: any pre-processing of X is not always described.
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