3.1 Basic Notions slide 181

Tall and wide regressions					
	So far we have supposed that we have a tall regression:				
	- the number of units n exceeds the number of variables p ,				
	– the design matrix X has rank p .				
	In many 'modern' settings we instead have a wide regression:				
	- n and p are comparable, $p > n$, maybe even $p \gg n$;				
	– in genomics, for example (typically) $n=O(10^2,10^3)$, $p=O(10^5,10^6)$;				
	- hence $\operatorname{rank}(X) = \min(n, p) = n$.				
	Even tall X may be 'almost singular', making β 'almost inestimable'.				
	Solutions:				
	- subset selection (drop certain columns of X);				
	 seek different good explanations of response variation, not single model; 				
	 regularisation (often with prediction in mind). 				
	Certain regularisation methods (e.g., lasso) also perform subset selection.				

Regression Methods Autumn 2024 – slide 182

Different good explanations \square With p > n, perhaps $p \gg n$, X is rank-deficient and many β may give $X\beta = y$. ☐ To find important variables we include intrinsic variables (gender, ...) in all models, and then choose some k (preferably ≤ 15) such that k < n and suppose that $p < k^a$ (let a = 3 for easy visualisation); – assign each variable to a cell of a hyper-cube with coordinates $\{1,\ldots,k\}^a$; - fit a linear model containing each set of k variables corresponding to the ak^{a-1} rows, columns, \dots of the cube, so each variable appears in a distinct models; - for each such model, retain the two variables that are most significant. ☐ Iterate the above procedure, retaining only the most significant variables at each stage, aiming for a final set of 10-20 variables, for which a careful analysis is performed, perhaps leading to several different good explanations of the response variation. ☐ Some cells of the hyper-cube may be empty, and important variables might be assigned to several The above design is a form of **balanced incomplete block design (BIBD)** (with k^a treatments and ak^{a-1} blocks). ☐ See Cox and Battey (2017, PNAS)

Regression Methods

Collinearity

- Columns of X collinear if there exists a non-zero $v_{p\times 1}$ such that Xv=0, i.e., $\mathrm{rank}(X)< p$, so there is no unique $\widehat{\beta}$ minimising $\|y-X\beta\|^2$.
- \square Software deals with this by dropping columns of X, but it may be better to write $X\beta = XC\gamma$, where XC is full rank and γ has a clear interpretation.
- \square If X is nearly collinear, its SVD $U_{n\times n}D_{n\times p}V_{p\times p}^{\mathrm{T}}$, with $d_1\geq \cdots \geq d_p\geq 0$, gives

$$\widehat{\beta} = (X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}y = VD_{-}^{\mathrm{T}}U^{\mathrm{T}}y = \sum_{r=1}^{p} (u_r^{\mathrm{T}}y/d_r)v_r,$$

so $\widehat{\beta}$ is a linear combination of the vectors v_r with coefficients $u_r^{\mathrm{\scriptscriptstyle T}} y/d_r$. As $\mathrm{var}(U^{\mathrm{\scriptscriptstyle T}} y) = \sigma^2 I_n$,

$$\operatorname{var}(\widehat{\beta}) = \sigma^2 V D_{-}^{\mathrm{\scriptscriptstyle T}} D_{-} V^{\mathrm{\scriptscriptstyle T}} = \sigma^2 \sum_{r=1}^p d_r^{-2} v_r v_r^{\mathrm{\scriptscriptstyle T}},$$

i.e., $\widehat{\beta}$ is unstable in the directions corresponding to the v_r with small singular values d_r .

 \square In numerical analysis, collinearity often measured using **condition number** $(d_1/d_p)^{1/2}$, but its statistical meaning is unclear.

Regression Methods

Autumn 2024 - slide 184

Regularisation

Stop $\widehat{\beta}$ from fluctuating too wildly in directions with small eigenvalues d_r , by adding a non-negative penalty $p_{\lambda}(\beta)$ and choosing β to minimise the **penalised sum of squares**

$$||y - X\beta||^2 + p_{\lambda}(\beta). \tag{16}$$

- \square The strength of the penalty depends on a positive parameter λ that constrains β more as λ increases.
- \square Often $p_{\lambda}(\beta) = \lambda p(\beta)$, where, for example,
 - $p(\beta) = \|\beta\|_2^2 = \sum_{r=1}^p \beta_r^2$ gives **ridge regression** (aka Tikhonov regularisation);
 - $p(\beta) = \|\beta\|_1 = \sum_{r=1}^p |\beta_r|$ gives the lasso (aka L_1 regularisation);
 - $p(\beta) = (1 \alpha) \|\beta\|_2^2 + \alpha \|\beta\|_1$ for $0 \le \alpha \le 1$ gives the elastic net;
 - $p(\beta) = \sum_{g=1}^G p_g^{1/2} \|\beta_g\|_2$, with β_g being $p_g \times 1$ sub-vectors of β , gives the **grouped lasso**, which penalises factors with parameters β_g .
- □ It is useful to see regularisation through the lens of Bayesian inference, with the regularising term equivalent to the prior density.

Regression Methods

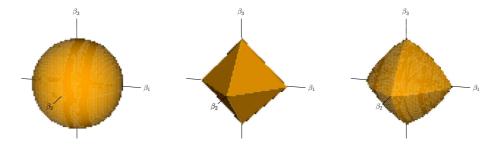
Bound form

☐ Equivalently we can take the **bound form** of the minimisation problem, i.e.,

minimise_{$$\beta$$} $||y - X\beta||_2^2$ subject to $p(\beta) \le t$,

for some $t\geq 0$, where setting $t=\infty$ just gives the least squares estimates.

☐ Below: constraint balls for ridge (left), lasso (centre) and elastic-net (right) regularisation. The sharp corners of the last two allow for variable selection as well as shrinkage.



Regression Methods

Autumn 2024 - slide 186

Bayesian setting

- ☐ Treat all unknowns as random variables, and compute conditional distribution of unobserved unknowns conditional on observed unknowns.
- \square Requires prior density on β , and if σ^2 is known, then a simple combination of **data model** and **prior model** is

$$y \mid \beta, \sigma^2 \sim \mathcal{N}(X\beta, \sigma^2 I_n), \quad \beta \mid \sigma^2 \sim \mathcal{N}_p(\beta_*, \sigma^2 V_*),$$
 (17)

where the prior model is determined by β_* and V_* .

- \Box Full specification would require prior on σ^2 , but we don't need this.
- \Box Let \equiv mean we have dropped additive constants not involving the argument of a density.
- ☐ The log multivariate normal density is

$$\log f(x \mid \mu, \Omega) = -\frac{m}{2} \log 2\pi - \frac{1}{2} \log |\Omega| - \frac{1}{2} (x - \mu)^{\mathrm{T}} \Omega^{-1} (x - \mu)$$

$$\equiv x^{\mathrm{T}} \Omega^{-1} \mu - \frac{1}{2} x^{\mathrm{T}} \Omega^{-1} x$$

$$\equiv Q(x) = x^{\mathrm{T}} a - \frac{1}{2} x^{\mathrm{T}} B x,$$

say, and as $\exp Q(x)$ is proportional to a unique probability density function,

$$\mathrm{E}(X) = \mu = B^{-1}a, \quad \mathrm{var}(X) = \Omega = B^{-1}, \quad \text{where } B \text{ is the precision matrix}.$$

Regression Methods

Bayesian linear model I

 \square The model (17) gives

$$\log f(\beta \mid y, \sigma^{2}) = \log \left\{ \frac{f(y \mid \beta, \sigma^{2}) f(\beta \mid \sigma^{2})}{f(y \mid \sigma^{2})} \right\}$$

$$\equiv \log f(y \mid \beta, \sigma^{2}) + \log f(\beta \mid \sigma^{2})$$

$$\equiv -\frac{(y - X\beta)^{\mathrm{T}} (y - X\beta)}{2\sigma^{2}} - \frac{(\beta - \beta_{*})^{\mathrm{T}} V_{*}^{-1} (\beta - \beta_{*})}{2\sigma^{2}}$$

$$\propto \|y - X\beta\|_{2}^{2} + (\beta - \beta_{*})^{\mathrm{T}} V_{*}^{-1} (\beta - \beta_{*}).$$

- \square Comparison with (16) shows that $p_{\lambda}(\beta)$ represents prior beliefs about the likely values of β : before seeing the data, the most plausible value is β_* , with precision V_*^{-1} .
- ☐ Dropping more constants,

$$\log f(\beta \mid y, \sigma^{2}) \equiv \frac{1}{\sigma^{2}} \left\{ \beta^{\mathrm{T}} X^{\mathrm{T}} y - \beta^{\mathrm{T}} (X^{\mathrm{T}} X) \beta / 2 + \beta^{\mathrm{T}} V_{*}^{-1} \beta_{*} - \beta^{\mathrm{T}} V_{*}^{-1} \beta / 2 \right\}$$

$$= \frac{1}{2\sigma^{2}} \left\{ 2\beta^{\mathrm{T}} (X^{\mathrm{T}} y + V_{*}^{-1} \beta_{*}) - \beta^{\mathrm{T}} (X^{\mathrm{T}} X + V_{*}^{-1}) \beta \right\},$$
(18)

which is Q(x) with x, a and B replaced by β , $(X^{\mathrm{T}}y + V_*^{-1}\beta_*)/\sigma^2$ and $(X^{\mathrm{T}}X + V_*^{-1})/\sigma^2$.

 \square Hence $f(\beta \mid y, \sigma^2)$ is multivariate normal with mean vector and variance matrix

$$E(\beta \mid y, \sigma^2) = (X^{\mathrm{T}}X + V_*^{-1})^{-1}(X^{\mathrm{T}}y + V_*^{-1}\beta_*), \quad \text{var}(\beta \mid y, \sigma^2) = \sigma^2(X^{\mathrm{T}}X + V_*^{-1})^{-1}.$$

Regression Methods

Autumn 2024 - slide 188

Bayesian linear model II

- The maximum a posteriori (MAP) estimator of β is $E(\beta \mid y, \sigma^2)$, and the MAP estimator of $A_{q \times p} \beta$ is $AE(\beta \mid y, \sigma^2)$, which has a posterior normal density.
- \square When $X^{\mathrm{T}}X$ is invertible,

$$\tilde{\beta} = \mathcal{E}(\beta \mid y, \sigma^2) = (X^{\mathrm{T}}X + V_*^{-1})^{-1}(X^{\mathrm{T}}X\hat{\beta} + V_*^{-1}\beta_*)$$

is an average of $\widehat{\beta}$ and β_* , weighted by $X^{\mathrm{T}}X$ and V_*^{-1} .

☐ The posterior precision matrix

$$var(\beta \mid y, \sigma^2)^{-1} = X^{\mathrm{T}} X / \sigma^2 + V_*^{-1} / \sigma^2$$

adds the Fisher information and the prior precision matrix, $V_{*}^{-1}/\sigma^{2}.$

- ☐ High precision corresponds to small variance, and conversely:
 - letting $V_*^{-1} \to 0$ yields an improper prior density; and
 - for large V_{\ast}^{-1} the posterior precision is essentially determined by the prior precision.

Thus the prior density regularises $\widehat{\beta}$ by including β_* and V_* .

Regression Methods

Improper prior density

 \square We only need V_* to add information in directions corresponding to small singular values of X, so we might use an **improper prior** in which V_* is singular:

$$f(\beta \mid \sigma^2) = \frac{1}{(2\pi)^{p/2} |V_*|_+^{1/2}} \exp\left\{-(\beta - \beta_*)^{\mathrm{T}} V_*^{-} (\beta - \beta_*) / (2\sigma^2)\right\},\tag{19}$$

where V_* has spectral decomposition ED_*E^{T} ,

- $|V_*|_+$ denotes the product of the non-zero elements of D_* , and
- $V_*^- = \sum_{r:d_{*r}>0} e_r e_r^{\mathrm{T}}/d_{*r}$ is a generalized inverse of V_* .
- \square Below we write V_*^- even when V_* is invertible.
- \square (19) is improper because it is not integrable in the directions of the columns of E for which the corresponding d_r^* equal zero, but we need only that the posterior density of β be proper, i.e., that the posterior precision matrix

$$\operatorname{var}(\beta \mid y, \sigma^2)^{-1} = X^{\mathrm{T}} X / \sigma^2 + V_*^{-1} / \sigma^2$$

is invertible.

Regression Methods

Autumn 2024 - slide 190

Empirical Bayes

- \square Use the data to estimate the prior: construct estimators using Bayesian arguments, but assess their properties using classical criteria (bias, MSE, ...)
- $\hfill\Box$ The estimator $\tilde{\beta}=\mathrm{E}(\beta\mid y,\sigma^2)$ has mean and variance

$$E(\tilde{\beta} \mid \beta) = (X^{T}X + V_{*}^{-})^{-1}(X^{T}X\beta + V_{*}^{-}\beta_{*})$$

$$= \beta + (X^{T}X + V_{*}^{-})^{-1}V_{*}^{-}(\beta_{*} - \beta),$$

$$var(\tilde{\beta} \mid \beta) = \sigma^{2}(X^{T}X + V_{*}^{-})^{-1}X^{T}X(X^{T}X + V_{*}^{-})^{-1}.$$
(20)

- \square Hence $\tilde{\beta}$
 - is biased unless $\beta_* = \beta$,
 - has smaller variance than $\widehat{\beta}$,

so maybe there is a bias-variance tradeoff when estimating $A\beta$.

 \square If we write $\mu = E(\tilde{\beta} \mid \beta)$, then the MSE is

$$\begin{split} \mathbf{E} \left(\| A \tilde{\beta} - A \beta \|^2 \mid \beta \right) &= \mathbf{E} \{ (\tilde{\beta} - \beta)^{\mathrm{T}} A^{\mathrm{T}} A (\tilde{\beta} - \beta) \mid \beta \} \\ &= \mathbf{E} \left[\mathrm{tr} \left\{ A (\tilde{\beta} - \beta) (\tilde{\beta} - \beta)^{\mathrm{T}} A^{\mathrm{T}} \right\} \mid \beta \right] \\ &= \mathbf{tr} \left[\mathbf{E} \left\{ A (\tilde{\beta} - \mu + \mu - \beta) (\tilde{\beta} - \mu + \mu - \beta)^{\mathrm{T}} A^{\mathrm{T}} \mid \beta \right\} \right]. \end{split}$$

Regression Methods

Empirical Bayes II

 \square The expectation above is

$$A\left\{ \mathrm{var}(\tilde{\beta} \mid \beta) + (X^{\mathrm{\scriptscriptstyle T}}X + V_*^-)^{-1}V_*^-(\beta - \beta_*)(\beta - \beta_*)^{\mathrm{\scriptscriptstyle T}}V_*^-(X^{\mathrm{\scriptscriptstyle T}}X + V_*^-)^{-1} \right\} A^{\mathrm{\scriptscriptstyle T}},$$

giving the MSE when estimating a fixed β .

 \square Taking expectations over the prior model for β gives

$$\mathrm{E}\left(\|A\tilde{\beta} - A\beta\|^{2}\right) = \sigma^{2} \mathrm{tr}\left\{A(X^{\mathrm{T}}X + V_{*}^{-})^{-1}A^{\mathrm{T}}\right\},\tag{21}$$

which is larger than $Avar(\tilde{\beta} \mid \beta)A^{T}$ and does not depend on β_{*} .

- \square This computation uses only the mean and variance, so holds under second-order assumptions, but under normal-theory assumptions gives the mean and variance of $\tilde{\beta}$.
- \square From now on we set $\beta_* = 0$, unless we state otherwise.

Regression Methods

Autumn 2024 - slide 192

Equivalent degrees of freedom

 \square If we set $\beta_* = 0$, then the fitted values are

$$\tilde{y} = X\tilde{\beta} = X(X^{\mathrm{T}}X + V_{*}^{-})^{-1}X^{\mathrm{T}}y = H_{*}y,$$

say.

☐ We define the **equivalent degrees of freedom** of the fit as

$$edf = tr(H_*) = tr\{X(X^{\mathrm{T}}X + V_*^{-})^{-1}X^{\mathrm{T}}\} = p - tr\{(X^{\mathrm{T}}X + V_*^{-})^{-1}V_*^{-}\},$$

- $\ \square$ This is lower than p unless $V_*^-=0$, so regularisation reduces the degrees of freedom by an amount that depends on V_* .
- ☐ The penalised estimate is a linear function of the unpenalised one (if it exists), as we can write

$$\tilde{\beta} = (X^{\mathrm{T}}X + V_*^{-})^{-1}X^{\mathrm{T}}X\hat{\beta} = P_*\hat{\beta},$$

say. As

$$edf = tr(H_*) = tr(P_*),$$

this gives an alternative formula useful in complex models.

Regression Methods

How much penalisation?

- Often V_*^- depends on some $\lambda > 0$ that must be chosen, as well as σ^2 , which is usually estimated by a (penalised) residual sum of squares.
- \square To estimate λ , we compare y_j with its predicted value $\widehat{y}_{\lambda,j} = x_j^{\mathrm{T}} \widehat{\beta}_{\lambda,-j}$, where $\widehat{\beta}_{\lambda,-j}$ is

$$\widehat{\beta}_{\lambda} = (X^{\mathrm{T}}X + V_{*}^{-})^{-1}X^{\mathrm{T}}y$$

computed with the jth rows x_i and y_i of X and y omitted.

☐ Using Lemma 14, the leave-one-out cross-validation sum of squares is then

$$CV_{\lambda} = \sum_{j=1}^{n} (y_j - \widehat{y}_{\lambda,j})^2 = \|y - \widehat{y}_{\lambda}\|^2 = \sum_{j=1}^{n} \frac{(y_j - \widehat{y}_{\lambda,j})^2}{(1 - h_{\lambda,jj})^2},$$

where $\widehat{y}_{\lambda,j}$ is the jth element of the complete-data fitted value $H_{\lambda}y$ and $h_{\lambda,jj}$ is the jth diagonal element of $H_{\lambda} = X(X^{\mathrm{T}}X + V_{*}^{-})^{-1}X^{\mathrm{T}}$ for the overall fit.

☐ More often we use the **generalized cross-validation** criterion

$$GCV_{\lambda} = \sum_{j=1}^{n} \frac{(y_j - \widehat{y}_{\lambda,j})^2}{\{1 - \operatorname{tr}(H_{\lambda})/n\}^2}.$$

 \square Whichever criterion is used, it is typically minimised numerically over a grid of values of λ .

Regression Methods

Autumn 2024 - slide 194

REML

- ☐ Cross-validation makes only second-order assumptions.
- Under normality, the marginal density of y is $\mathcal{N}\{X\beta_*, \sigma^2(I_n + XV_*X^{\mathrm{T}})\}$, so we could estimate β_* , σ^2 and λ by maximising the corresponding likelihood.
- □ If n and p are large, this results in biased estimates of λ and σ^2 , so we prefer to eliminate β_* , resulting in a \log restricted likelihood whose form is given below, with $W_{\lambda}^{-1} = I_n + XV_*X^{\mathrm{T}}$.

Lemma 31 In a model in which $y \sim \mathcal{N}(X\beta, \sigma^2 W_{\lambda}^{-1})$, where W_{λ} depends on a parameter λ , a log restricted likelihood for σ^2 and λ is

$$\ell_{\text{REML}}(\sigma^2, \lambda) \equiv \frac{1}{2} \log(|W_{\lambda}|/|X^{\mathsf{T}}W_{\lambda}X|) - \frac{n-p}{2} \log \sigma^2 - \frac{1}{2\sigma^2} (y - \widehat{y}_{\lambda})^{\mathsf{T}}W_{\lambda}(y - \widehat{y}_{\lambda}),$$

where $\widehat{\beta}_{\lambda}=(X^{\mathrm{T}}W_{\lambda}X)^{-1}X^{\mathrm{T}}W_{\lambda}y$ and $\widehat{y}_{\lambda}=X\widehat{\beta}_{\lambda}$. For fixed λ the restricted maximum likelihood estimator of σ^2 is therefore

$$\widehat{\sigma}_{\lambda}^{2} = \frac{1}{n-p} (y - \widehat{y}_{\lambda})^{\mathrm{T}} W_{\lambda} (y - \widehat{y}_{\lambda}),$$

and the resulting profile log restricted likelihood for λ is

$$\ell_{\mathbf{p}}(\lambda) \equiv \frac{1}{2} \log(|W_{\lambda}|/|X^{\mathrm{T}}W_{\lambda}X|) - \frac{(n-p)}{2} \log \widehat{\sigma}_{\lambda}^{2}.$$

Regression Methods

Note on Lemma 31

 \square Suppose that $f(y; \alpha, \beta)$ depends on two parameters, that interest is focused on α , and that for fixed α there is a minimal sufficient statistic s_{α} for β . Then $f(y; \alpha, \beta) = f(y \mid s_{\alpha}; \alpha) f(s_{\alpha}; \alpha, \beta)$, and since the first density on the right is a proper conditional density not depending on β , we can use it for inference on α , in the form

$$\log f(y \mid s_{\alpha}; \alpha) = \log f(y; \alpha, \beta) - \log f(s_{\alpha}; \alpha, \beta).$$

As the left-hand side of this expression does not depend on β , we may be able to simplify the right-hand side by an astute choice of β .

 $\Box \quad \text{In the normal model we take } \alpha = (\sigma^2, \lambda). \text{ If } \alpha \text{ is fixed, then } s_\alpha = \widehat{\beta}_\alpha = (X^{\mathrm{T}} W_\lambda X)^{-1} X^{\mathrm{T}} W_\lambda y \text{ is sufficient for } \beta; \text{ its distribution is } \mathcal{N}_p \{\beta, \sigma^2 (X^{\mathrm{T}} W_\lambda X)^{-1}\}. \text{ Hence }$

$$\ell_{\text{REML}}(\sigma^2, \lambda) = \log f(y \mid \widehat{\beta}_{\lambda}; \sigma^2, \lambda) = \log f(y; \sigma^2, \lambda, \beta) - \log f(\widehat{\beta}_{\lambda}; \sigma^2, \lambda, \beta)$$

which equals

$$-\frac{n}{2}\log\sigma^{2} + \frac{1}{2}\log|W_{\lambda}| - \frac{1}{2\sigma^{2}}(y - X\beta)^{\mathrm{T}}W_{\lambda}(y - X\beta) + \frac{p}{2}\log\sigma^{2} - \frac{1}{2}\log|X^{\mathrm{T}}W_{\lambda}X| + \frac{1}{2\sigma^{2}}(\widehat{\beta}_{\lambda} - \beta)^{\mathrm{T}}X^{\mathrm{T}}W_{\lambda}X(\widehat{\beta}_{\lambda} - \beta),$$

or equivalently, on setting $\beta=0$ and $\widehat{y}_{\lambda}=X\widehat{\beta}_{\lambda}$

$$\frac{1}{2}\log(|W_{\lambda}|/|X^{\mathrm{T}}W_{\lambda}X|) - \frac{(n-p)}{2}\log\sigma^{2} - \frac{1}{2\sigma^{2}}\left(y^{\mathrm{T}}W_{\lambda}y - \widehat{y}_{\lambda}^{\mathrm{T}}X^{\mathrm{T}}W_{\lambda}\widehat{y}_{\lambda}\right).$$

- The last term reduces to the given form because $\widehat{y}_{\lambda}^{\mathrm{T}}W_{\lambda}(y-\widehat{y}_{\lambda})=0$, so the term in brackets in the last displayed equation is the residual sum of squares $(y-\widehat{y}_{\lambda})^{\mathrm{T}}W_{\lambda}(y-\widehat{y}_{\lambda})$.
- \square The restricted maximum likelihood estimator $\widehat{\sigma}_{\lambda}^2$ and the profile log restricted likelihood for λ are obtained by maximising $\ell_{\mathrm{REML}}(\sigma^2, \lambda)$, for fixed λ and then dropping constant terms from $\ell_{\mathrm{REML}}(\widehat{\sigma}_{\lambda}^2, \lambda)$.

Regression Methods

Autumn 2024 - note 1 of slide 195

Ridge regression

- \square Used for prediction when X is close to singular.
- \square If the first column of X is 1_n , we set $\beta_* = 0$ and $V_*^- = \lambda S = \lambda \operatorname{diag}(0, I_{p-1})$, giving

$$\widehat{\beta}_{\lambda} = (X^{\mathrm{T}} + \lambda S)^{-1} X^{\mathrm{T}} y, \quad \widehat{y}_{\lambda} = X \widehat{\beta}_{\lambda} = X (X^{\mathrm{T}} + \lambda S)^{-1} X^{\mathrm{T}} y = H_{\lambda} y,$$

and effective degrees of freedom

$$\operatorname{edf}_{\lambda} = \operatorname{tr}(H_{\lambda}) = \operatorname{tr}\{(X^{\mathsf{\scriptscriptstyle T}}X + \lambda S)^{-1}X^{\mathsf{\scriptscriptstyle T}}X\} = \sum_{r=1}^{p} \frac{1}{1 + \lambda \delta_r},$$

where $\delta_p \geq \cdots \geq \delta_2 > \delta_1 = 0$ are the eigenvalues of $(X^{\mathrm{\scriptscriptstyle T}} X)^{-1/2} S(X^{\mathrm{\scriptscriptstyle T}} X)^{-1/2}$.

- \square As λ increases from zero to infinity, $\operatorname{edf}_{\lambda}$ decreases from $p = \operatorname{rank}(X)$ to 1. The two are equivalent, but $\operatorname{edf}_{\lambda}$ is more easily interpreted, because it is not related to the scale of X.
- \square The inverse exists even if $X^{\mathrm{T}}X$ is singular, but if it is invertible then

$$\widehat{\beta}_{\lambda} = (X^{\mathrm{T}}X + \lambda S)^{-1}(X^{\mathrm{T}}X + \lambda S - \lambda S)(X^{\mathrm{T}}X)^{-1}X^{\mathrm{T}}y = \widehat{\beta} - \lambda(X^{\mathrm{T}}X + \lambda S)^{-1}S\widehat{\beta},$$

so as $\lambda \to \infty$ all the elements of $\widehat{\beta}_{\lambda}$ tend to zero, other than the first. This corresponds to reducing the prior variance to zero, thereby giving the data themselves less and less influence on the elements of $\widehat{\beta}_{\lambda}$ other than the first, and thus stabilises the estimator.

Regression Methods

Autumn 2024 - slide 197

Example: Cement data

```
> cement
```

x1 x2 x3 x4 y

1 7 26 6 60 78.5

2 1 29 15 52 74.3

3 11 56 8 20 104.3

4 11 31 8 47 87.6

5 7 52 6 33 95.9

6 11 55 9 22 109.2

7 3 71 17 6 102.7 8 1 31 22 44 72.5

0 1 31 22 44 72.5

9 2 54 18 22 93.1

10 21 47 4 26 115.9 11 1 40 23 34 83.8

11 1 10 20 01 00.0

12 11 66 9 12 113.3 13 10 68 8 12 109.4

Regression Methods

Example: Cement data

	Full model		Reduced model	
Parameter	Estimate	Standard error	Estimate	Standard error
β_0	62.41	70.07	71.64	14.14
eta_1	1.55	0.74	1.45	0.12
eta_2	0.51	0.72	0.42	0.19
eta_3	0.10	0.75		
eta_4	-0.14	0.71	-0.24	0.17

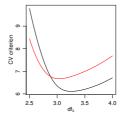
- ☐ The next slide shows results for ridge fits for these models.
- ☐ Looks like 3 df is optimal for prediction.
- \square Software often preprocesses X and y by either
 - centering both, by subtracting column means, or
 - centering y and centering and scaling X, so the column means are zero and the column variances are unity.
- \square The singular values for the centred X matrix are 78.8, 28.5, 12.2, 1.7, and those for the centred and scaled X matrix are 5.18, 4.35, 1.50, 0.14, so it matters which is used.
- \Box The singular values for the (centred) reduced matrix are 78.8, 19.8 and 9.15.
- \square The shrinkage due to increasing λ occurs more slowly for the reduced model.

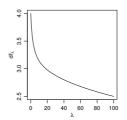
Regression Methods

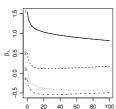
Autumn 2024 - slide 199

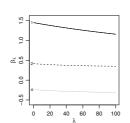
Example: Cement data/Ridge analysis

Top left: CV (black) and GCV (red) as functions of degrees of freedom df_{λ} . Top right: dependence of df_{λ} on λ . Bottom left: $\widehat{\beta}_{\lambda}$ as a function of λ , with all four covariates. Bottom right: $\widehat{\beta}_{\lambda}$ as a function of λ , with x_1 , x_2 , and x_4 only.









Regression Methods

Autumn 2024 - slide 200

Comments

- ☐ The literature on ridge regression is very large and very dispersed, with many variants and many connections to ML techniques.
- \square Be careful with software: any pre-processing of X is not always described.