Problem 1 When the list of standard link functions is insufficiently rich, it may be useful to introduce more flexible, parametrised, link functions.

(a) Show that the parametric link functions

$$g(\pi;\gamma) = \log\left[\gamma^{-1}\left\{(1-\pi)^{-\gamma} - 1\right\}\right], \quad g(\pi;\gamma) = -\log\left\{\gamma^{-1}\left(\pi^{-\gamma} - 1\right)\right\}, \quad \gamma \neq 0,$$

give respectively the logit and complementary log-log link functions, and the logit and log-log link functions, when $\gamma=1$ and when $\gamma\to 0$. Give formulae for π in terms of η and γ in each case.

(b) A link function $\eta = g(\pi; \gamma)$ is called symmetric if $-\eta = g(1 - \pi; \gamma)$. Show that

$$g(\pi; \gamma) = 2\gamma^{-1} \frac{\pi^{\gamma} - (1 - \pi)^{\gamma}}{\pi^{\gamma} + (1 - \pi)^{\gamma}}, \quad \gamma \neq 0,$$

is symmetric for all γ and gives the logit and identity functions when $\gamma \to 0$ and when $\gamma = 1$.

(c) How would you fit such models and choose a suitable value of γ ?

Problem 2

(a) If Y_1, \ldots, Y_D are independent Poisson variables with means μ_1, \ldots, μ_D , find the distribution of $S = \sum_{d=1}^D Y_d$, and show that their joint distribution conditional on S = m is multinomial with probabilities $\pi_d = \mu_d / \sum_{d'=1}^D \mu_{d'}$ and denominator m, i.e.,

$$P(Y_1 = y_1, \dots, Y_D = y_D \mid S = m) = \frac{m!}{\prod_{d=1}^D y_d!} \prod_{d=1}^D \pi_d^{y_d}, \quad y_1, \dots, y_D \in \{0, \dots, m\}, \sum_{d=1}^D y_d = m.$$

- (b) When m independent individuals are put into categories $1, \ldots, D$ with respective probabilities π_1, \ldots, π_D , let I_{jd} denote the indicator variable that the jth individual is placed into category d; note that $I_{j1} + \cdots + I_{jD} = 1$, as each individual can only be placed into one category. Find the joint density of R_1, \ldots, R_D , where $R_d = \sum_{j=1}^m I_{jd}$.
- (c) Given that $(R_1, \ldots, R_D) \sim \text{Mult}(m; \pi_1, \ldots, \pi_D)$, for some $D \geq 5$, find the joint distribution of $(R_1 + R_2, R_3 + R_4, R_5, \ldots, R_D)$ and the joint distribution of $(R_1, R_2, R_3 + R_4)$ conditional on $R_5 + \cdots + R_D = n$. Give the general version of this result.

Problem 3 For a 2×2 contingency table with probabilities

$$\pi_{00} \quad \pi_{01} \\
\pi_{10} \quad \pi_{11}$$

and corresponding Poisson variables Y_{00} etc., the maximal log-linear model may be written as

$$\eta_{00} = \alpha - \beta - \gamma + (\beta \gamma), \quad \eta_{01} = \alpha - \beta + \gamma - (\beta \gamma),
\eta_{10} = \alpha + \beta - \gamma - (\beta \gamma), \quad \eta_{11} = \alpha + \beta + \gamma + (\beta \gamma),$$

where $\eta_{jk} = \log E(Y_{jk}) = \log(m\pi_{jk})$ and $m = \sum_{j,k} y_{jk}$ is taken as fixed.

- (a) Show that the 'interaction' term $(\beta \gamma)$ may be written $(\beta \gamma) = \frac{1}{4} \log \Delta$, where Δ is the odds ratio $(\pi_{11}\pi_{00})/(\pi_{01}\pi_{10})$, so that $(\beta \gamma) = 0$ is equivalent to $\Delta = 1$.
- (b) When $(\beta \gamma) = 0$ give interpretations of the parameters α , β and γ in terms of row, column and other effects.

Problem 4 One standard model for over-dispersed binomial data assumes that R is binomial with denominator m and probability π , where π has the beta density

$$f(\pi; a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \pi^{a-1} (1-\pi)^{b-1}, \quad 0 < \pi < 1, a, b > 0,$$

with $\Gamma(a)$ the gamma function: if $n \in \mathbb{N}$, then $n! = \Gamma(n+1)$ and that $\Gamma(a+1) = a\Gamma(a)$ for a > 0.

(a) Show that the beta model for π yields the beta-binomial density

$$P(R=r;a,b) = \frac{\Gamma(m+1)\Gamma(r+a)\Gamma(m-r+b)\Gamma(a+b)}{\Gamma(r+1)\Gamma(m-r+1)\Gamma(a)\Gamma(b)\Gamma(m+a+b)}, \quad r=0,\ldots,m.$$

(b) Let μ and σ^2 denote the mean and variance of π . Show that in general,

$$E(R) = m\mu, \quad var(R) = m\mu(1-\mu) + m(m-1)\sigma^{2},$$

and that the beta density has $\mu = a/(a+b)$ and $\sigma^2 = ab/\{(a+b)(a+b+1)\}$. Deduce that the beta-binomial density has mean and variance

$$E(R) = ma/(a+b), \quad var(R) = m\mu(1-\mu)\{1+(m-1)\delta\}, \quad \delta = (a+b+1)^{-1}.$$

Can you explain the overdispersion is undetectable when m = 1? What is the condition for uniform overdispersion?