Problem 1 Let $y \sim (\mu, \sigma^2 I_n)$ and let H_{λ} denote the 'hat matrix' corresponding to a linear smoother (such as a ridge or smoothing spline fit), i.e., the fitted values are $\hat{\mu} = H_{\lambda}y$.

- (a) Show that $(\widehat{\mu} \mu)^{\mathrm{T}}(\widehat{\mu} \mu)$ has expectation $\|(I H_{\lambda})\mu\|_{2}^{2} + \sigma^{2}\mathrm{tr}(H_{\lambda}^{\mathrm{T}}H_{\lambda})$.
- (b) Show that $(y-\hat{\mu})^{\mathrm{T}}(y-\hat{\mu})$ has expectation $\sigma^2(n-2\nu_1+\nu_2)+\|(I-H_{\lambda})\mu\|_2^2$, where $\nu_1=\mathrm{tr}(H_{\lambda})$ and $\nu_2=\mathrm{tr}(H_{\lambda}^{\mathrm{T}}H_{\lambda})$. Hence explain the use of

$$\widehat{\sigma}_{\lambda}^{2} = \frac{(y - \widehat{\mu})^{\mathrm{T}}(y - \widehat{\mu})}{n - 2\mathrm{tr}(H_{\lambda}) + \mathrm{tr}(H_{\lambda}^{\mathrm{T}}H_{\lambda})}$$

as an estimator of σ^2 . Under what circumstances is this estimator unbiased? What does this give in the case of a standard (i.e., non-smoothed) linear model?

Problem 2 Consider lasso estimation when the design matrix X is orthogonal, i.e., $X^{T}X = I_{p}$.

(a) Show that in this case the least squares estimator equals $\hat{\beta} = X^{T}y$ and deduce that the function to be minimised is of the form

$$L = \frac{1}{2} \left(y^{\mathrm{T}} y - 2 \widehat{\beta}^{\mathrm{T}} \beta + \beta^{\mathrm{T}} \beta \right) + \lambda \sum_{r=1}^{p} |\beta_r|.$$

Explain why this is convex in each element of β .

(b) Show that the lasso estimator $\tilde{\beta}$ can be computed from $\hat{\beta}$ using the soft thresholding function

$$\tilde{\beta}_r = \operatorname{sign}(\hat{\beta}_r)(|\hat{\beta}_r| - \lambda)I(|\hat{\beta}_r| > \lambda), \quad r = 1, \dots, p.$$