
Regression Methods: Problems MATH-408
Anthony Davison

Problem 1 (Automatic model selection) We consider the dataset on cement properties used in
the lectures. The residual sum of squares (RSS) and Mallows Cp for the models with intercept
are:

Model RSS Cp Model RSS Cp Model RSS Cp

– – – – 2715.8 442.58 1 2 – – 57.9 1 2 3 – 48.1
1 – 3 – 1227.1 197.94 1 2 – 4 48.0

1 – – – 1265.7 202.39 1 – – 4 74.8 5.49 1 – 3 4 50.8
– 2 – – 906.3 – 2 3 – 415.4 62.38 – 2 3 4 73.8 7.325
– – 3 – 1939.4 314.90 – 2 – 4 868.9 138.12
– – – 4 883.9 138.62 – – 3 4 175.7 22.34 1 2 3 4 47.9 5

(a) Use forward selection and backward elimination based on F statistics with significance level
5% to choose variables.

(b) Another selection criterion is Mallows Cp, i.e.,

Cp =
RSSp

s2
+ 2p − n,

where RSSp is the residual sum of squares for a model with p covariates and s2 is the variance
estimate for the full model.

(i) How do we use this criterion? Compute the values of Cp missing from the table above.

(ii) What models are selected with Cp, using forward selection and backward elimination?
What is the overall best model?

Problem 2 (AIC and Cp)

(a) Show that the log-likelihood for the model y ∼ Nn(Xn×pβ, σ2In), where n > p and X is of
rank p, is

ℓ(β, σ2) ≡ −1

2

{
n log σ2 + (y − Xβ)T(y − Xβ)/σ2

}
, β ∈ R

p, σ2 > 0,

where ≡ means that additive constants have been ignored, deduce that the maximum likeli-
hood estimates are

β̂ = (XTX)−1XTy, σ̂2 = (y − Xβ̂)T(y − Xβ̂)/n = yT(In − H)y/n = RSSp/n,

say, and hence verify that
AIC ≡ n log σ̂2 + 2p.

(b) If σ̂2
0 is the unbiased estimate RSSq/(n−q) under some fixed correct model with q covariates,

show that minimising AIC is equivalent to minimising n log{1 + (σ̂2 − σ̂2
0)/σ̂2

0} + 2p, and
that this last expression is roughly equal to n(σ̂2/σ̂2

0 − 1) + 2p. Deduce that model selection
using Cp approximates that using AIC.



Problem 3 (AICc for the linear model) Consider data generated by a true model g under which

the responses Yj
ind
∼ N (µj, σ2), let Eg(·) denote expectation with respect to this model, and sup-

pose we choose a candidate model f(y; θ) to minimize the loss when predicting a new sample

Y +
j

ind
∼ N (µj, σ2) independent of the old one,
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here E+
g denotes expectation over Y +

1 , . . . , Y +
n , and θ̂ is the maximum likelihood estimator of

θ = (µ1, . . . , µn, σ2) based on Y1, . . . , Yn.

(a) Show that the sum in the expectation above may be written

n∑

j=1

{
log σ̂2 +

(Y +
j − µ̂j)

2

σ̂2
− log σ2 −

(Y +
j − µj)

2

σ2

}
,

and deduce that the inner expectation equals

n∑

j=1

{
log σ̂2 +

σ2

σ̂2
+

(µj − µ̂j)
2

σ̂2
− log σ2 − 1

}
.

(b) Suppose that a candidate linear model with full-rank n × p design matrix X is correct, that
is, µ = Xβ for some βp×1. Deduce that in this case

∑
(µj − µ̂j)

2 = (µ̂ − µ)T(µ̂ − µ) ∼ σ2χ2
p

independent of nσ̂2 ∼ σ2χ2
n−p, and use the facts that for ν > 2 the expected values of a χ2

ν

variable and of its reciprocal are ν and (ν − 2)−1 to show that the loss above is

nEg

(
log σ̂2

)
+

n2

n − p − 2
+

np

n − p − 2
− n log σ2 − n,

or equivalently,

nEg

(
log σ̂2

)
+

n(n + p)

n − p − 2
.

(c) Show that this loss is estimated unbiasedly by

AICc = n log σ̂2 + n
1 + p/n

1 − (p + 2)/n
,

and that AICc

.
= n log σ̂2 +n+2(p+1)+O(p2/n), so for large n and fixed p minimising AICc

will select the same model as minimising AIC = n log σ̂2 +2p, but that when p is comparable
with n, AICc penalizes model dimension more severely.
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