Linear Models

Anthony Davison

Section de Mathématiques – EPFL

Anthony.Davison@epfl.ch

Projections, Spectra, Gaussian Law

What is a Regression Model?

Statistical model for:

• Y (random variable) $\stackrel{\text{depending on}}{\longleftarrow} x$ (non-random variable)

Aim: understand the effect of x on the random quantity Y

General formulation:

$$Y \sim \mathsf{Distribution}\{g(x)\}$$

Often books/people write

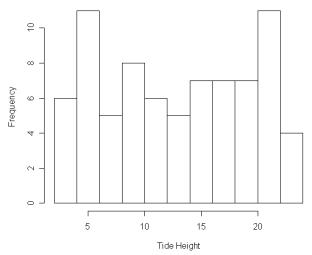
$$Y \mid x \sim \mathsf{Distribution}\{g(x)\}$$

but this implies that (X,Y) have a joint distribution; this assumption is unnecessary (e.g., in a designed experiment we choose values for x). Despite this, we write $Y\mid x$ to remind ourselves that the distribution of Y depends on x.

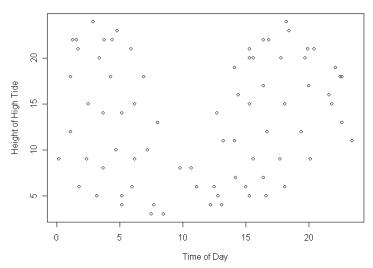
Statistical Problem: Estimate (learn) $g(\cdot)$ from data $\{(x_i, y_i)\}_{i=1}^n$. Use for:

- Description
- Inference
- Prediction
- Data compression (parsimonious representations)
- . . .

Example: Honolulu tide



Example: Honolulu tide



Great Variety of Models

Remember general model:

$$Y \sim \mathsf{Distribution}\{g(x)\}$$

x can be:

- continuous, discrete, categorical, vector
- arrive randomly, or be chosen by experimenter, or both
- however x arises, we treat it as constant in the analysis

Distribution can be:

 Gaussian (Normal), Laplace, binomial, Poisson, gamma, General exponential family, ...

Function $q(\cdot)$ can be:

$$ullet$$
 $g(x)=eta_0+eta_1x,\ g(x)=\sum_{k=-K}^Keta_ke^{-ikx},\ ext{Cubic spline,}\ \dots$

Fundamental Case: Normal Linear Regression

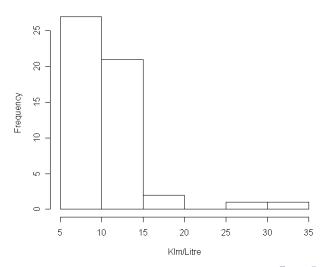
ullet $Y,x\in\mathbb{R},\ g(x)=eta_0+eta_1x$, Distribution = Gaussian

The second verson is useful for mathematical work, but is puzzling statistically, since we don't observe ϵ .

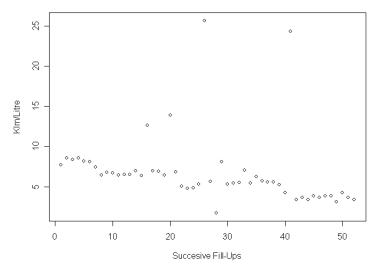
• Also, x could be vector $(Y, \beta_0 \in \mathbb{R}, x \in \mathbb{R}^p, \beta \in \mathbb{R}^p)$:

Example: Professor's Van

Example: Professor's Van



Example: Professor's Van



Tools of the trade . . .

Start from Normal linear model \longrightarrow gradually generalise . . . Important features of Normal linear model:

- Gaussian distribution
- Linearity

These two combine well and give geometric insights to solve the estimation problem. Thus we need to revise some linear algebra and probability ...

Will base course on the Gaussian assumption, but relax linearity later:

- linear Gaussian regression
- nonlinear Gaussian regression
- nonparametric Gaussian regression

Many further generalisations are possible . . .

If Q is an $n \times p$ real matrix, we define the *column space* (or *range*) of Q to be the set spanned by its columns:

$$\mathcal{M}(Q) = \{ y \in \mathbb{R}^n : \exists \beta \in \mathbb{R}^p, \ y = Q\beta \}.$$

- Recall that $\mathfrak{M}(Q)$ is a subspace of \mathbb{R}^p .
- \bullet The columns of Q provide a coordinate system for the subspace $\mathfrak{M}(Q)$
- If Q is of full column rank (p), then the coordinates β corresponding to a $y \in \mathcal{M}(Q)$ are unique.
- Allows interpretation of system of linear equations

$$Q\beta = y$$
.

[existence of solution \leftrightarrow is y an element of $\mathcal{M}(Q)$?] [uniqueness of solution \leftrightarrow is there a unique coordinate vector β ?]

Two further important subspaces associated with a real $n \times p$ matrix Q:

• the null space (or kernel), ker(Q), of Q is the subspace defined as

$$\ker(Q) = \{x \in \mathbb{R}^p : Qx = 0\};$$

ullet the orthogonal complement of $\mathcal{M}(\mathcal{Q}),\,\mathcal{M}^{\perp}(\mathcal{Q}),$ is the subspace defined as

$$\mathcal{M}^{\perp}(Q) = \{ y \in \mathbb{R}^n : y^{\top}Qx = 0, \ \forall x \in \mathbb{R}^p \}$$

$$= \{ y \in \mathbb{R}^n : y^{\top}v = 0, \ \forall v \in \mathcal{M}(Q) \}.$$

The orthogonal complement may be defined for arbitrary subspaces by using the second equality.

Theorem (Spectral Theorem)

A $p \times p$ matrix Q is symmetric if and only if there exists a $p \times p$ orthogonal matrix U and a diagonal matrix Λ such that

$$Q = U \Lambda U^{\top}.$$

In particular:

• the columns of $U=(u_1 \cdots u_p)$ are eigenvectors of Q, i.e. there exist λ_j such that

$$Qu_j = \lambda_j u_j, \qquad j = 1, \ldots, p;$$

- **2** the entries of $\Lambda = diag(\lambda_1, \dots, \lambda_p)$ are the corresponding eigenvalues of Q, which are real; and
- $oldsymbol{\circ}$ the rank of Q is the number of non-zero eigenvalues.

Note: if the eigenvalues are distinct, the eigenvectors are unique (up to re-ordering).

Theorem (Singular Value Decomposition)

Any $n \times p$ real matrix can be factorised as

$$Q_{n\times p} = U_{n\times n} \sum_{n\times p} V_{p\times p}^{\top},$$

where U and V^{\top} are orthogonal with columns called left singular vectors and right singular vectors, respectively, and Σ is diagonal with real entries called singular values.

- The left singular vectors are eigenvectors of QQ^{\top} .
- **2** The right singular vectors are eigenvectors of $Q^{\top}Q$.
- **1** The squares of the singular values are eigenvalues of both QQ^{\top} and $Q^{\top}Q$.
- The left singular vectors corresponding to non-zero singular values form an orthonormal basis for $\mathcal{M}(Q)$.
- **1** The left singular vectors corresponding to zero singular values form an orthonormal basis for $\mathcal{M}^{\perp}(Q)$.

Recall that a matrix Q is called *idempotent* if $Q^2 = Q$.

An orthogonal projection (henceforth projection) onto a subspace $\mathcal V$ is a symmetric idempotent matrix H such that $\mathcal M(H)=\mathcal V$.

Proposition

The only possible eigenvalues of a projection matrix are 0 and 1.

Proposition

If P and Q are projection matrices onto a subspace V, then P=Q.

Proposition

If x_1, \ldots, x_p are linearly independent and are such that $span(x_1, \ldots, x_p) = \mathcal{V}$, then the projection onto \mathcal{V} can be represented as

$$H = X(X^{\top}X)^{-1}X^{\top}$$

where X is a matrix with columns x_1, \ldots, x_p .

Proposition

Let V be a subspace and H be a projection onto V. Then I-H is the projection matrix onto V^{\perp} .

Proof.

 $(I-H)^{\top}=I-H^{\top}=I-H$ since H is symmetric. Furthermore, $(I-H)^2=I^2-2H+H^2=I-H$ since H is idempotent. Thus I-H is a projection matrix.

It remains to identify the column space of I-H. Let $H=U\Lambda U^{\top}$ be the spectral decomposition of H. Then

$$I - H = UU^{\top} - U\Lambda U^{\top} = U(I - \Lambda)U^{\top}$$

Hence the column space of I-H is spanned by the eigenvectors of H corresponding to zero eigenvalues of H, which coincides with $\mathcal{M}^{\perp}(H)=\mathcal{V}^{\perp}$.

Proposition

Let V be a subspace of \mathbb{R}^n and H be a projection onto V. Then

$$||x - Hx|| \le ||x - v||, \quad \forall v \in \mathcal{V}.$$

Proof

Let $H = U\Lambda U^{\top}$ be the spectral decomposition of H, $U = (u_1 \cdots u_n)$ and $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Letting $p = \dim(\mathcal{V})$,

- $\lambda_1 = \cdots = \lambda_p = 1$ and $\lambda_{p+1} = \cdots = \lambda_n = 0$,
- u_1, \ldots, u_n is an orthonormal basis of \mathbb{R}^n ,
- u_1, \ldots, u_p is an an orthonormal basis of V.

(proof continued)

For $v \in \mathcal{V}$,

$$\begin{split} \|x - Hx\|^2 &= \|U^\top (x - Hx)\|^2 \quad [\text{with } H = U\Lambda U^\top] \\ &= \|U^\top x - \Lambda U^\top x)\|^2 \quad [U^\top U = I_n] \\ &= \|(I_n - \Lambda)U^\top x\|^2 \\ &= 0 + \sum_{i=p+1}^n (u_i^\top x)^2 \quad [\text{eigenvalues 0 or 1}] \\ &\leq \sum_{i=p+1}^n (u_i^\top x)^2 + \sum_{i=1}^p (u_i^\top x - u_i^\top v)^2 \\ &= \|U^\top (x - v)\|^2 \quad [v \in \mathcal{V} \text{ implies } u_{p+1}^\top v = \dots = u_n^\top v = 0] \\ &= \|x - v\|^2. \end{split}$$

Proposition

Let $\mathcal{V}_1 \subseteq \mathcal{V} \subseteq \mathbb{R}^n$ be two nested linear subspaces. If H_1 is the projection onto \mathcal{V}_1 and H is the projection onto \mathcal{V} , then

$$HH_1=H_1=H_1H.$$

Proof.

First we show that $HH_1=H_1$, and then that $H_1H=HH_1$. For all $y\in\mathbb{R}^n$ we have $H_1y\in\mathcal{V}_1$. But then $H_1y\in\mathcal{V}$, since $\mathcal{V}_1\subseteq\mathcal{V}$.

Therefore $HH_1y=H_1y$. We have shown that $(HH_1-H_1)y=0$ for all $y\in\mathbb{R}^n$, so that $HH_1-H_1=0$, as its kernel is all \mathbb{R}^n . Hence $HH_1=H_1$. (Or, take n linearly independent vectors $y_1,\ldots,y_n\in\mathbb{R}^n$, and use them as columns of the $n\times n$ matrix Y. Now Y is invertible, and $(HH_1-H_1)Y=0$, so $HH_1-H_1=0$, giving $HH_1=H_1$.)

To prove that $H_1H=HH_1$, note that symmetry of projection matrices and the first part of the proof give

$$H_1H = H_1^{\top}H^{\top} = (HH_1)^{\top} = (H_1)^{\top} = H_1 = HH_1.$$

Positive-Definite Matrices

Definition (Non-Negative Matrix – Quadratic Form Definition)

A $p \times p$ real symmetric matrix Ω is called non-negative definite (written $\Omega \succeq 0$) if and only if $x^\top \Omega x \geq 0$ for all $x \in \mathbb{R}^p$. If $x^\top \Omega x > 0$ for all $x \in \mathbb{R}^p \setminus \{0\}$, then we call Ω positive definite (written $\Omega \succ 0$).

An equivalent definition is:

Definition (Non-Negative Matrix – Spectral Definition)

A $p \times p$ real symmetric matrix Ω is called non-negative definite (written $\Omega \succeq 0$) if and only the eigenvalues of Ω are non-negative. If the eigenvalues of Ω are strictly positive, then Ω is called positive definite (written $\Omega \succ 0$).

Lemma (Exercise)

Prove that the two definitions are equivalent.

◆□▶◆☆▶◆≡▶◆≡▶ ≠ ∀)**♀**(°

21 / 256

Anthony Davison (EPFL) Linear Models

Covariance Matrices

Definition (Covariance Matrix)

Let $Y=(Y_1,\ldots,Y_n)^{\top}$ be a random $n\times 1$ vector such that $\mathbb{E}\|Y\|^2<\infty$. The covariance matrix of Y, say Ω , is the $n\times n$ symmetric matrix with entries

$$\Omega_{ij} = \operatorname{\mathsf{cov}}(Y_i, Y_j) = \mathbb{E}[(Y_i - \mathbb{E}[Y_i])(Y_j - \mathbb{E}[Y_j])], \quad 1 \leq i \leq j \leq n.$$

That is, the covariance matrix encodes the variances of the coordinates of Y (on the diagonal) and the covariances between the coordinates of Y (off the diagonal). If we write

$$\mu = \mathbb{E}[Y] = (\mathbb{E}[Y_1], \dots, \mathbb{E}[Y_n])^{\top}$$

for the mean vector of Y, then the covariance matrix of Y can be written as

$$\mathbb{E}[(Y-\mu)(Y-\mu)^{\top}] = \mathbb{E}[YY^{\top}] - \mu\mu^{\top}.$$

Whenever Y is a random vector, we will write cov(Y) for the covariance matrix of Y.

22 / 256

Covariance Matrices

Lemma

Let Y be a random $d \times 1$ vector such that $\mathbb{E}||Y||^2 < \infty$. Let μ be the mean vector and Ω be the covariance matrix of Y. If A is a $p \times d$ real matrix, the mean vector and covariance matrix of AY are $A\mu$ and $A\Omega A^{\top}$, respectively.

Proof.

Exercise.

Corollary (Covariance of Projections)

Let Y be a random $d \times 1$ vector such that $\mathbb{E}||Y||^2 < \infty$. Let $\beta, \gamma \in \mathbb{R}^d$ be fixed vectors. If Ω denotes the covariance matrix of Y,

- the variance of $\beta^{\top} Y$ is $\beta^{\top} \Omega \beta$;
- the covariance of $\beta^{\top} Y$ with $\gamma^{\top} Y$ is $\gamma^{\top} \Omega \beta$.

Non-negative Matrices ≡ Covariance Matrices

Proposition (Non-Negative and Covariance Matrices)

Let Ω be a real symmetric matrix. Then Ω is non-negative definite if and only if Ω is the covariance matrix of some random variable Y.

Proof.

Exercise.

Gaussian Vectors and Affine Transformations

Definition (Multivariate Gaussian Distribution)

A random vector Y in \mathbb{R}^d has the multivariate normal distribution if and only if $\beta^\top Y$ has the univariate normal distribution, $\forall \beta \in \mathbb{R}^d$.

(Recall the *Cramér-Wold device*, which says that the distribution of a random vector is completely determined by the distribution of all its one-dimensional projections).

How can we used this definition to determine basic properties?

The moment generating function (MGF) of a random vector W in \mathbb{R}^d is defined as

$${M}_{W}(heta) = \mathbb{E}[e^{ heta^ op W}], \qquad heta \in \mathbb{R}^d,$$

provided the expectation exists. When the MGF exists *it characterises the distribution of the random vector*. Furthermore, two random vectors are independent if and only if their joint MGF is the product of their marginal MGF's.

Gaussian Vectors and Affine Transformations

Useful facts:

1 Moment generating function of $Y \sim \mathcal{N}(\mu, \Omega)$:

$$M_Y(u) = \exp\left(u^ op \mu + rac{1}{2} u^ op \Omega \, u
ight).$$

- $\mathbf{9} \ \ Y \sim \mathcal{N}(\mu_{p \times 1}, \Omega_{p \times p}) \ \text{and given } B_{n \times p} \ \text{and } \theta_{n \times 1}, \ \text{then}$ $\theta + BY \sim \mathcal{N}(\theta + B\mu, B\Omega B^{\top}).$
- **3** $\mathcal{N}(\mu, \Omega)$ density, assuming Ω nonsingular:

$$f_Y(y) = rac{1}{\left(2\pi
ight)^{p/2} |\Omega|^{1/2}} \exp\left\{-rac{1}{2}(y-\mu)^ op \Omega^{-1}(y-\mu)
ight\}.$$

- Constant density isosurfaces are ellipsoidal
- Marginals of Gaussian are Gaussian (converse NOT true).
- **1** Ω diagonal \Leftrightarrow independent coordinates Y_i .
- $m{0}$ If $Y \sim \mathcal{N}(\mu_{p imes 1}, \Omega_{p imes p})$,

AY independent of $BY \iff A\Omega B^{\top} = 0$.

Proposition (Property 1: Moment Generating Function)

The moment generating function of $Y \sim \mathcal{N}(\mu, \Omega)$ is

$$M_Y(u) = \exp\left(u^ op \mu + rac{1}{2}u^ op \Omega u\right)$$

Proof.

Let $u \in \mathbb{R}^d$ be arbitrary. Then $u^\top Y$ is Gaussian with mean $u^\top \mu$ and variance $u^\top \Omega u$. Hence it has moment generating function:

$$M_{u^{ op}Y}(t) = \mathbb{E}\left(e^{tu^{ op}Y}
ight) = \exp\left\{t(u^{ op}\mu) + rac{t^2}{2}(u^{ op}\Omega u)
ight\}.$$

Now take t = 1 and observe that

$$M_{u^{\top} Y}(1) = \mathbb{E}\left(e^{u^{\top} Y}\right) = M_Y(u).$$

Combining the two, we conclude that

$$M_Y(u) = \exp\left(u^ op \mu + rac{1}{2}u^ op \Omega u
ight), \quad u \in \mathbb{R}^d.$$

Proposition (Property 2: Affine Transformation)

For $Y \sim \mathcal{N}(\mu_{p \times 1}, \Omega_{p \times p})$ and given $B_{n \times p}$ and $\theta_{n \times 1}$, we have

$$\theta + BY \sim \mathcal{N}(\theta + B\mu, B\Omega B^{\top})$$

Proof.

$$\begin{split} M_{\theta+BY}(u) &= & \mathbb{E}\left[\exp\{u^{\top}(\theta+BY)\}\right] = \exp\left\{u^{\top}\theta\right\} \mathbb{E}\left[\exp\{(B^{\top}u)^{\top}Y\}\right] \\ &= & \exp\left\{u^{\top}\theta\right\} M_Y(B^{\top}u) \\ &= & \exp\left\{u^{\top}\theta\right\} \exp\left\{(B^{\top}u)^{\top}\mu + \frac{1}{2}u^{\top}B\Omega B^{\top}u\right\} \\ &= & \exp\left\{u^{\top}\theta + u^{\top}(B\mu) + \frac{1}{2}u^{\top}B\Omega B^{\top}u\right\} \\ &= & \exp\left\{u^{\top}(\theta+B\mu) + \frac{1}{2}u^{\top}B\Omega B^{\top}u\right\} \end{split}$$

And this last expression is the MGF of a $\mathcal{N}(\theta + B\mu, B\Omega B^{\top})$ distribution.

Proposition (Property 3: Density Function)

Let $\Omega_{p \times p}$ be nonsingular. The density of $\mathcal{N}(\mu_{p \times 1}, \Omega_{p \times p})$ is

$$f_Y(y) = rac{1}{(2\pi)^{p/2} |\Omega|^{1/2}} \exp\left\{-rac{1}{2} (y-\mu)^ op \Omega^{-1} (y-\mu)
ight\}$$

Proof.

Let $Z = (Z_1, \dots, Z_p)^{\top}$ be a vector of iid $\mathcal{N}(0, 1)$ random variables. Then, because of independence,

(a) the density of Z is

$$f_Z(z) = \prod_{i=1}^p f_{Z_i}(z_i) = \prod_{i=1}^p \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}z_i^2\right) = \frac{1}{\left(2\pi\right)^{p/2}} \exp\left(-\frac{1}{2}z^\top z\right).$$

(b) The MGF of Z is

$$M_Z(u) = \mathbb{E}\left\{\exp\left(\sum_{i=1}^p u_i Z_i
ight)
ight\} = \prod_{i=1}^p \mathbb{E}\{\exp(u_i Z_i)\} = \exp(u^ op u/2),$$

which is the MGF of a *p*-variate $\mathcal{N}(0, I)$ distribution.

Anthony Davison (EPFL) Linear Models 29 / 256

proof continued

$$\overset{(a)+(b)}{\Longrightarrow}$$
 the $\mathcal{N}(0,I)$ density is $f_Z(z) = rac{1}{(2\pi)^{p/2}} \exp\left(-rac{1}{2}z^ op z
ight)$.

By the spectral theorem, Ω admits a square root, $\Omega^{1/2}$. Furthermore, since Ω is non-singular, so is $\Omega^{1/2}$.

Now observe that from our Property 2, we have $Y = \Omega^{1/2}Z + \mu \sim \mathcal{N}(\mu, \Omega)$. By the change of variables formula,

$$\begin{split} f_Y(y) &= f_{\Omega^{1/2}Z + \mu}(y) \\ &= |\Omega^{-1/2}| f_Z \{ \Omega^{-1/2}(y - \mu) \} \\ &= \frac{1}{(2\pi)^{p/2} |\Omega|^{1/2}} \exp \left\{ -\frac{1}{2} (y - \mu)^\top \Omega^{-1}(y - \mu) \right\}. \end{split}$$

[Recall that to obtain the density of W = g(X) at w, we need to evaluate f_X at $g^{-1}(w)$ but also multiply by the Jacobian determinant of g^{-1} at w.]

←□ → ←□ → ←□ → □ → □

Proposition (Property 4: Isosurfaces)

The isosurfaces of a $\mathcal{N}(\mu_{p\times 1},\Omega_{p\times p})$ are (p-1)-dimensional ellipsoids centred at μ , with principal axes given by the eigenvectors of Ω and with anisotropies given by the ratios of the square roots of the corresponding eigenvalues of Ω .

Proof.

Exercise: Use Property 3, and the spectral theorem.

Proposition (Property 5: Coordinate Distributions)

Let $Y=(Y_1,\ldots,Y_p)^{ op}\sim\mathcal{N}(\mu_{p imes 1},\Omega_{p imes p}).$ Then $Y_j\sim\mathcal{N}(\mu_j,\Omega_{jj})$.

Proof.

Observe that $Y_j = (0, 0, \dots, 1, \dots, 0, 0) Y$ and use Property 2.

Proposition (Property 6: Diagonal $\Omega \iff$ Independence)

Let $Y = (Y_1, \ldots, Y_p)^\top \sim \mathcal{N}(\mu_{p \times 1}, \Omega_{p \times p})$. Then the Y_i are mutually independent if and only if Ω is diagonal.

Proof.

Suppose that the Y_j are independent. Property 5 yields $Y_j \sim \mathcal{N}(\mu_j, \sigma_j^2)$ for some $\sigma_j > 0$. Thus the density of Y is

$$f_Y(y) = \prod_{j=1}^p f_{Y_j}(y_j) = \prod_{i=1}^p \frac{1}{\sigma_j \sqrt{2\pi}} \exp\left\{-\frac{1}{2} \frac{(y_j - \mu_j)^2}{\sigma_j^2}\right\}$$

$$= \frac{1}{\left(2\pi\right)^{p/2} |\mathsf{diag}(\sigma_1^2, \dots, \sigma_p^2)|^{1/2}} \exp\left\{-\frac{1}{2}(y-\mu)^\top \mathsf{diag}(\sigma_1^{-2}, \dots, \sigma_p^{-2})(y-\mu)\right\}.$$

Hence $Y \sim \mathcal{N}\{\mu, \operatorname{diag}(\sigma_1^2, \dots, \sigma_p^2)\}$, i.e. the covariance Ω is diagonal.

Conversely, assume Ω is diagonal, say $\Omega = \operatorname{diag}(\sigma_1^2,\ldots,\sigma_p^2)$. Then we can reverse the steps of the first part to see that the joint density $f_Y(y)$ can be written as a product of the marginal densities $f_{Y_j}(y_j)$, thus proving independence.

Proposition (Property 7: $AY, BY \text{ indep } \iff A\Omega B^{\top} = 0$)

If $Y \sim \mathcal{N}(\mu_{p \times 1}, \Omega_{p \times p})$, and $A_{m \times p}$, $B_{d \times p}$ be real matrices. Then,

AY independent of $BY \iff A\Omega B^{\top} = 0$.

Proof

It suffices to prove the result assuming $\mu=0$ (and it simplifies the algebra). First assume $A\Omega B^{\top}=0$. Let $W_{(m+d)\times 1}=\binom{AY}{BY}$ and $\theta_{(m+d)\times 1}=\binom{u_{m\times 1}}{y_{d\times 1}}$.

$$egin{aligned} M_W(heta) &=& \mathbb{E}[\exp\{W^ op heta\}] = \mathbb{E}\left[\exp\left\{Y^ op A^ op u + Y^ op B^ op v
ight\}
ight] \ &=& \mathbb{E}\left[\exp\left\{Y^ op (A^ op u + B^ op v)
ight\}
ight] = M_Y(A^ op u + B^ op v) \ &=& \exp\left\{rac{1}{2}(A^ op u + B^ op v)^ op \Omega(A^ op u + B^ op v)
ight\} \ &=& \exp\left\{rac{1}{2}\left(u^ op A\Omega A^ op u + v^ op B\Omega B^ op v + u^ op A\Omega B^ op v + v^ op B\Omega A^ op u
ight)
ight] \ &=& M_{AY}(u)M_{BY}(v), \end{aligned}$$

i.e., the joint MGF is the product of the marginal MGFs, proving independence.

proof continued.

For the converse, assume that AY and BY are independent. Then, $\forall u,v$,

$$M_W(\theta) = M_{AY}(u) M_{BY}(v), \quad \forall u, v,$$

$$\implies \exp\left\{\frac{1}{2}\left(u^\top A \Omega A^\top u + v^\top B \Omega B^\top v + u^\top A \Omega B^\top v + v^\top B \Omega A^\top u\right)\right\}$$

$$u = \exp\left\{rac{1}{2}u^ op A\Omega A^ op u
ight\}\exp\left\{rac{1}{2}v^ op B\Omega B^ op v
ight\}$$

$$\implies \exp\left\{\frac{1}{2} \times 2v^{\top} A \Omega B^{\top} u\right\} = 1$$

$$\implies v^{\top} A \Omega B^{\top} u = 0, \qquad \forall \ u, v,$$

$$\implies A\Omega B^{\top} = 0.$$

Gaussian Quadratic Forms and the χ^2 Distribution

Definition (χ^2 distribution)

Let $Z \sim \mathcal{N}(0, I_{p \times p})$. Then $||Z||^2 = \sum_{j=1}^p Z_j^2$ is said to have the chi-square (χ^2) distribution with p degrees of freedom; we write $||Z||^2 \sim \chi_p^2$.

[Thus, χ_p^2 is the distribution of the sum of squares of p real independent standard Gaussian random variates.]

Definition (F distribution)

Let $V \sim \chi_p^2$ and $W \sim \chi_q^2$ be independent random variables. Then (V/p)/(W/q) is said to have the F distribution with p and q degrees of freedom; we write $(V/p)/(W/q) \sim F_{p,q}$.

Gaussian Quadratic Forms and the χ^2 Distribution

Proposition (Gaussian Quadratic Forms)

• If $Z \sim \mathcal{N}(0_{p \times 1}, I_{p \times p})$ and H is a projection of rank $r \leq p$,

$$Z^{\top}HZ \sim \chi_r^2$$
.

 $Y \sim \mathcal{N}(\mu_{p \times 1}, \Omega_{p \times p})$ with Ω nonsingular \Longrightarrow

$$(Y - \mu)^{\top} \Omega^{-1} (Y - \mu) \sim \chi_p^2$$

Exercise: Prove these results.

Linear Models: Likelihood and Geometry

Simple Normal Linear Regression

General formulation:

$$Y_i|x_i \overset{ind}{\sim} \mathsf{Distribution}\{g(x_i)\}, \quad i=1,\ldots,n.$$

Simple Normal Linear Regression:

$$\left\{egin{array}{l} ext{Distribution} &= \mathcal{N}\{g(x), \sigma^2\} \ g(x) &= eta_0 + eta_1 x \end{array}
ight.$$

Resulting Model:

Simple Normal Linear Regression

<u>Jargon</u>: Y is response variable and x is explanatory variable (or covariate)

Linearity: Linearity is in the parameters, not the explanatory variable.

Example: Flexibility in what we define as explanatory:

$$Y_j = eta_0 + eta_1 \underbrace{\sin(x_j)}_{x_j^*} + arepsilon_j, \quad arepsilon_j \overset{iid}{\sim} \mathsf{Normal}(0, \sigma^2).$$

Example: Sometimes a transformation may be required:

$$Y_j = eta_0 \, e^{eta_1 x_j} \eta_j, \quad \eta_j \stackrel{iid}{\sim} \mathsf{Lognormal}$$
 $\mathsf{log}(\cdot) \downarrow \qquad \uparrow \mathsf{exp}(\cdot)$

$$\log Y_j = \log eta_0 + eta_1 x_j + \log \eta_j, \quad \log \eta_j \stackrel{iid}{\sim} \mathsf{Normal}$$

Data Structure:

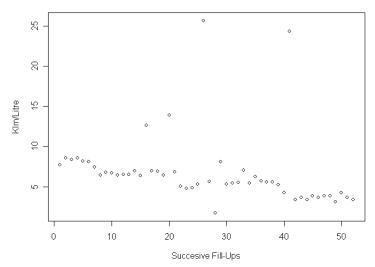
For
$$i=1,\ldots,n$$
, pairs

$$(x_i,\,y_i) {\longrightarrow} \left\{egin{array}{l} x_i ext{ fixed values of } x \ y_i ext{ treated as a realisation of } Y_i ext{ at } x_i \end{array}
ight.$$

Example: Professor's Van

Fillup	Km/L
1	7.72
2	8.54
3	8.35
4	8.55
5	8.16
6	8.12
7	7.46
8	6.43
9	6.74
10	6.72

Example: Professor's Van



Multiple Normal Linear Regression

Instead of $x_i \in \mathbb{R}$ could have $x_i^ op \in \mathbb{R}^q$):

$$Y_i = eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \ldots + eta_q x_{iq} + arepsilon_i, \quad arepsilon_i \stackrel{ind}{\sim} \mathcal{N}(0, \sigma^2).$$

Letting p = q + 1, this can be summarised via matrix notation:

$$\underbrace{\begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}}_{Y} = \underbrace{\begin{pmatrix} 1 & x_{11} & \dots & x_{1q} \\ 1 & x_{21} & & x_{2q} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n1} & \dots & x_{nq} \end{pmatrix}}_{X} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_q \end{pmatrix}}_{\beta} + \underbrace{\begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix}}_{\varepsilon}$$

$$\Longrightarrow \underbrace{Y}_{n \times 1} = \underbrace{X}_{n \times p} \underset{n \times 1}{\beta} + \underbrace{\varepsilon}_{n \times 1}, \quad \varepsilon \sim \mathcal{N}_n(0, \sigma^2 I)$$

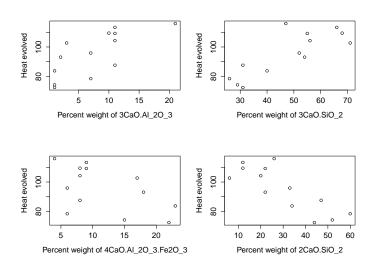
X is called the *design matrix*.

- 4 ロ ト 4 昼 ト 4 昼 ト 0 € 9 9 9 0 0

Example: Cement Heat Evolution

Case	3 CaO. Al ₂ O ₃	3 Ca O . Si O 2	4 Cao. Al ₂ O ₃ . Fe ₂ O ₃	2 CaO. SiO2	Heat
1	7.00	26.00	6.00	60.00	78.50
2	1.00	29.00	15.00	52.00	74.30
3	11.00	56.00	8.00	20.00	104.30
4	11.00	31.00	8.00	47.00	87.60
5	7.00	52.00	6.00	33.00	95.90
6	11.00	55.00	9.00	22.00	109.20
7	3.00	71.00	17.00	6.00	102.70
8	1.00	31.00	22.00	44.00	72.50
9	2.00	54.00	18.00	22.00	93.10
10	21.00	47.00	4.00	26.00	115.90
11	1.00	40.00	23.00	34.00	83.80
12	11.00	66.00	9.00	12.00	113.30
13	10.00	68.00	8.00	12.00	109.40

Cement Heat Evolution



Likelihood for Normal Linear Regression

Model is:

$$Y_i = eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \dots + eta_q x_{iq} + arepsilon_i, \quad arepsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$$

$$\updownarrow$$

$$Y = X\beta + arepsilon, \quad arepsilon \sim \mathcal{N}_n(0, \sigma^2 I)$$

Observe: $y = (y_1, \dots, y_n)^{\top}$ for given fixed design matrix X, i.e.:

$$(y_1, x_{11}, \ldots, x_{1q}), \ldots, (y_i, x_{i1}, \ldots, x_{iq}), \ldots, (y_n, x_{n1}, \ldots, x_{nq})$$

Likelihood and Loglikelihood

$$egin{aligned} L(eta,\sigma^2) &= rac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{-rac{1}{2\sigma^2}(y-Xeta)^ op (y-Xeta)
ight\} \ \ell(eta,\sigma^2) &= -rac{1}{2} \left\{n\log 2\pi + n\log \sigma^2 + rac{1}{\sigma^2}(y-Xeta)^ op (y-Xeta)
ight\} \end{aligned}$$

Whatever the value of σ , the log-likelihood is maximised when $(y - X\beta)^{\top}(y - X\beta)$ is minimised. Hence, the MLE of β is:

$$\hat{\beta} = \argmax_{\beta} \left\{ -(y - X\beta)^{\top} (y - X\beta) \right\} = \arg\min_{\beta} (y - X\beta)^{\top} (y - X\beta)$$

Obtain minimum by solving:

$$0 = \frac{\partial}{\partial \beta} (y - X\beta)^{\top} (y - X\beta)$$

$$0 = \frac{\partial (y - X\beta)}{\partial \beta} \frac{\partial (y - X\beta)^{\top} (y - X\beta)}{\partial (y - X\beta)} \quad \text{(chain rule)}$$

$$0 = X^{\top} (y - X\beta) \quad \text{(normal equations)}$$

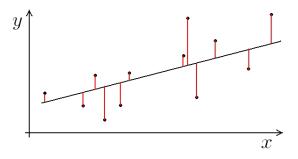
$$X^{\top} X\beta = X^{\top} y$$

$$\hat{\beta} = (X^{\top} X)^{-1} X^{\top} y \quad \text{(if } X \text{ has rank } p)$$

 \hat{eta} is called the *least squares estimator* because it is a result of minimising

$$(y - X\beta)^{\top}(y - X\beta) = \underbrace{\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \beta_2 x_{i2} - \dots - \beta_q x_{iq})^2}_{\text{sum of squares}}.$$

Thus we are trying to find the β that gives the hyperplane with minimum sum of squared vertical distances from our observations.



Residuals:
$$e = y - X\hat{\beta}$$
, so that $e = (e_1, \dots, e_n)^{\top}$, with

$$e_i = y_i - \hat{eta}_0 - \hat{eta}_1 x_{i1} - \hat{eta}_2 x_{i2} - \dots - \hat{eta}_q x_{iq}$$

"Regression Line" is such that $\sum e_i^2$ is minimised over all β .

Fitted Values:
$$\hat{y} = X \hat{\beta}^{\top}$$
, so that $\hat{y} = (\hat{y}_1, \dots, \hat{y}_n)^{\top}$, with

$$\hat{y}_i = \hat{eta_0} + \hat{eta_1} x_{i1} + \cdots + \hat{eta_q} x_{iq}$$

Since the MLE of $\hat{\beta}$ is $\hat{\beta} = (X^{T}X)^{-1}X^{T}y$ for all values of σ^{2} , we have

$$\begin{split} \hat{\sigma}^2 &= \underset{\sigma^2}{\arg\max} \left\{ \underset{\beta}{\max} \, \ell(\beta, \sigma^2) \right\} \\ &= \underset{\sigma^2}{\arg\max} \, \ell(\hat{\beta}, \sigma^2) \\ &= \underset{\sigma^2}{\arg\max} \, -\frac{1}{2} \left\{ n \log \sigma^2 + \frac{1}{\sigma^2} (y - X \hat{\beta})^\top (y - X \hat{\beta}) \right\}. \end{split}$$

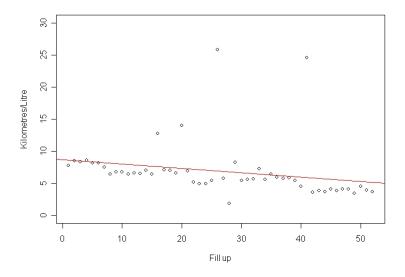
Differentiating and setting equal to zero yields

$$\hat{\sigma}^2 = rac{1}{n} (y - X \hat{oldsymbol{eta}})^ op (y - X \hat{oldsymbol{eta}}).$$

Next week we will see that a better (unbiased) estimator is

$$S^2 = rac{1}{n-p}(y-X\hat{oldsymbol{eta}})^ op(y-X\hat{oldsymbol{eta}}).$$

Example: Professor's Van



$$\hat{\beta}_0 = 8.6 \quad \hat{\beta_1} = -0.068 \quad S^2 = 17.4 \, \text{m}$$

Anthony Davison (EPFL)

The Geometry of Least Squares

There are two <u>dual</u> geometrical viewpoints that one may adopt:

$$\left(egin{array}{c} Y_1 \ Y_2 \ dots \ Y_n \end{array}
ight) = \left(egin{array}{ccccc} 1 & x_{11} & x_{12} & \dots & x_{1q} \ 1 & x_{21} & x_{22} & & x_{2q} \ dots & dots & dots \ 1 & x_{(n-1)1} & x_{(n-1)2} & \dots & x_{(n-1)q} \ 1 & x_{n1} & x_{n2} & \dots & x_{nq} \end{array}
ight) \left(egin{array}{c} eta_0 \ eta_1 \ dots \ eta_q \end{array}
ight) + \left(egin{array}{c} arepsilon_1 \ dots \ arepsilon_n \end{array}
ight)$$

- Row geometry: focus on the *n* OBSERVATIONS
- Column geometry: focus on the p EXPLANATORIES

Both are useful, usually for different things:

- Row geometry useful for exploratory analysis.
- Column geometry useful for theoretical analysis.

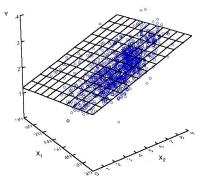
Both geometries give useful, but different, intuitive interpretations of the least squares estimators.

Anthony Davison (EPFL) Linear Models 51 / 256

Row Geometry (Observations)

Corresponds to the "scatterplot geometry" – (data space)

- n points in \mathbb{R}^p
- each corresponds to an observation
- least squares parameters give parametric equation for a hyperplane
- hyperplane has property that it minimizes the sum of squared vertical distances of observations from the plane itself over all possible hyperplanes



 Fitted values are vertical projections (NOT orthogonal projections!) of observations onto plane, residuals are signed vertical distances of observations from plane.

Column Geometry (Variables)

Adopt the dual perspective:

- ullet Consider the entire vector y as a single point living in \mathbb{R}^n
- ullet Then consider each variable (column) as a point also in \mathbb{R}^n

What is the interpretation of the p-dimensional vector $\hat{\beta}$, and the n-dimensional vectors \hat{y} and e in this dual space?

Turns out there is another important plane here: the plane spanned by the variable vectors (the column vectors of X).

Recall that this is the *column space* of X, denoted by $\mathcal{M}(X)$.

Column Geometry (Variables)

Recall:
$$\underbrace{\mathcal{M}(X)}_{\mathsf{Column}} := \{X\gamma: \gamma \in \mathbb{R}^p\}$$

Q: What does $Y = X\beta + \varepsilon$ mean?

A: Y is [some element of $\mathcal{M}(X)$] + [Gaussian disturbance].

Any realisation y of Y will lie outside $\mathcal{M}(X)$ (almost surely). MLE estimates β by minimising

$$(y - X\beta)^{\top}(y - X\beta) = ||y - X\beta||^2$$

Thus we search for a β giving the element of $\mathfrak{M}(X)$ with the minimum distance from y.

Hence $\hat{y} = X\hat{\beta}$ is the projection of y onto $\mathcal{M}(X)$:

$$\hat{y} = X\hat{\beta} := \underbrace{X(X^{\top}X)^{-1}X^{\top}}_{H} y = Hy.$$

H is the hat matrix (puts hat on y!)

Column Geometry (Variables)

Another derivation of the MLE of β :

ullet Choose \hat{eta} to minimise $(y-Xeta)^{ op}(y-Xeta)=\|y-Xeta\|^2$, so

$$\hat{\beta} = \arg\min \|y - X\beta\|^2.$$

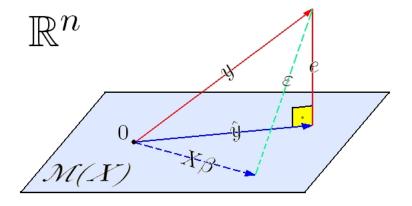
- $\bullet \ \min_{\beta \in \mathbb{R}^p} \|y X\beta\|^2 = \min_{\gamma \in \mathcal{M}(X)} \|y \gamma\|^2$
- ullet But the unique γ that yields $\min_{\gamma \in \mathcal{M}(X)} \|y \gamma\|^2$ is $\gamma = Py$.
- Here P is the projection onto the column space of X, $\mathfrak{M}(X)$.
- Since X is of full rank, $P = X(X^{\top}X)^{-1}X^{\top}$.
- So $\gamma = X(X^{\top}X)^{-1}X^{\top}y$
- $\hat{\beta}$ will now be the unique (since X non-singular) vector of coordinates of γ with respect to the basis of columns of X.
- So

$$X\hat{\beta} = \gamma = X(X^{\top}X)^{-1}X^{\top}y,$$

which implies that $\hat{\beta} = (X^{\top}X)^{-1}X^{\top}y$

←ロト→□ト→重ト→重・のQで

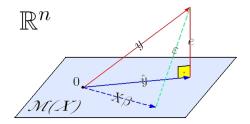
The (Column) Geometry of Least Squares



The (Column) Geometry of Least Squares

So what is $\hat{\beta}$?

- If X columns linearly independent, they are a (non-orthogonal) basis for ${\mathfrak M}$
- Hence for any $z \in \mathcal{M}(X)$, there exists a unique $\gamma \in \mathbb{R}^p$ such that $z = X\gamma$



- ullet So γ contains coordinates of z with respect to the X-column basis
- ullet Consequently, \hat{eta} contains coordinates of \hat{y} with respect to the X-column basis
- But $\hat{y} = Hy = X\underbrace{(X^{\top}X)^{-1}X^{\top}y}_{u} = Xu$, so u is the unique vector that gives coordinates of y with respect to the X-column basis
- ullet Hence we must have $\hat{eta} = u = (X^{ op}X)^{-1}X^{ op}y$

↓□▶ ↓□▶ ↓ ≧▶ ↓ ≧▶ ☐ ♥ ♀ ○

The (Column) Geometry of Least Squares

Facts:

- $\bullet e = (I H)y = (I H)\varepsilon.$
- ② \hat{y} and e are orthogonal, i.e. $\hat{y}^{\top}e=0$
- **1** Pythagoras: $y^\top y = \hat{y}^\top \hat{y} + e^\top e = y^\top H y + \varepsilon^\top (I H) \varepsilon$

Derivation:

$$\bullet e = y - X\hat{\beta} = y - Hy = (I - H)y = (I - H)(X\beta + \varepsilon) = (I - H)X\beta + (I - H)\varepsilon = (I - H)\varepsilon$$

$$e = y - \hat{y} = (I - H)y \implies \hat{y}^{\top} e = y^{\top} H^{\top} (I - H) y = 0$$

$$y^{\top} y = (Hy + (I - H)y)^{\top} (Hy + (I - H)y) = \hat{y}^{\top} \hat{y} + e^{\top} e + 2yH(I - H)y.$$

Weighted Least Squares

Assume slightly different model:

$$egin{aligned} Y_i &= eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \cdots + eta_q x_{iq} + rac{arepsilon_i}{\sqrt{w_i}}, \quad arepsilon_i \stackrel{ind}{\sim} \mathcal{N}(0,\sigma^2), \quad w_i > 0 \end{aligned}$$
 \updownarrow $Y_i \stackrel{ind}{\sim} N\left(eta_0 + eta_1 x_{i1} + eta_2 x_{i2} + \cdots + eta_q x_{iq}, rac{\sigma^2}{w_i}
ight).$

With the w_j known weights (example: each Y_j is an average of w_j measurements).

Arises often in practice (e.g., in sample surveys), but also arises in theory.

Weighted Least Squares

Transformation:

$$y' = W^{1/2}y, \quad X' = W^{1/2}X$$

with

$$W_{n\times n} = \mathsf{diag}(w_1,\ldots,w_n)$$

Leads to usual scenario. In this notation we obtain:

$$\hat{\beta} = [(X')^\top X']^{-1} (X')^\top y'$$

$$= (X^\top WX)^{-1} X^\top Wy$$

Similarly:

$$S^2 = rac{1}{n-p} y^ op \left[W - WX(X^ op WX)^{-1} X^ op W
ight] y$$

Distribution Theory of Least Squares

Least Squares Estimators

Gaussian Linear Model:

$$Y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + \varepsilon_{n\times 1}, \quad \varepsilon \sim \mathcal{N}_n(0, \sigma^2 I)$$

We have derived the estimators:

$$\bullet \ \hat{\beta} = (X^\top X)^{-1} X^\top y$$

$$\bullet \ \hat{\sigma}^2 = \frac{1}{n} (y - X \hat{\beta})^\top (y - X \hat{\beta}) = \frac{1}{n} ||\hat{y} - y||^2$$

$$\bullet \ S^2 = rac{1}{n-p} ||\hat{y} - y||^2$$

We need to study the distribution of these estimators for the purpose of:

- Understanding their precision
 - Building confidence intervals
 - Testing hypotheses
 - Comparing them to other candidate estimators
 - ...

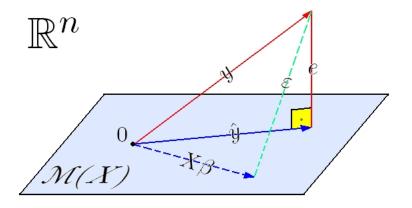
Joint Distribution of LSE's

Theorem

Let $Y_{n\times 1}=X_{n\times p}\beta_{p\times 1}+\varepsilon_{n\times 1}$ with $\varepsilon\sim \mathcal{N}_n(0,\sigma^2I)$ and assume that X has full rank p< n. Then,

- $\bullet \hat{\beta} \sim \mathcal{N}_p\{\beta, \sigma^2(X^\top X)^{-1}\};$
- $oldsymbol{2}$ the random variables \hat{eta} and S^2 are independent; and
- $\frac{n-p}{\sigma^2}S^2 \sim \chi^2_{n-p}$, where χ^2_{ν} denotes the chi-square distribution with ν degrees of freedom.

Geometry Reminder



Joint Distribution of LSE's

Proof.

1. Recall our results for linear transformations of Gaussian variables:

$$\left. \begin{array}{l} \hat{\beta} = (X^\top X)^{-1} X^\top Y \\ Y \sim \mathcal{N}_n(X\beta, \sigma^2 I) \end{array} \right\} \implies \hat{\beta} \sim \mathcal{N}_p \{ \beta, \sigma^2 (X^\top X)^{-1} \}$$

- 2. If e is independent of $\hat{y} = X\hat{\beta}$, then $S^2 = e^{\top}e/(n-p)$ will be independent of $\hat{\beta}$ (why?). Now notice that:
 - e = (I H)y
 - $\hat{y} = Hy$
 - $y \sim \mathcal{N}(X\beta, \sigma^2 I)$

Therefore, from the properties of the Gaussian distribution e is independent of \hat{y} since $(I-H)(\sigma^2 I)H = \sigma^2 (I-H)H = 0$, by idempotency of H.

proof cont'd.

3. For the last part recall that

$$e = (I - H)arepsilon \implies (n - p)S^2 = (n - p)rac{e^ op e}{n - p} = arepsilon^ op (I - H)arepsilon$$

by idempotency of H. But recall that $\varepsilon \sim \mathcal{N}_n(0, \sigma^2 I_n)$ so $\sigma^{-1}\varepsilon \sim \mathcal{N}_n(0, I_n)$. Therefore, by the properties of the chi-square distribution (slide 36),

$$\frac{(n-p)}{\sigma^2}S^2 = (\sigma^{-1}\varepsilon)^{\top}(I-H)(\sigma^{-1}\varepsilon) \sim \chi_{n-p}^2.$$

(An easy direct proof uses the spectral decomposition of
$$I-H$$
.)

Corollary

 S^2 is unbiased whereas $\hat{\sigma}^2$ is biased (so we prefer S^2).

Proof.

Recall that if $Q \sim \chi_d^2$, then $\mathbb{E}[Q] = d$.

Confidence and Prediction Intervals

How to construct $(1 - \alpha)$ CI for a linear combination of the parameters, $c^{\top}\beta$?

- Have $c^{\top}\hat{\beta} \sim \mathcal{N}_1\{c^{\top}\beta, \sigma^2c^{\top}(X^{\top}X)^{-1}c\} = \mathcal{N}_1(c^{\top}\beta, \sigma^2\delta)$, say.
- Therefore $Q = (c^{\top}\hat{\beta} c^{\top}\beta)/\sqrt{\sigma\delta} \sim \mathcal{N}_1(0,1)$
- ullet and (since \hat{eta} is independent of S^2) Q is independent of S^2 ,
- while $\frac{n-p}{\sigma^2}S^2 \sim \chi^2_{n-p}$.

Hence

$$rac{Q}{\sqrt{rac{(n-p)}{\sigma^2}S^2}} \sim t_{n-p} \Rightarrow rac{rac{c^{ op}\hat{eta}-c^{ op}eta}{\sqrt{S^2/\sigma^2}}}{\sqrt{S^2/\sigma^2}} = rac{c^{ op}\hat{eta}-c^{ op}eta}{\sqrt{S^2c^{ op}(X^{ op}X)^{-1}c}} \sim t_{n-p},$$

giving a pivot on which to base inference for $c^{\top}\beta$.

ullet Since $W \sim t_{n-p} \implies W^2 \sim F_{1,n-p}$, we can also base inferences on

$$rac{(c^ op\hateta-c^ opeta)^2}{S^2c^ op(X^ op X)^{-1}c}\sim F_{1,n-p}.$$

Confidence and Prediction Intervals

• We obtain $(1 - \alpha) \times 100\%$ CI:

$$c^{\top}\hat{\beta} \pm t_{n-p}(\alpha/2)\sqrt{S^2c^{\top}(X^{\top}X)^{-1}c}.$$

- What about a (1α) CI for β_r ? (rth coordinate)
- Let $c_r = (0, 0, \dots, 0, 1, 0, \dots, 0)$
- ullet Then $eta_r = c^ op eta$
- Therefore, base CI on

$$\frac{c_r^\top \hat{\beta} - c_r^\top \beta}{\sqrt{S^2 c_r^\top (X^\top X)^{-1} c_r}} = \frac{\hat{\beta}_r - \beta_r}{\sqrt{S^2 v_{r,r}}} \sim t_{n-p},$$

where $v_{r,s}$ is the r,s element of $(X^{\top}X)^{-1}$.

• Obtain $(1 - \alpha) \times 100\%$ CI:

$$\hat{\beta} \pm t_{n-p}(\alpha/2)\sqrt{S^2 v_{rr}}$$

Confidence and Prediction Intervals

- ullet Suppose we want to predict the value of y_+ for an $x_+ \in \mathbb{R}^p$
- Our model predicts y_+ by $x_+^{\top} \hat{\beta}$.
- But $y_+ = x_+^\top \beta + \varepsilon_+$ so a prediction interval is DIFFERENT from an interval for a linear combination $c^\top \beta$ (extra uncertainty due to ε_+):
 - $\bullet \ \mathbb{E}[x_+^\top \hat{\beta} + \varepsilon_+] = x_+^\top \beta$
 - $\bullet \ \operatorname{var}[x_+^\top \hat{\beta} + \varepsilon_+] = \operatorname{var}[x_+^\top \hat{\beta}] + \operatorname{var}[\varepsilon_+] = \sigma^2[x_+^\top (X^\top X)^{-1} x_+ + 1]$
- Base prediction interval on:

$$\frac{x_+^\top \hat{\beta} - y_+}{\sqrt{S^2 \{1 + x_+^\top (X^\top X)^{-1} x_+ \}}} \sim t_{n-p}.$$

• Obtain $(1 - \alpha)$ prediction interval:

$$x_{+}^{\top} \hat{\beta} \pm t_{n-p} (\alpha/2) \sqrt{S^{2} \{1 + x_{+}^{\top} (X^{\top} X)^{-1} x_{+} \}}.$$

→□▶→□▶→■▶ ● 990

The Coefficient of Determination, R^2

 R^2 is a *measure of fit* of the model to the data.

- We are trying to best approximate y through an element of the column-space of X.
- How successful are we? Squared error is $e^{\top}e$.
- How large is this, relative to data variation? Look at

$$\frac{\|e\|^2}{\|y\|^2} = \frac{e^\top e}{y^\top y} = \frac{y^\top (I - H)y}{y^\top y} = 1 - \frac{\hat{y}^\top \hat{y}}{y^\top y}$$

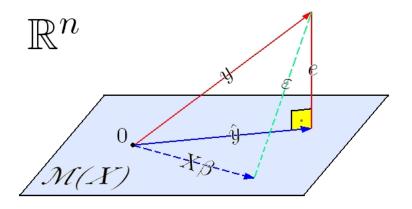
Define

$$R_0^2 = rac{\hat{y}^ op \hat{y}}{y^ op y}$$

• Note that $0 \le R_0^2 \le 1$

Interpretation: what proportion of the squared norm of y does our fitted value \hat{y} explain?

Geometry Reminder



Different Versions of R^2

"Centred (in fact, usual) R^2 ". Compares empirical variance of \hat{y} to empirical variance of y, instead of the empirical norms. In other words:

$$R^2 = \frac{\frac{1}{n} \sum_{i=1}^n (\hat{y}_i - \bar{y})^2}{\frac{1}{n} \sum_{i=1}^n (y_i - \bar{y})^2} = \frac{\sum_{i=1}^n (\hat{y}_i - \bar{y})^2}{\sum_{i=1}^n (y_i - \bar{y})^2}.$$

(note that $\frac{1}{n}\sum_{i=1}^n \hat{y}_i = \frac{1}{n}\sum_{i=1}^n (y-e_i) = \bar{y}$ because $e \perp 1$ (recall that 1 is the vector of 1's = first column of design matrix X) so $\sum_i e_i = 0$.

Note that

$$R^2 = \frac{\|\hat{y}\|^2 - \|\bar{y}\mathbf{1}\|^2}{\|y\|^2 - \|\bar{y}\mathbf{1}\|^2}.$$

- R_0^2 mathematically more natural (does not treat first column of X as special).
- R^2 statistically more relevant (expresses variance—the first column of X usually is special, in statistical terms!).
- R_0^2 and R^2 may differ a lot when \bar{y} large.

Anthony Davison (EPFL)

Different Versions of R^2

Geometrical interpretation of R^2 : project y and \hat{y} on orthogonal complement of 1, then compare the norms (of the projections):

- $\mathbf{1}(\mathbf{1}^{\top}\mathbf{1})^{-1}\mathbf{1}^{\top}y = \mathbf{1}n^{-1}\sum_{i=1}^{n}y_{i} = \mathbf{1}\bar{y}$.
- $ullet \ \mathbf{1}(\mathbf{1}^{\top}\mathbf{1})^{-1}\mathbf{1}^{\top}\hat{y} = \mathbf{1}n^{-1}\sum_{i=1}^{n}\hat{y}_{i} = \mathbf{1}\bar{y}.$

So

$$R^2 = \frac{\|\hat{y}\|^2 - \|\bar{y}\mathbf{1}\|^2}{\|y\|^2 - \|\bar{y}\mathbf{1}\|^2} = \frac{\|(I - \mathbf{1}(\mathbf{1}^{\top}\mathbf{1})^{-1}\mathbf{1})\hat{y}\|^2}{\|(I - \mathbf{1}(\mathbf{1}^{\top}\mathbf{1})^{-1}\mathbf{1})y\|^2}$$

Intuition: Should not take into account the part of ||y|| that is explained by a constant, we only want to see the effect of the explanatory variables.

NOTE: Statistical packages (e.g., R) provide R^2 (and/or R_a^2 , see below), not R_0^2 .

Exercise: Show that $R^2 = [\text{corr}(\{\hat{y}_i\}_{i=1}^n, \{y_i\}_{i=1}^n)]^2$.

Exercise: Show that $R^2 \leq R_0^2$.

<ロ > < 部 > < き > くき > き り < で

Different Versions of R^2

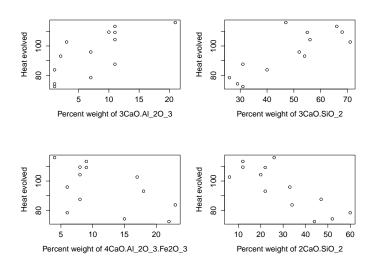
The adjusted \mathbb{R}^2 takes into account the number of variables employed. It is defined as:

$$R_a^2 = R^2 + (1 - R^2) \frac{n-1}{n-p}.$$

Corrects for the fact that we can always increase \mathbb{R}^2 by adding variables. One can also correct the un-centred \mathbb{R}^2_0 by evaluating

$$R_0^2 + (1 - R_0^2) \frac{n}{n - p}$$
.

Case	3 CaO. Al ₂ O ₃	3 CaO.SiO2	4Cao. Al ₂ O ₃ . Fe ₂ O ₃	2 CaO. SiO2	Heat
1	7.00	26.00	6.00	60.00	78.50
2	1.00	29.00	15.00	52.00	74.30
3	11.00	56.00	8.00	20.00	104.30
4	11.00	31.00	8.00	47.00	87.60
5	7.00	52.00	6.00	33.00	95.90
6	11.00	55.00	9.00	22.00	109.20
7	3.00	71.00	17.00	6.00	102.70
8	1.00	31.00	22.00	44.00	72.50
9	2.00	54.00	18.00	22.00	93.10
10	21.00	47.00	4.00	26.00	115.90
11	1.00	40.00	23.00	34.00	83.80
12	11.00	66.00	9.00	12.00	113.30
13	10.00	68.00	8.00	12.00	109.40



- > cement.lm<-lm($y \sim 1+x1+x2+x3+x4$, data=cement)
- > summary(cement.lm)

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	62.4054	70.0710	0.89	0.3991
×1	1.5511	0.7448	2.08	0.0708
x2	0.5102	0.7238	0.70	0.5009
x3	0.1019	0.7547	0.14	0.8959
×4	-0.1441	0.7091	-0.20	0.8441

Residual standard error: 2.446 on 8 degrees of freedom

R-Squared: 0.9824

```
> x.plus
[1] 25 25 25 25
predict(cement.lm,x.plus,interval="confidence",
se.fit=T,level=0.95)
```

Fit	Lower	Upper
112.8	97.5	128.2

predict(cement.lm,x.plus,interval="prediction",
se.fit=T,level=0.95)

Fit	Lower	Upper
112.8	96.5	129.2

Gauss-Markov & Optimal Estimation

Gaussian Linear Model: Efficiency of LSE (Optimality)

Q: Geometry suggests that the LSE $\hat{\beta}$ is a sensible estimator. But is it the best we can come up with?

A: Yes, $(\hat{\beta}, S^2)$ are the unique minimum variance unbiased estimators

(To be seen in Statistical Theory course, since (\hat{eta},S^2) is a complete statistic)

Thus, in the Gaussian Linear model, the LSE's are the best we can do as far as unbiased estimators go.

Second Order Assumptions: Optimality in a weaker setting?

The crucial assumption so far was:

• Normality: $\varepsilon \sim \mathcal{N}_n(0, \sigma^2 I)$

What if we drop this strong assumption and assume something weaker?

• <u>Uncorrelatedness</u>: $\mathbb{E}[\varepsilon] = 0 \& var[\varepsilon] = \sigma^2 I$

(notice we do not assume any particular distribution.)

How well do our LSE estimators perform in this case?

(note that in this setup the observations may not be independent — uncorrelatedness implies independence only in the Gaussian case.)

Second Order Assumptions

For a start, we retain unbiasedness:

Lemma

If we only assume both

$$\mathbb{E}[\epsilon] = 0 \quad var[\epsilon] = \sigma^2 I$$

instead of

$$\varepsilon \sim \mathcal{N}(0, \sigma^2 I),$$

then the following remain true:

- $\bullet \ \mathbb{E}[\hat{\beta}] = \beta;$
- **2** $Var[\hat{\beta}] = \sigma^2(X^{\top}X)^{-1};$
- **3** $\mathbb{E}[S^2] = \sigma^2$.

But what about optimality properties?

Gauss-Markov Theorem

Theorem

Let $Y_{n\times 1} = X_{n\times p}\beta_{p\times 1} + \varepsilon_{n\times 1}$, with p < n, X having rank p, and

- $\mathbb{E}[\varepsilon] = 0$,
- $var[\varepsilon] = \sigma^2 I$.

Then, $\hat{\beta} = (X^\top X)^{-1} X^\top Y$ is the best linear unbiased estimator of β , that is, for any linear unbiased estimator $\tilde{\beta}$ of β , it holds that

$$var(\hat{\beta}) - var(\hat{\beta}) \succeq 0.$$

Gauss-Markov Theorem

Proof.

Let $\tilde{\beta}$ be linear and unbiased, in other words: $\begin{cases} \tilde{\beta} = AY, & \text{for some } A_{p \times n}, \\ \mathbb{E}[\tilde{\beta}] = \beta, & \text{for all } \beta \in \mathbb{R}^p. \end{cases}$

These two properties combine to yield,

$$eta = \mathbb{E}[\tilde{eta}] = \mathbb{E}[AY] = \mathbb{E}[AXeta + Aeta] = AXeta, \quad eta \in \mathbb{R}^p$$

$$\implies (AX - I)eta = 0, \, \forall eta \in \mathbb{R}^p.$$

We conclude that the null space of (AX-I) is the entire \mathbb{R}^p , and so AX=I.

$$\begin{aligned} \operatorname{var}[\tilde{\beta}] - \operatorname{var}[\hat{\beta}] &= A\sigma^2 I A^\top - \sigma^2 (X^\top X)^{-1} \\ &= \sigma^2 \{AA^\top - AX(X^\top X)^{-1} X^\top A^\top \} \\ &= \sigma^2 A (I - H) A^\top \\ &= \sigma^2 A (I - H) (I - H)^\top A^\top \\ &\succeq 0. \end{aligned}$$

If $\mathbb{E}[\varepsilon] = 0$ and $\mathsf{cov}[\varepsilon] = \sigma^2 I$

 \hookrightarrow Gauss-Markov says $\hat{\beta}$ optimal linear unbiased estimator, regardless of whether or not ε is Gaussian.

Question: What can we say about the distribution of $\hat{\beta}$ when $cov(\varepsilon) = \sigma^2 I$, but ε is not necessarily Gaussian?

Note that we can always write

$$\hat{\beta} - \beta = (X^{\top}X)^{-1}X^{\top}\varepsilon.$$

- Since there is a huge variety of candidate distributions for ε that would be compatible with the property $\text{cov}(\varepsilon) = \sigma^2 I$, we cannot say very much about the exact distribution of $\hat{\beta} \beta = (X^\top X)^{-1} X^\top \varepsilon$.
- Can we at least hope to say something about this distribution asymptotically, as the sample becomes large?

Large sample \iff increasing number of observations.

- We let $n \to \infty$ (# rows of X tend to infinity)
- # columns of X, i.e., p, (held fixed).

Theorem (Large Sample Distribution of $\hat{\beta}$)

Let $\{X_n\}_{n\geq 1}$ be a sequence of $n\times p$ design matrices and $Y_n=X_n\beta+\varepsilon_n$. If

- X_n is of full rank p for all $n \geq 1$
- $\mathbb{E}[\varepsilon_n] = 0$ and $cov[\varepsilon_n] = \sigma^2 I$ for all $n \ge 1$, then the least squares estimator $\hat{\beta}_n = (X_n^\top X_n)^{-1} X_n^\top Y$ satisfies

 $(X_n^{ op}X_n)^{1/2}(\hat{eta}_n-eta)\stackrel{d}{\longrightarrow} \mathcal{N}_n(0,\sigma^2I).$

Theorem's conclusion can be interpreted as:

for
$$n$$
 "large enough", $\hat{eta} \overset{d}{\simeq} \mathcal{N}\{eta, \sigma^2(X_n^{\top}X_n)^{-1}\}$

- ullet i.e. distribution of \hat{eta} gradually becomes the same as what it would be if arepsilon were Gaussian
- ullet ... provided design matrix X satisfies extra condition (2).
- Can be shown equivalent to: diagonal elements of $H_n = X_n (X_n^\top X_n)^{-1} X_n^\top$, say $h_{jj}(n)$ converge to zero uniformly in j as $n \to \infty$
- Note that ${\sf trace}(H)=p$, so that the average $\sum h_{jj}(n)/n \to 0$ the question is do all the $h_{jj}(n)\to 0$ uniformly?

Has a very clear interpretation in terms of the form of the design that we will see when we discuss the notions of *leverage* and *influence*.

To understand Condition (2), consider simple linear model

$$Y_i = \beta_0 + \beta_1 t_i + \varepsilon_i, \qquad i = 1, \ldots, n.$$

Here, p = 2. Can show that

$$h_{jj}(n) = rac{1}{n} + rac{(t_j - \overline{t}\,)^2}{\sum_{k=1}^n (t_k - \overline{t}\,)^2}$$

• Suppose $t_i = i$, for i = 1, ..., n (regular grid). Then

$$h_{jj}(n) = rac{1}{n} + rac{\{j-(n+1)/2\}^2}{(n^2-n)/12}$$

so
$$\max_{1\leq j\leq n}h_{jj}(n)=h_{nn}(n)=rac{1}{n}+rac{6(n-1)}{n(n+1)}\stackrel{n o\infty}{\longrightarrow} 0.$$

4日 → 4目 → 4目 → 4目 → 990

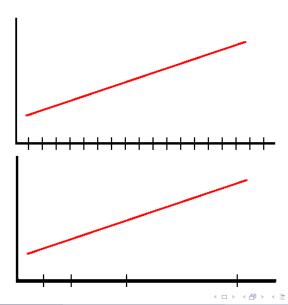
• Now consider $t_i = 2^i$ (grid points spread apart as n grows). The centre of mass and sum of squares of the grid points is now

$$\overline{t} = \frac{2(2^n - 1)}{n}, \quad \sum_{i=1}^n (t_i - \overline{t})^2 = \frac{4^{n+1} - 4}{3} - \frac{4^{n+1} + 4 - 2^{n+3}}{n}$$

and so

$$\max_{1 \leq j \leq n} h_{jj}(n) = h_{nn}(n) \stackrel{n o \infty}{\longrightarrow} rac{3}{4}.$$

Large Sample Distribution of $\hat{oldsymbol{eta}}$



Diagnostics

Assumptions to Check for

Four basic assumptions inherent in the Gaussian linear regression model:

- Linearity: $\mathbb{E}[Y]$ is linear in X.
- Homoskedasticity: $var[\varepsilon_j] = \sigma^2$ for all j = 1, ..., n.
- Gaussian Distribution: errors are Normally distributed.
- Independent Errors: ε_i independent of ε_j for $i \neq j$.

When one of these assumptions fails clearly, then Gaussian linear regression is inappropriate as a model for the data.

Isolated problems, such as <u>outliers</u> and <u>influential observations</u> also deserve investigation. They *may or may not* decisively affect model validity.

How do we check these assumptions?

Scientific reasoning: impossible to validate model assumptions.

Cannot *prove* that the assumptions hold. Can only provide evidence in favour (or against!) them.

Strategy:

- Find implications of each assumption that we can check graphically (mostly concerning residuals).
- Construct appropriate plots and assess them (requires experience).

"Magical Thinking": Beware of overinterpreting plots!

Residuals Revisited

Residuals e: Basic tool for checking assumptions.

Recall:
$$e = y - \hat{y} = y - X\hat{\beta} = (I - H)y = (I - H)\varepsilon$$

Intuition: the residuals represent the aspects of y that cannot be explained by the columns of X.

Since $\varepsilon \sim \mathcal{N}_n(0, \sigma^2 I)$, if the model is correct we should have $\varepsilon \sim \mathcal{N}_n\{0, \sigma^2(I-H)\}$.

So if assumptions hold
$$ightarrow \left\{egin{array}{l} e_i \sim \mathcal{N}\{0,\sigma^2(1-h_{ii})\} \ \operatorname{cov}(e_i,e_j) = -\sigma^2 h_{ij} \end{array}
ight.$$

Note the residuals are correlated, and that they have unequal variances. Define the *standardised residuals*:

$$r_i:=rac{e_i}{s\sqrt{1-h_{ii}}}, \quad i=1,\ldots,n.$$

These are still correlated but have variance ≈ 1 .

4 D > 4 B > 4 E > 4 E > 990

Anthony Davison (EPFL)

Checking for Linearity

A first impression can be drawn by looking at plots of the response against each of the explanatory variables.

Other plots to look at?

Notice that under the assumption of linearity we have

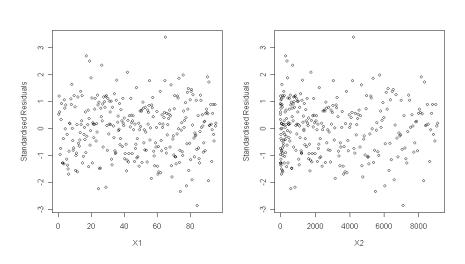
$$X^{\top}e=0.$$

Hence, no correlation should appear between explanatory variables and residuals.

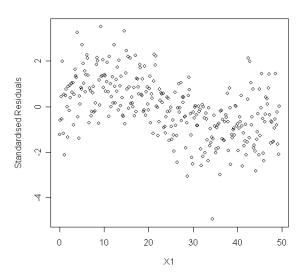
- ullet Plot standardised residuals r against each explanatory variable (columns of X).
 - → No systematic patterns should appear in these plots. A systematic pattern would suggest incorrect dependence of the response on the particular explanatory.
- ullet Plot standardised residuals r against explanatories left out of the model.
 - → No systematic patterns should appear in these plots. A systematic pattern suggests that we have left out an explanatory variable that should have been included.

4□ > 4Ē > 4Ē > 4 Ē > 9 Q @

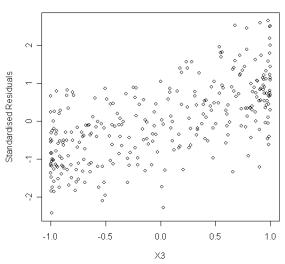
Linearity OK



Linearity NOT OK



Important Covariate Left out



Checking for Homoskedasticity

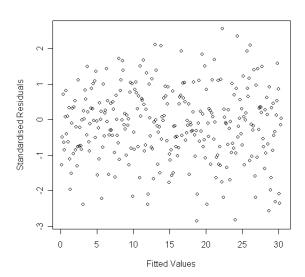
$$\mathsf{Homoskedastic} = \underbrace{\delta\mu\,o}_{\mathit{same}} + \underbrace{\sigma\,\kappa\varepsilon\delta\alpha\sigma\mu\grave{\mathsf{o}}\varsigma}_{\mathit{spread}}$$

According to our model assumptions, the variance of the errors ε_j should be the same across indices:

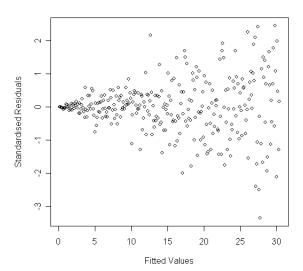
$$\mathsf{var}(arepsilon_j) = \sigma^2$$

- Plot r against the fitted values \hat{y} . (why not against y?)
 - \hookrightarrow A random scatter should appear, with approximately constant spread of the values of r for the different values of \hat{y} . "Trumpet" or "bulging" effects indicate failure of the homoskedasticity assumption.
 - \hookrightarrow Since $\hat{y}^\top e = 0$, this plot can also be used to check linearity, as before.

Homoskedasticity OK



Heteroskedasticity (i.e. lack of Homoskedasticity)



Checking for Normality

<u>Idea</u>: compare the distribution of standardised residuals against a Normal distribution.

How?

Compare the empirical with the theoretical quantiles . . .

The p-quantile $(p \in [0,1])$ of a distribution F is the value δ defined as

$$\delta := \inf \{ lpha \in \mathbb{R} : F(lpha) \geq p \}.$$

Notation: $\delta = F^{-1}(p)$ (although the inverse may not be well defined) Given a sample X_1, \ldots, X_n , the *empirical p quantile* is the value γ defined as

$$\gamma = \inf \left\{ lpha \in \mathbb{R} : rac{\#\{X_i \leq lpha\}}{n} \geq p
ight\}.$$

Notation: $\gamma = \hat{F}_n^{-1}(p)$

◆ロ → ← 日 → ← 目 → り へ ○

Checking for Normality

A quantile plot for a given sample plots certain empirical quantiles against the corresponding theoretical quantiles (i.e. those under the assumed distribution). If the sample at hand originates from F, then we expect that the points of the plot fall close to the 45° line.

ullet Plot the empirical $\{k/n\}_{k=1}^n$ quantiles of standardised residuals

$$r_{(1)} \leq r_{(2)} \leq \cdots \leq r_{(n)}$$

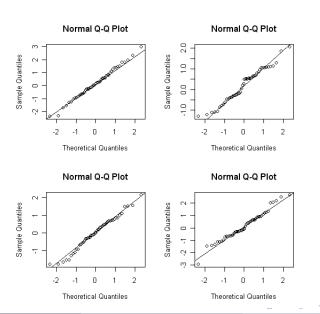
against theoretical quantiles $\Phi^{-1}\{1/(n+1)\},\ldots,\Phi^{-1}\{n/(n+1)\}$ of a $\mathcal{N}(0,1)$ distribution.

- \hookrightarrow Think why we pick $\Phi^{-1}\left(\frac{k}{n+1}\right)$ instead of $\Phi^{-1}\left(\frac{k}{n}\right)$.
- → If the points of the quantile plot deviate significantly from the 45° line, there is evidence against the normality assumption. Outliers, skewness and heavy tails easily revealed.

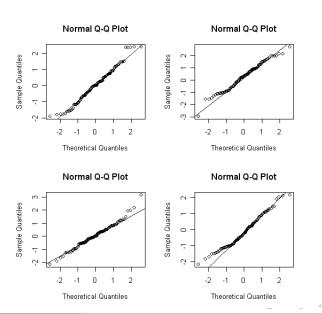
Beware of overinterpretation when n is small!

←ロ → ←回 → ← 重 → ■ り へ ○

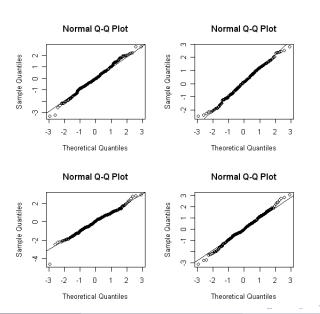
QQ Plot for n = 50



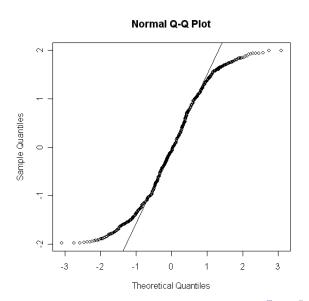
QQ Plot for n = 100



QQ Plot for n = 300



Normality NOT OK



Checking for Independence

- It is assumed that $var[\varepsilon] = \sigma^2 I$.
- Under assumption of normality this is equivalent to independence

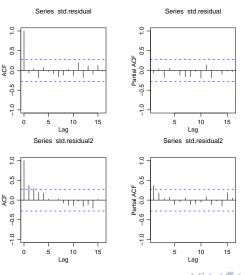
Difficult to check this assumption in practice.

- One thing to check for is clustering, which may suggest dependence.
 - \hookrightarrow e.g. identifying groups of related individuals with correlated responses
 - When observations are time-ordered can look at correlation $\operatorname{corr}[r_t, r_{t+k}]$ or partial correlation $\operatorname{corr}[r_t, r_{t+k} | r_{t+1}, \dots, r_{t+k-1}]$. When such correlations exist, we enter the domain of *time series*.

Existence of dependence:

- seriously affects estimator reliability
- inflates standard errors

Checking for Independence



Identifying Influential Observations

An influential observation can usually be categorised as an:

- outlier (relatively easier to spot by eye)
 OR
- leverage point (not as easy to spot by eye)

Influential observations

- May or may not decisively affect model validity.
- Require scrutiny on an individual basis and consultation with the data expert.

David Brillinger (Berkeley): You will not find your Nobel prize in the fit, you will find it in the outliers!

Influential observations may reveal unanticipated aspects of the scientific problem that are worth studying, and so must not simply be scorned as "non-conformists"!

Outliers

An *outlier* is an observation that stands out in some way from the rest of the observations, causing *Surprise!* Exact mathematical definition exists (Tukey) but we will not pursue it.

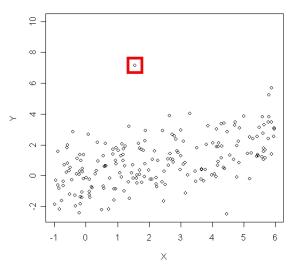
- In regression, outliers are points falling far from the cloud surrounding the regression line (or surface).
- They have the effect of "pulling" the regression line (surface) toward them.

Outliers can be checked for visually through:

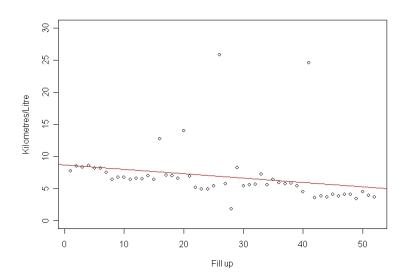
- The regression scatterplot.
- Residual Plots.
 - \hookrightarrow Points that fall beyond (-2,2) in the (\hat{y},r) plot.

Outliers may result from a data registration error, or a single extreme event. They can, however, result because of a deeper inadequacy of our model (especially if there are many!).

An Outlier



Professor's Van: Outliers



Leverage and Leverage Points

- Outliers may be influential: they "stand out" in the "y-dimension".
- However an observation may also be influential because of unusual values in the "x-dimension".
- Such influential observations cannot be so easily detected through plots.

Call (x_j, y_j) the *j-th* case and notice that

$$\operatorname{\mathsf{var}}(y_j - \hat{y}_j) = \operatorname{\mathsf{var}}(e_j) = \sigma^2(1 - h_{jj}).$$

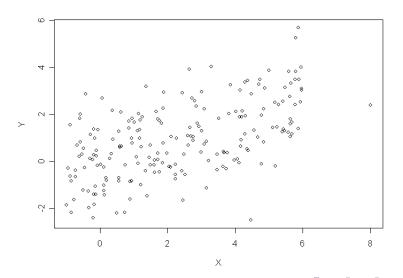
If $h_{jj} \approx 1$, then the model is constrained so $\hat{y}_j = x_j^\top \hat{\beta} \simeq y_j!$ (i.e., need a separate parameter entirely devoted to fitting this observation!)

- h_{jj} is called the *leverage* of the j-th case.
- ullet since ${\sf trace}(H) = \sum_{i} h_{jj} = p$, cannot have low leverage for all cases
- a good design corresponds to $h_{jj} \simeq p/n$ for all j.

<u>Leverage point</u>: (rule of thumb) if $h_{jj} > 2p/n$ observation needs further scrutiny—e.g., fitting again without j-th case and studying effect.

Outlier+Leverage Point = TROUBLE

A (very) Noticeable Leverage Point



Assessing the Influence of an Observation

- How to find cases having strong effect on fitted model?
- Idea: see effect when case j, i.e., (x_j, y_j) , is dropped.
- Let $\hat{\beta}_{-j}$ be the LSE when model is fitted to data without case j, and let $\hat{y}_{-j} = X \hat{\beta}_{-j}$ be the corresponding fitted value.
- Define Cook's distance

$$C_j = rac{1}{ps^2} (\hat{y} - \hat{y}_{-j})^ op (\hat{y} - \hat{y}_{-j}),$$

which measures scaled distance between \hat{y} and \hat{y}_{-i} .

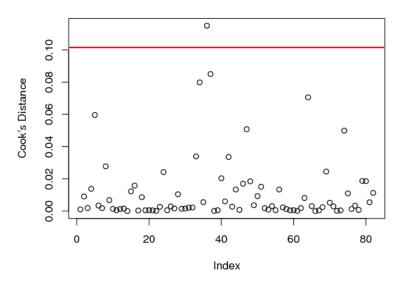
Can show that

$$C_j=rac{r_j^2h_{jj}}{p(1-h_{jj})},$$

so large C_j implies large r_j and/or large h_{jj} .

- Cases with $C_i > 8/(n-2p)$ worth a closer look (rule of thumb)
- ullet Plot C_j against index $j=1,\ldots,n$ and compare with 8/(n-2p) level.

A Cook Distance Plot



Summary

Diagnostic plots usually constructed:

- ullet y against columns of X
 - \hookrightarrow check for linearity and outliers
- ullet standardized residual r against columns of X
 - \hookrightarrow check for linearity
- ullet r against explanatories not included
 - \hookrightarrow check for variables left out
- ullet r against fitted value \hat{y}
- Normal quantile plot
 - \hookrightarrow check for normality
- Cook's distance plot
 - \hookrightarrow check for influential observations

Detour: Reminder on Hypothesis Tests

Detour: Very brief Reminder on Testing Hypotheses

- Scientific theories lead to assertions that are testable using empirical data.
- Data may discredit the theory (call it the *hypothesis*) or not (i.e., empirical findings reasonable under hypothesis).
- Example: Theory of "luminoferous aether" in late 19th century to explain light travelling in vacuum. Discredited by Michelson-Morley experiment.
- Similarities with the logical/mathematical concept of a *necessary condition*.

Hypothesis Testing Setup

- H_0 : The null hypothesis
- $\begin{cases} Y, & \text{data} \\ T(\cdot), & \text{test statistic, assumed positive} \\ \hookrightarrow & \text{the experimental setup to test theory} \end{cases}$

INTUITION:

- The null hypothesis would predict a certain plausible range of values for T(Y) (plausible results of the experiment).
- We would say that the assertion made by the null hypothesis (theory) is not supported by the data if T(Y) is an extreme (unlikely) observation given the range of plausible values predicted by the hypothesis (if the experimental evidence appears to be inconsistent with the theory).

Hypothesis Testing Setup

Plausibility of different values of $T(\cdot)$ under the theory H_0

 \rightarrow described by the distribution of T(Y) under the null hypothesis:

$$\mathbb{P}_{H_0}[T(Y) \in \cdot]$$

Suppose that we perform the experiment T(Y) and the result is T(Y) = t. The result t is judged to be incompatible with the hypothesis when

$$p = \mathbb{P}_{H_0}[T(Y) \geq t]$$

is small. The value p is called the p-value.

- ullet Small values of p suggest that we have observed something which is unlikely to happen if H_0 holds true.
- ullet Large values of p suggest that what we have observed is plausible if H_0 holds true.

Thus we reject the null hypothesis when p is small.

◆ロト ◆部ト ◆草ト ◆草ト 草 り900

Example: Mean of a Normal Distribution

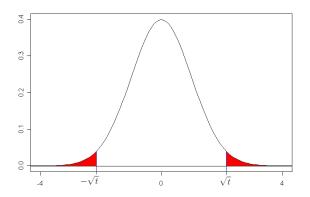
- Let $X \sim \mathcal{N}(\mu, \sigma^2)$, unknown mean, known variance
- $H_0: \mu = 0$
- Data: $Y = (X_1, ..., X_n), X_i \stackrel{d}{=} X, X_i \text{ indep } X_j \text{ for } i \neq j.$
- Test statistic: $T(Y) = \left(\frac{\sum_{i} X_{i}}{\sigma \sqrt{n}}\right)^{2}$.
- ullet Perform experiment (i.e., obtain values $y=(x_1,\ldots,x_n)$) and observe T(y)=t.

Under the null hypothesis: $T(Y) \stackrel{H_0}{\sim} \chi_1^2$. Hence:

$$\begin{array}{rcl} p & = & \mathbb{P}_{H_0}[\,T(\,Y) \geq t] \\ & = & \mathbb{P}[\chi_1^2 \geq t] \\ & = & \mathbb{P}[\{\mathcal{N}(0,1) \leq -\sqrt{t}\} \cup \{\mathcal{N}(0,1) \geq \sqrt{t}\}]. \end{array}$$

Usually reject when p < 0.05.

Example continued and two comments



- For continuous test statistics with everywhere positive densities, if we reject H_0 whenever $p < \alpha$, then our (type I) error probability is α .
 - \hookrightarrow The probability of rejecting H_0 when in fact H_0 is true is α
- There is a close link with confidence intervals.
 - \hookrightarrow We will only illustrate this link in a specific example

Anthony Davison (EPFL)

Example: Testing for $c^{\top}\beta = 0$ in a Gaussian Regression

- Let $Y \sim \mathcal{N}(X\beta, \sigma^2 I)$, unknown β , unknown variance
- $H_0: c^{\top}\beta = 0$
- Data: (y, X).
- Test statistic: $T(Y) = \left(\frac{c^{\top}\hat{\beta}}{S\sqrt{c^{\top}(X^{\top}X)^{-1}c}}\right)^2$

Suppose we observe $T(y) = \tau$ and let $W \sim t_{n-p}$. Then,

$$p = \mathbb{P}_{H_0}[T(Y) \ge \tau] = \mathbb{P}[\{W \le -\sqrt{\tau}\} \cup \{W \ge \sqrt{\tau}\}].$$

Reject the null hypothesis if $p < \alpha$, some small α .

• Identical to building a $1-\alpha$ confidence interval for $c^\top\beta$ based on $\frac{c^\top\beta-c^\top\beta}{S\sqrt{c^\top(X^\top X)^{-1}c}}$ and rejecting the hypothesis H_0 if and only if the interval contains zero.

Many many issues remain (this was just a reminder!)

- The role of an alternative hypothesis.
- How do we choose a test statistic?
- Are there optimal tests in a given situation?
- Simple and composite hypotheses.
- One and two-sided tests.
- Limitations of hypothesis testing ...
- ...
- Review your 2nd year Probability/Statistics course!

Nested Model Selection & ANOVA

Comparing Nested Models

Consider the model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon.$$

This will always have higher R^2 than the sub-model:

$$y=\beta_0+\beta_1x_1+\varepsilon.$$

- Why? (think of geometry...)
- The question is: is the first model *significantly* better than the second one?
 - \hookrightarrow i.e. does the first model explain the variation adequately enough, or should we incorporate extra explanatory variables? Need a quantitative answer.

Rephrasing The Question: Gaussian Linear Model

Model is $y = X\beta + \varepsilon$ with $\varepsilon \sim \mathcal{N}_n(0, \sigma^2 I)$. Estimate:

$$\hat{\beta} = (X^{\top} X)^{-1} X^{\top} y.$$

Interpretation: $\hat{y} = X \hat{\beta} = Hy$ is the projection of y into the column space of X, $\mathcal{M}(X)$. This subspace has dimension p, when X is of full column rank p. Now for q < p write X in block notation as

$$X = (X_1 X_2 X_2).$$

Interpretation: X_1 is built by the first q columns of X and X_2 by the rest. Similarly write $\beta = (\beta_1 \ \beta_2)^\top$ so that:

$$y = X\beta + \varepsilon = (X_1 \ X_2) {eta_1 \choose eta_2} + \varepsilon = X_1\beta_1 + X_2\beta_2 + \varepsilon.$$

Our question can now be stated as:

• Is $\beta_2 = 0$?

Residual Sums of Squares

Let $H_1 = X_1(X_1^\top X_1)^{-1} X_1^\top$, and $\hat{y}_1 = H_1 y$, $e_1 = y - \hat{y}_1$.

Pythagoras tells us that:

Notice that $RSS(\hat{\beta}_1) \geq RSS(\hat{\beta})$ always (think why!)

So the idea is simple: to see if it is worthwhile to include β_2 we will compare how much larger $RSS(\hat{\beta}_1)$ is compared to $RSS(\hat{\beta})$.

- ullet Equivalently, we can look at a ratio like $\{RSS(\hat{eta}_1) RSS(\hat{eta})\}/RSS(\hat{eta})$
- To construct a test based on this quantity, we need to figure out distributions

. . .

Geometry Revisited



Distributions of Sums of Squares

Theorem

We have the following properties:

- (A) $e e_1 \perp e$;
- (B) $||e||^2 = RSS(\hat{\beta})$ and $||e_1 e||^2 = RSS(\hat{\beta}_1) RSS(\hat{\beta})$ are independent;
- (C) $||e||^2 \sim \sigma^2 \chi_{n-p}^2$;
- (D) under the hypothesis $H_0: \beta_2=0$, $\|e_1-e\|^2\sim \sigma^2\chi_{p-q}^2$.

Proof.

(A) holds since $e-e_1=y-\hat{y}-y+\hat{y}_1=-\hat{y}+\hat{y}_1\in \mathcal{M}(X_1,X_2)$ but $e\in [\mathcal{M}(X_1,X_2)]^{\perp}.$

To show (B), we notice that

$$e_1 = (I - H_1)y = (I - H_1H)y$$

because $\mathcal{M}(X_1) \subset \mathcal{M}(X_1, X_2)$.

◆ロ → ◆母 → ◆ き → も き め へ で

proof continued

Therefore,

$$e - e_1 = (I - H)y - (I - H_1H)y = y - Hy - y + H_1Hy = (H_1 - I)Hy.$$

But recall that $y \sim \mathcal{N}(X\beta, \sigma^2 I)$. Therefore, to prove independence of $e - e_1 = (H_1 - I)Hy$ and e = (I - H)y, we need to show that

$$(H_1 - I)H[\sigma^2 I](I - H)^{\top} = 0.$$

This is clearly the case since H(I - H) = 0, proving (B).

(C) follows immediately, since we have already proven last time that $\forall \beta$ (even when $\beta_2 = 0$)

$$RSS(\hat{\beta}) \sim \sigma^2 \chi_{n-p}^2$$

proof continued.

To prove (D), we note that

$$e - e_1 = (H_1 - I)Hy \sim \mathcal{N}\{(H_1 - I)HX\beta, \sigma^2(\underbrace{H_1 - I)HH^{\top}(H_1 - I)^{\top}}\}.$$

But $HX = X(X^{T}X)^{-1}X^{T}X = X$. So, in block notation,

$$e - e_1 \sim \mathcal{N}((H_1 - I)X_1\beta_1 + (H_1 - I)X_2\beta_2, \sigma^2(H - H_1)).$$

Now $(I - H_1)X_1\beta_1 = 0$ always, since $I - H_1$ projects onto $\mathfrak{M}^{\perp}(X_1)$. Therefore,

$$e - e_1 \sim \mathcal{N}(0, \sigma^2(H - H_1)),$$
 when $\beta_2 = 0$.

Now observe that $(H-H_1)^{\top}=(H-H_1)$ and $(H-H_1)^2=(H-H_1)$ (because $\mathcal{M}(X_1)\subset\mathcal{M}(X_1,X_2)$). Thus,

$$egin{aligned} e-e_1 &\sim \mathcal{N}(0,\sigma^2(H-H_1)^2) \implies e-e_1 &\stackrel{d}{=} & (H-H_1)arepsilon \ &\Longrightarrow RSS(\hat{eta}_1)-RSS(\hat{eta}) = \|e-e_1\|^2 &\stackrel{d}{=} & arepsilon^ op (H-H_1)arepsilon \sim \sigma^2\chi^2_{p-q}. \end{aligned}$$

since $(H-H_1)$ is symmetric idempotent with trace p-q and $\varepsilon \sim \mathcal{N}(0,\sigma^2 I_n)$.

Relative Sum of Square Reductions

Corollary

We conclude that, under the hypothesis $\beta_2 = 0$,

$$\frac{\left(\frac{RSS(\hat{\beta}_1) - RSS(\hat{\beta})}{p - q}\right)}{\left(\frac{RSS(\hat{\beta})}{n - p}\right)} \sim F_{p - q, n - p}$$

The *F*-Test

Distributional results suggest the following test:

- Have $Y \sim \mathcal{N}(X_1\beta_1 + X_2\beta_2, \sigma^2 I)$
- $H_0: \beta_2 = 0$
- Data: (y, X_1, X_2) .

$$ullet$$
 Test statistic: $T=rac{\left(rac{RSS(\hat{eta}_1)-RSS(\hat{eta})}{p-q}
ight)}{\left(rac{RSS(\hat{eta})}{n-p}
ight)}$

Then, under H_0 , it holds that $T \sim F_{p-q,n-p}$. Suppose we observe $T = \tau$. Then,

$$p = \mathbb{P}_{H_0}[T(Y) \ge \tau] = \mathbb{P}[F_{p-q,n-p} \ge \tau]$$

Reject the null hypothesis if $p < \alpha$, some small α , usually 0.05.

Example: Nested Models in Cement Data

►We fitted the model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \varepsilon$$

▶ But would the following simpler model be in fact adequate?

$$y = \beta_0 + \beta_1 x_1 + \varepsilon$$

- ▶ Intuitively: is the extra explanatory power of the "larger" model significant enough in order to justify its use instead of a simpler model? (i.e., is the residual vector for the "larger" model significantly smaller than that of the simpler model?)
- ▶ In this case, n = 13, p = 5, q = 2 and

$$RSS(\hat{\beta}) = 47.86, \qquad RSS(\hat{\beta}_1) = 1265.7$$

yielding

$$\tau = \frac{(1265.7 - 47.86)/(5 - 2)}{(47.86)/(13 - 5)} = 67.86$$

▶ $p = \mathbb{P}[F_{3,8} \ge 67.86] = 4.95 \times 10^{-6}$, so we reject the hypothesis $H_0: \beta_2 = \beta_3 = \beta_4 = 0$.

The Analysis of Variance

▶ Let $\mathbf{1}, X_1, \ldots, X_r$ be groups of columns of X (the "terms"), such that

$$X = (\underbrace{1}_{n \times 1} \underbrace{X_1}_{n \times q_1} \underbrace{X_2}_{n \times q_2} \dots \underbrace{X_r}_{n \times q_r}), \quad \beta = (\underbrace{\beta_0}_{1 \times 1} \underbrace{\beta_1}_{1 \times q_1} \underbrace{\beta_2}_{1 \times q_2} \dots \underbrace{\beta_r}_{1 \times q_r})^\top$$

We have

$$y = X\beta + \varepsilon = \mathbf{1}\beta_0 + X_1\beta_1 + \cdots + X_r\beta_r + \varepsilon$$

- ▶ Would like to do the same "F-test investigation", but this time do it term-by-term. That is, we want to look at the following sequence of nested models:
 - $y = 1\beta_0 + \varepsilon$
 - $y = \mathbf{1}\beta_0 + X_1\beta_1 + \varepsilon$
 - $\bullet \ y = \mathbf{1}\beta_0 + X_1\beta_1 + X_2\beta_2 + \varepsilon$
 - :
 - $\bullet \ y = \mathbf{1}\beta_0 + X_1\beta_1 + X_2\beta_2 + \cdots + X_r\beta_r + \varepsilon$

The Analysis of Variance

Proceed similarly as before. Define:

- $ullet \ X_0 := m{1} \ ext{and} \ \mathcal{X}_k = (X_0 \ X_1 \ X_2 \ \dots \ X_k), \quad k \in \{0,\dots,r\}$
- $ullet \ \mathcal{H}_k := \mathcal{X}_k (\mathcal{X}_k^ op \mathcal{X}_k)^{-1} \mathcal{X}_k^ op, \quad k \in \{0,\dots,r\}$
- $\bullet \ \hat{y}_k := \mathcal{H}_k y, \quad k \in \{0, \dots, r\}$
- $\bullet \ e_k = y \hat{y}_k, \quad k \in \{0, \ldots, r\}$
- Note that $\hat{y}_0 = \bar{y}$.
- ► As before, Pythagoras implies

$$\underbrace{\|y - \hat{y}_{0}\|^{2}}_{\|e_{0}\|^{2}} = \underbrace{\|y - \hat{y}\|^{2}}_{\|e_{r}\|^{2}} + \underbrace{\|\hat{y} - \hat{y}_{r-1}\|^{2}}_{\|e - e_{r-1}\|^{2}} + \dots + \underbrace{\|\hat{y}_{1} - \hat{y}_{0}\|^{2}}_{\|e_{1} - e_{0}\|^{2}}$$

$$= \underbrace{\|e_{r}\|^{2}}_{BSS_{r}} + \sum_{k=0}^{r} \underbrace{\|e_{k+1} - e_{k}\|^{2}}_{BSS_{r+1}BSS_{r+1}}$$

with RSS_k the residual sum of squares for \hat{y}_k , with ν_k degrees of freedom.

Anthony Davison (EPFL)

The Analysis of Variance

Some observations:

- $RSS_k RSS_{k+1}$ is the reduction in residual sum of squares caused by adding X_k , when the model already contains X_0, \ldots, X_{k-1} .
- RSS_r and $\{RSS_k RSS_{k+1}\}_{k=0}^r$ are all mutually independent.
- Obviously, $\nu_0 \geq \nu_1 \geq \nu_2 \geq \cdots \geq \nu_r$
- $\nu_{k+1} = \nu_k$ if $X_{k+1} \in \mathcal{M}(\mathcal{X}_k)$.
- ▶ Given this information, we want to see how adding each term in the model sequentially, affects the explanatory capacity of the model.

ANOVA Table

Terms	df	Residual RSS	Terms added	df	Reduction in RSS	F-test
1	n-1	RSS_0				
$1, X_1$	$ u_1$	RSS_1	X_1	$n-1-\nu_1$	RSS_0-RSS_1	
$1, X_1, X_2$	$ u_2$	RSS_2	X_2	$ u_1 - u_2$	RSS_1-RSS_2	
		-				
:		:	:	:	:	
$1, X_1, \ldots, X_r$	$ u_r$	RSS_r	X_r	$\nu_{r-1} - \nu_r$	$RSS_{r-1} - RSS_r$	

The F-statistic for testing the significance of the reduction in RSS when X_k is added to the model containing terms $1, X_1, \ldots, X_k$ is

$$F_k = rac{(RSS_{k-1} - RSS_k)/(
u_{k-1} -
u_k)}{RSS_r/
u_r},$$

and $F_k \sim F_{\nu_{k-1}-\nu_k,\nu_r}$ under the null hypothesis $H_0: \beta_k = 0$.

Large values of F_k relative to the null distribution are evidence against H_0 .

Anthony Davison (EPFL)

Example: Nested Sequence in Cement Data

- Reductions in overall sum of squares when sequentially entering terms x_1 , x_2 , x_3 and x_4 .
- Does adding extra variables improve model significantly?

	Df	Red Sum Sq	F value (au)	p-value
$\overline{x_1}$	1	1450.08	242.37	2.88×10^{-7}
x_2	1	1207.78	201.87	5.86×10^{-7}
x_3	1	9.79	1.64	0.2366
x_4	1	0.25	0.04	0.8441
Residual SSq	8	47.86		

▶ In this case, each term is a single column (variable).

Warning!

- Significance of entering a term depends on how the sequence is defined: when entering terms in different order get different results! (why?)
- When a term is entered "early" and is significant, this does not tell us much (why?)
- When a term is entered "late" is significant, then this is quite informative (why?)
- ▶ Why is this true? Are there special cases when the order of entering terms doesn't matter?

The Effect of Orthogonality

▶ Consider terms X_0, X_1, X_2 from X, so

$$X = (X_0 \atop n imes 1 \atop n imes q_1 \atop n imes q_1 \atop n imes q_2), \quad eta = (eta_0 \atop 1 imes 1 \atop 1 imes q_1 \atop 1 imes q_2)^ op$$

Assume orthogonality of terms, i.e. $X_i^{\top}X_j=0, \quad i\neq j$ Notice that in this case

$$\hat{\beta} = \begin{pmatrix} X_0^\top X_0 & 0 & 0 \\ 0 & X_1^\top X_1 & 0 \\ 0 & 0 & X_2^\top X_2 \end{pmatrix}^{-1} \begin{pmatrix} X_0 & X_1 & X_2 \end{pmatrix}^\top y$$

$$\implies \hat{\beta}_0 = \bar{y}, \ \hat{\beta}_1 = (X_1^\top X_1)^{-1} X_1^\top y, \ \hat{\beta}_2 = (X_2^\top X_2)^{-1} X_2^\top y$$

$$\implies \beta_0 = \bar{y}, \ \beta_1 = (X_1 \ X_1)^{-1} X_1 \ y, \ \beta_2 = (X_2 \ X_2)^{-1} X_2 \ y$$

It follows that the reductions of sums of squares are unique, in the sense that they do not depend upon the order of entry of the terms in the model. (show this!) Intuition: X_i contains completely independent linear information from X_j for y, $i \neq j$

Model Selection / Collinearity / Shrinkage

Theory VS Practice

▶ **Theory:** We are given a relationship

$$y = X\beta + \varepsilon$$

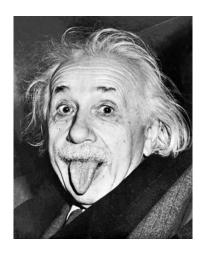
and asked to provide estimators, tests, confidence intervals, optimality properties . . .

...and we can do it with complete success!

- **Practice**: We are given data (y, X) and suspect a linear relationship between y and some of the columns of X. We don't know a priori which exactly!
- \hookrightarrow Need to select a "most appropriate" subset of the columns of X
- General principle: parsimony (Latin parsimonia: sparingness; simplicity and least number of requisites and assumptions; economy or frugality of components and associations).

◆ロト ◆部 → ◆注 > ◆注 > 注 のQで

Albert Einstein (1879–1955)



'Everything should be made as simple as possible, but no simpler.'

Anthony Davison (EPFL) Linear Models 147 / 256

William of Ockham (?1285-1347)

Occam's razor: It is vain to do with more what can be done with fewer. Given several explanations of the same phenomenon, we should prefer the simplest.

Exploratory Data Analysis

Graphical exploration → provides initial picture:

- plots of y against candidate variables;
- ullet plots of transformations of y against candidate variables;
- plots of transformations of certain variables against y;
- plots of pairs of candidate variables.

This will often provide a starting point, but:

- Automatic Model Selection: Need objective model comparison criteria, as a screening device.
 - \hookrightarrow We saw how to do an F-test, but what if models to be compared are not nested?
- **Automatic Model Building**: Situations when *p* large, so there are *lots* of possible models.
 - \hookrightarrow Automatic methods for building a model? We saw that ANOVA depends on the order of entry of variables in the model ...

Automatic Model Selection

Consider design matrix X with p variables.

- 2^p possible models!
- Denote set of all models generated by X by 2^X (model powerset)
- If wish to consider k different transformations of each variable, then p becomes (1+k)p
- Fast algorithms (branch and bound, leaps in R) exist to fit them, but they don't work for *large* p, and anyway . . .
- ... need criterion for comparison.

So given a collection of models, we need an automatic (objective) way to pick out a "best" one (unfortunately cannot look carefully at all of them, BUT NOTHING replaces careful scrutiny of the final model by an experienced researcher).

Model Selection Criteria

Many possible choices, none universally accepted. Some (classical) possibilities:

- Prediction error based criteria (CV)
- Information criteria (AIC, BIC, ...)
- Mallow's C_p statistic

Before looking at these, let's introduce terminology: Suppose that the truth is

 $y = X\beta + \varepsilon$ but with $\beta_r = 0$ for some subset β_r of β .

- The true model contains only the columns for which $\beta_r \neq 0$
 - \hookrightarrow Equivalently, the true model uses X_{\heartsuit} as the design matrix, the latter being the matrix of columns of X corresponding to non-zero coefficients.
- A correct model is the true model plus extra columns.
 - \hookrightarrow Equivalently, a correct model has a design matrix X_{\diamondsuit} , such that $\mathcal{M}(X_{\heartsuit}) \subset \mathcal{M}(X_{\diamondsuit})$.
- A wrong model is a model that does not contain all the columns of the true model.
 - \hookrightarrow Equivalently, a correct model has a design matrix X_{\diamondsuit} , such that $\mathcal{M}^{\perp}(X_{\heartsuit}) \cap \mathcal{M}(X_{\diamondsuit}) \neq \emptyset$, assuming that X_{\heartsuit} is of full rank.

Expected Prediction Error

▶ We may wish to choose a model by minimising the error we make on average, when predicting a future observation given our model.

- Our "experiment is":
 - Design matrix Xresponse y at X

Every model $f \in 2^X$, will yield fitted values $\hat{y}(f) = H_f y$. And suppose we now obtain new independent responses y_+ for the same "experimental setup" X. Then, one approach is to select the model

$$f^* = \operatorname*{arg\,min}_{f \in 2^X} \underbrace{rac{1}{n} \mathbb{E}\left\{ \|y_+ - \hat{y}(f)\|^2
ight\}}_{\Delta(f)},$$

where expectation is taken over both y and y_+ .

The Bias/Variance Tradeoff

Let X be a design matrix, and let X_{\diamondsuit} $(n \times p)$ and X_{\heartsuit} $(n \times q)$ be matrices built using columns of X. Suppose that the true relationship between y and X is

$$y = \underbrace{X_{\heartsuit} \beta}_{u} + \varepsilon$$

but we use the matrix X_{\diamondsuit} instead of X_{\heartsuit} (i.e., we fit a different model). Therefore our fitted values are

$$\hat{y} = (X_{\Diamond}^{\top} X_{\Diamond})^{-1} X_{\Diamond}^{\top} y = H_{\Diamond} y.$$

Now suppose that we obtain new observations y_+ corresponding to the same design \boldsymbol{X}

$$y_+ = X_{\odot}\beta + \varepsilon_+ = \mu + \varepsilon_+.$$

Then, observe that

$$y_{+} - \hat{y} = \mu + \varepsilon_{+} - H_{\diamondsuit}(\mu + \varepsilon)$$

= $(I - H_{\diamondsuit})\mu + \varepsilon_{+} - H_{\diamondsuit}\varepsilon$.

The Bias/Variance Tradeoff

It follows that

$$\begin{aligned} \|y_{+} - \hat{y}\|^{2} &= (y_{+} - \hat{y})^{\top} (y_{+} - \hat{y}) \\ &= \mu^{\top} (I - H_{\diamondsuit}) \mu + \varepsilon^{\top} H_{\diamondsuit} \varepsilon + \varepsilon_{+}^{\top} \varepsilon_{+} + [\text{cross terms}]. \end{aligned}$$

Since $\mathbb{E}[\text{cross terms}] = 0$ (why?), we observe that

$$\Delta = \left\{ \begin{array}{ll} n^{-1}\mu^\top (I-H_\diamondsuit)\mu + (1+p/n)\sigma^2, & \text{if model wrong,} \\ (1+p/n)\sigma^2, & \text{if model correct,} \\ (1+q/n)\sigma^2, & \text{if model true.} \end{array} \right.$$

- Selecting a *correct model* instead of the *true model* brings in additional variance, because q < p.
- Selecting a wrong model instead of the true model results in bias, since $(I H_{\Diamond})\mu \neq 0$ when μ is not in the column space of X_{\Diamond} .
- Must find a balance between small variance (few columns in the model) and small bias (all columns in the model).

4 □ > 4 圖 > 4 ■ > 4 ■ > ■ 9 へ ○

Cross Validation

▶ Impossible to calculate Δ (depends on unknown μ and σ^2), so we must find a proxy (estimator) $\widehat{\Delta}$.

Suppose that n is large so that we can split the data in two pieces:

- X^* , y^* used to estimate the model
- \bullet X', y' used to estimate the prediction error for the model

The estimator of the prediction error will be

$$\widehat{\Delta} = (n')^{-1} ||y' - X' \hat{\beta}^*||^2.$$

In practice n can be small and we often cannot afford to split the data (variance of $\hat{\Delta}$ is too large).

Instead we use the *leave-one-out cross validation* sum of squares:

$$n\widehat{\Delta}_{CV} = CV = \sum_{j=1}^n (y_j - x_j^{ op} \hat{eta}_{-j})^2,$$

where $\hat{\beta}_{-j}$ is the estimate produced when dropping the jth case.

Cross Validation

No need to perform n regressions since

$$CV = \sum_{j=1}^n rac{(y_j - x_j^{ op} \hat{m{eta}})^2}{(1 - h_{jj})^2},$$

so the full regression may be used (show this!). Alternatively one may use a more stable version:

$$GCV = \sum_{j=1}^n rac{(y_j - x_j^ op \hat{eta})^2}{(1 - \mathsf{trace}(H)/n)^2},$$

where "G" stands for "generalised", and we guard against any $h_{jj} \approx 1$. It holds that:

$$\mathbb{E}[GCV] = rac{\mu^+(I-H)\mu}{(1-p/n)^2} + rac{n\sigma^2}{1-p/n} pprox n\Delta.$$

 \triangleright Suggests strategy: pick variables to minimise (G)CV.

Akaike's Information Criterion

Criteria can be obtained based on the notion of information (relative entropy).

• Same basic idea as for prediction error: aim to choose candidate model f(y) to minimise *information distance*:

$$\int \log \left\{ rac{g(y)}{f(y)}
ight\} g(y) dy \geq 0,$$

where g(y) represents true model—equivalent to maximising expected log likelihood

$$\int \log f(y)g(y)dy.$$

• Can show that (apart from constants) information distance is estimated by

$$\mathsf{AIC} = -2\hat{\ell} + 2p \quad (\equiv n \log \hat{\sigma}^2 + 2p \text{ in linear model})$$

where $\hat{\ell}$ is maximised log likelihood for given model, and p is number of parameters.

Other Information Criteria

Improved (corrected) version of AIC for regression problems:

$$\mathsf{AIC}_c \equiv \mathsf{AIC} + \frac{2p(p+1)}{n-p-1}.$$

Also can use Bayes' information criterion

$$\mathsf{BIC} = -2\hat{\ell} + p\log n.$$

Mallows suggested

$$C_p = \frac{SS_p}{s^2} + 2p - n,$$

where SS_p is RSS for fitted model and s^2 estimates σ^2 .

- Comments:
 - AIC tends to choose models that are too complicated, buts AIC_c cures this somewhat;
 - BIC is model selection consistent—if the true model is among those fitted, BIC chooses it with probability $\to 1$ as $n \to \infty$ (for fixed p).

Simulation Experiment

For each $n \in \{10, 20, 40\}$ we construct $20 \ n \times 7$ design matrices. We multiply each of these design matrices from the right with $\beta = (1, 2, 3, 0, 0, 0, 0, 0)^{\top}$ and we add a $n \times 1$ Gaussian error. We do this independently 50 times, obtaining 1000 regressions with p = 3. Selected models with 1 or 2 covariates have a bias term, and those with 4 or more covariates have excess variance.

n				Numbe	er of co	variate	S	
		1	2	3	4	5	6	7
10	C_p		131	504	91	63	83	128
	BIC		72	373	97	83	109	266
	AIC		52	329	97	91	125	306
	AIC_c	15	398	565	18	4		
20	C_p		4	673	121	88	61	53
	віс		6	781	104	52	30	27
	AIC		2	577	144	104	76	97
	AIC_c		8	859	94	30	8	1
40	C_p			712	107	73	66	42
	ві́С			904	56	20	15	5
	AIC			673	114	90	69	54
	AIC_c			786	105	52	41	16

Automatic Model Building

▶ We saw so far:

Automatic Model Selection: build a set of models and select the "best" one.

Now look at different philosophy:

Automatic Model Building: construct a single model in a way that would hopefully provide a good one.

There are three standard methods for doing this:

- Forward Selection
- Backward Elimination
- Stepwise Selection

CAUTION: Although widely used, these have no theoretical basis. Element of arbitrariness . . .

Forward/Backward/Stepwise Selection

- Forward selection: starting from the model with constant only,
 - 1 add each remaining term separately to the current model;
 - if none of these terms is significant, stop; otherwise
 - update the current model to include the most significant new term; go to step 1.
- Backward elimination: starting from the model with all terms,
 - if all terms are significant, stop; otherwise
 - ${f Q}$ update current model by dropping the term with the smallest F statistic; go to step 1.
- Stepwise: starting from an arbitary model,
 - consider three options—add a term, delete a term, swap a term in the model for one not in the model, and choose the most significant option;
 - 2 if model unchanged, stop; otherwise go to step 1.

Forward/Backward/Stepwise Selection

Some thoughts:

- Each procedure may produce a different model.
- Systematic search minimising Prediction Error, AIC or similar over all possible models is preferable— BUT not always feasible (e.g., when p large).
- Stepwise methods can fit 'highly significant' models to purely random data! Main problem is lack of objective function.
- Can be improved by comparing Prediction Error/AIC for different models at each step — uses objective function, but no systematic search.

Example: Nuclear Power Station Data

Data on light water reactors (LWR) constructed in the USA. The covariates are date (date construction permit issued), T1 (time between application for and issue of permit), T2 (time between issue of operating license and construction permit), capacity (power plant capacity in MWe), PR (=1 if LWR already present on site), NE (=1 if constructed in north-east region of USA), CT (=1 if cooling tower used), BW (=1 if nuclear steam supply system manufactured by Babcock–Wilcox), N (cumulative number of power plants constructed by each architect-engineer), PT (=1 if partial turnkey plant).

	cost	date	T_1	T_2	capacity	PR	NE	CT	BW	N	PT
1	460.05	68.58	14	46	687	0	1	0	0	14	0
2	452.99	67.33	10	73	1065	0	0	1	0	1	0
3	443.22	67.33	10	85	1065	1	0	1	0	1	0
4	652.32	68.00	11	67	1065	0	1	1	0	12	0
5	642.23	68.00	11	78	1065	1	1	1	0	12	0
6	345.39	67.92	13	51	514	0	1	1	0	3	0
7	272.37	68.17	12	50	822	0	0	0	0	5	0
8	317.21	68.42	14	59	457	0	0	0	0	1	0
:											
32	270.71	67.83	7	80	886	1	0	0	1	11	1

Example: Nuclear Power Station Data

	Full n	nodel	Bac	kward	For	ward
	Est	t	Est	t	Est	t
Int.	-14.24	-3.37	-13.26	-4.22	-7.62	-2.66
date	0.2	3.21	0.21	4.91	0.13	3.38
logT1	0.092	0.38				
logT2	0.29	1.05				
logcap	0.694	5.10	0.72	6.09	0.67	4.75
PR	-0.092	-1.20				
NE	0.25	3.35	0.24	3.36		
CT	0.12	1.82	0.14	ļ		
BW	0.033	0.33				
log(N)	-0.08	-1.74	-0.08	-2.11		
PT	-0.22	-1.83	-0.22	-1.99	-0.49	-4.77
s (df)	0.164	(21)	0.15	9 (25)	0.195	5 (28)

More Dangers of "Big" Models

Recall: \hat{y} is projection of y onto $\mathfrak{M}(X)$

 \hookrightarrow Adding more variables (columns) into X "enlarges" $\mathcal{M}(X)$... IF the rank increases by the # of new variables

Consider two extremes

- ullet Adding a new variable $X_{p+1} \in \mathfrak{M}^{\perp}(X)$
 - \hookrightarrow Gives us completely "new" information.
- Adding a new variable $X_{p+1} \in \mathcal{M}(X)$
 - → Gives no "new" information cannot even do least squares (why not?)

What if we are between the two extremes? What if

$$X_{p+1} \notin \mathcal{M}(X)$$
 but $X(X^{\top}X)^{-1}X^{\top}X_{p+1} = HX_{p+1} \simeq X_{p+1}$?

We can certainly fit the regression, but what will happen?

Unstable Matrix Inversion

Using block matrix properties, have

$$\operatorname{\mathsf{var}}(\hat{oldsymbol{eta}}) = \sigma^2 \left[(X \ X_{p+1})^{ op} (X \ X_{p+1}) \right]^{-1}$$

with

$$\left[(X \ X_{p+1})^{\top} (X \ X_{p+1}) \right]^{-1} = \left[\begin{array}{cc} A & B \\ C & D \end{array} \right]$$

where

$$A = (X^{\top}X)^{-1} + (X^{\top}X)^{-1}X^{\top}X_{p+1} \\ \times (X_{p+1}^{\top}X_{p+1} - X_{p+1}^{\top}HX_{p+1})^{-1}X_{p+1}^{\top}X(X^{\top}X)^{-1},$$

$$B = -(X^{\top}X)^{-1}X^{\top}X_{p+1}(X_{p+1}^{\top}X_{p+1} - X_{p+1}^{\top}HX_{p+1})^{-1},$$

$$C = -(X_{p+1}^{\top}X_{p+1} - X_{p+1}^{\top}HX_{p+1})^{-1}X_{p+1}^{\top}X(X^{\top}X)^{-1},$$

$$D = (X_{p+1}^{\top}X_{p+1} - X_{p+1}^{\top}HX_{p+1})^{-1}.$$

Problem of Multicollinearity

 $\label{eq:multicollinearity:$

[simplest case: pairs of variables that are correlated]

BUT: might exist even if pairs of variables appear uncorrelated!

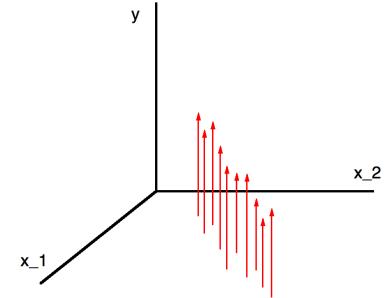
Can be caused by:

- Poor design [can try designing again],
- Inherent relationships [other remedies needed].

So what are the results?

- Huge variances of the estimators!
 - \hookrightarrow Can even flip signs for different data, to give the impression of inverse effects.
- Individual coefficients insignificant:
 - \hookrightarrow *t*-test *p*-values inflated.
- But global *F*-test might give significant result!

The Picket-Fence (Hocking & Pendleton)



Diagnosing Multicollinearity

Simple first steps:

- Look at scatterplots,
- Look at correlation matrix of explanatories,

Might not reveal more complex linear constraints, though.

• Look at the variance inflation factors:

$$VIF_j = \frac{\mathsf{var}(\hat{\beta}_j)||X_j||^2}{\sigma^2} = ||X_j||^2 [(X^\top X)^{-1}]_{jj}.$$

Can show that

$$VIF_j = rac{1}{1 - R_j^2}$$

where R_j^2 is the coefficient of determination for the regression

$$X_j = \beta_{0,j} + \beta_{1,j} X_1 + \dots + \beta_{j-1,j} X_{j-1} + \beta_{j+1,j} X_{j+1} + \dots + \beta_{p,j} X_p + \varepsilon,$$

measuring linear dependence of X_i on the other columns of X.

(ロ) (回) (重) (重) (重) の(で)

Let X_{-j} be the design matrix without the j-th variable. Then

$$R_{j}^{2} = \frac{\|X_{-j}(X_{-j}^{\top}X_{-j})^{-1}X_{-j}^{\top}X_{j}\|^{2}}{\|X_{j}\|^{2}} \in [0, 1]$$

is close to 1 if $\underbrace{X_{-j}(X_{-j}^{\top}X_{-j})^{-1}X_{-j}}_{H_{-j}}X_{j} \simeq X_{j}.$

Large values of VIF_j indicate that X_j is linearly dependent on the other columns of the design matrix.

Interpretation: how much the variance is inflated when including variable j as compared to the variance we would obtain if X_j were orthogonal to the other variables—how much worse are we doing as compared to the ideal case.

Rule of thumb: $VIF_i > 5$ or $VIF_i > 10$ considered to be "large".

More on Diagnosing Multicollinearity

Consider the spectral decomposition of $X^\top X$, $X^\top X = U \Lambda U^\top$ with $\Lambda = \mathrm{diag}\{\lambda_1,\ldots,\lambda_p\}$ and $U^\top U = I$. Then

$$\operatorname{rank}(X^{ op}X) = \#\{j: \lambda_j
eq 0\}, \qquad \det(X^{ op}X) = \prod_{j=1}^p \lambda_j.$$

Hence "small" λ_j 's mean "almost" reduced rank, revealing the effect of collinearity. Measure using *condition index*:

$$extit{CI}_j(X^ op X) := \sqrt{\lambda_{\mathsf{max}}/\lambda_j}$$

Global "instability" measured by the condition number,

$$CN(X^{\top}X) = \sqrt{\lambda_{\mathsf{max}}/\lambda_{\mathsf{min}}}$$

Rule of thumb: CN > 30 indicates moderate to significant collinearity, CN > 100 indicates severe collinearity (choices vary).

◆□▶ ◆□▶ ◆壹▶ ▼ ● りへ○

Remedies?

If design faulty, may redesign.

- \hookrightarrow Otherwise? Inherent relationships between explanatories.
 - Variable deletion attempt to remove problematic variables
 - \rightarrow E.g., by backward elimination.
 - \bullet Choose an orthogonal basis for $\mathfrak{M}(X)$ and use its elements as explanatories
 - ightarrow Use columns of U from spectrum, $X^{\top}X = U\Lambda U^{\top}$
 - \rightarrow OK for prediction
 - ightarrow Problem: lose interpretability

Other approaches?

Example: Body Fat Data

Body fat is measure of health \rightarrow not easy to measure! Collect 252 measurements on body fat and some explanatory variables.

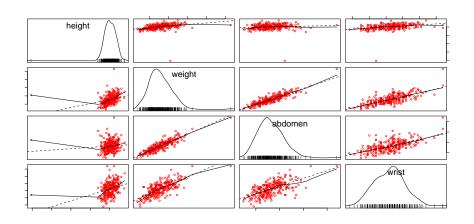
Can we use measuring tape and scales only to find body fat? Explanatory variables:

- age
- weight
- height
- biceps

- neck
- chest
- abdomen
- forearm

- hip
- thigh
- knee a
- ankle
- wrist

Some Scatterplots [library(car);scatterplot.matrix(. . .)]



Looks like we're in trouble. Let's go ahead and fit anyway . . .

Model Fit Summary

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-18.1885	17.3486	-1.05	0.2955
age	0.0621	0.0323	1.92	0.0562
weight	-0.0884	0.0535	-1.65	0.0998
height	-0.0696	0.0960	-0.72	0.4693
neck	-0.4706	0.2325	-2.02	0.0440
chest	-0.0239	0.0991	-0.24	0.8100
abdomen	0.9548	0.0864	11.04	0.0000
hip	-0.2075	0.1459	-1.42	0.1562
thigh	0.2361	0.1444	1.64	0.1033
knee	0.0153	0.2420	0.06	0.9497
ankle	0.1740	0.2215	0.79	0.4329
biceps	0.1816	0.1711	1.06	0.2897
forearm	0.4520	0.1991	2.27	0.0241
wrist	-1.6206	0.5349	-3.03	0.0027

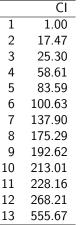
 $R^2 = 0.749$, F-test: $p < 2.2 \times 10^{-16}$.

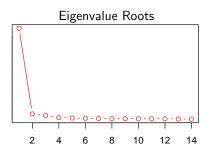
Split Data in Two and Fit Separately (Picket Fence)

	Estimate	$\Pr(> t)$	E	stimate	$\Pr(> t)$
(Intercept)	-32.6564	0.1393	- -	-1.2221	0.9730
age	0.1048	0.0153		0.0256	0.6252
weight	-0.1285	0.0502	=	-0.0237	0.8223
height	-0.0666	0.5207	=	-0.1005	0.7284
neck	-0.5086	0.0721	=	-0.4619	0.2635
chest	0.0168	0.9002	=	-0.0910	0.5877
abdomen	0.9750	0.0000		0.8924	0.0000
hip	-0.2891	0.1265	=	-0.0265	0.9130
thigh	0.3850	0.0565		0.0334	0.8793
knee	0.2218	0.5111	=	-0.1310	0.7366
ankle	0.4377	0.0694	=	-0.5037	0.3516
biceps	-0.1297	0.5485		0.4458	0.1179
forearm	0.8871	0.0174		0.2247	0.3750
wrist	-1.7378	0.0309	=	-1.5902	0.0560

Diagnostic Check

	VIF		
age	2.25	1	
weight	33.51	2	1
height	1.67	3	2
neck	4.32	4	5
chest	9.46	5	8
abdomen	11.77	6	10
hip	14.80	7	13
thigh	7.78	8	17
knee	4.61	9	19
ankle	1.91	10	21
biceps	3.62	11	22
forearm	2.19	12	26
wrist	3.38	13	55





Condition Number $\simeq 556$!

Variable Deletion: Backward Elimination

Multiple R-Squared: 0.7466, F-statistic p-value: < 2.2e-16

	Estimate	Std. Error	t value	Pr(> t)	VIF
(Intercept)	-22.6564	11.7139	-1.93	0.0543	
age	0.0658	0.0308	2.14	0.0336	2.05
weight	-0.0899	0.0399	-2.25	0.0252	18.82
neck	-0.4666	0.2246	-2.08	0.0388	4.08
abdomen	0.9448	0.0719	13.13	0.0000	8.23
hip	-0.1954	0.1385	-1.41	0.1594	13.47
thigh	0.3024	0.1290	2.34	0.0199	6.28
forearm	0.5157	0.1863	2.77	0.0061	1.94
wrist	-1.5367	0.5094	-3.02	0.0028	3.09

Variable Transformation: Eigenvector Basis

Define Z=XU as design matrix. R^2 =0.749, F-test p-value<2.2 imes 10 $^{-16}$

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-18.1885	17.3486	-1.05	0.2955
Z[, 1]	-0.1353	0.0619	-2.19	0.0297
Z[, 2]	-0.0168	0.0916	-0.18	0.8546
Z[, 3]	0.2372	0.1070	2.22	0.0276
Z[, 4]	-0.7188	0.0571	-12.58	0.0000
Z[, 5]	0.0248	0.0827	0.30	0.7649
Z[, 6]	0.4546	0.1001	4.54	0.0000
Z[, 7]	0.5903	0.1366	4.32	0.0000
Z[, 8]	-0.1207	0.1742	-0.69	0.4890
Z[, 9]	-0.0836	0.1914	-0.44	0.6627
Z[, 10]	0.5043	0.2082	2.42	0.0162
Z[, 11]	-0.5735	0.2254	-2.54	0.0116
Z[, 12]	0.3007	0.2628	1.14	0.2536
Z[, 13]	1.5168	0.5447	2.78	0.0058

From Rotation to Shrinkage

- Eigenvector approach rotates space so as to "free" the dependence of one coefficient β_j on others $\{\beta_i\}_{i\neq j}$
 - \hookrightarrow Imposes constraint on X (orthogonal columns)

```
Problem: lose interpretability! (prediction OK)
```

- Example: most significant "rotated" term in fat data: Z[,4]=-0.01*age -0.058*weight -0.011*height +0.46*neck -0.144*chest -0.441*abdomen +0.586*hip +0.22*thigh -0.197*knee -0.044*ankle -0.07*biceps -0.33*forearm -0.249*wrist
- Other approach to reduce this strong dependence?
 - \hookrightarrow Impose constraint on β ! How? (introduces bias)

Ridge Regression

Multicollinearity problem is that $\det \left[(X^\top X)^{-1} \right] \approx 0$ [i.e. $X^\top X$ almost not invertible]

A Solution: add a "small amount" of a full rank matrix to $X^{\top}X$.

For reasons to become clear soon, we standardise the design matrix:

- Write $X = (\mathbf{1} \ W)$, $\beta = (\beta_0 \ \gamma)^{\top}$
- ullet Recentre/rescale the covariates defining: $Z_j=rac{\sqrt{n}}{\operatorname{sd}(W_j)}(W_j-\mathbf{1}\overline{W}_j)$

 - \hookrightarrow Interpretation of β_j slightly different: not "mean impact on response per unit change of explanatory variable", but now "mean impact on response per unit deviation of explanatory variable from its mean, measured in units of standard deviation"
- The Z_j are all orthogonal to 1 and are of unit norm.

◆ロト ◆部ト ◆重ト ◆重ト 重 めなべ

Ridge Regression

- Since $Z_j \perp \mathbf{1}$ for all, j, we can estimate β_0 and γ by two separate regressions (orthogonality).
- Least squares estimators become

$$\hat{\beta}_0 = \overline{Y}, \quad \hat{\gamma} = (Z^\top Z)^{-1} Z^\top Y.$$

• Ridge regression replaces $Z^{\top}Z$ by $Z^{\top}Z + \lambda I$ (i.e. adds a "ridge")

$$\hat{oldsymbol{eta}}_0 = \overline{Y}, \quad \hat{oldsymbol{\gamma}} = (Z^{ op}Z + \lambda I)^{-1}Z^{ op}Y$$

Adding λI to $Z^{\top}Z$ makes inversion more stable $\hookrightarrow \lambda$ called *ridge parameter*.

Ridge Regression: Shrinkage Viewpoint

- \rightarrow Ridge term λI seems slightly ad-hoc. Motivation?
- \hookrightarrow Can see that $(\hat{\beta}_0 \quad \hat{\gamma}) = (\overline{Y} \quad (Z^\top Z + \lambda I)^{-1} Z^\top Y)$ minimizes

$$||Y - \hat{\beta}_0 \mathbf{1} - Z\hat{\gamma}||_2^2 + \lambda ||\hat{\gamma}||_2^2$$

or equivalently

$$\|Y-\hat{eta}_0\mathbf{1}-Z\hat{\gamma}\|_2^2$$
 subject to $\sum_{j=1}^{p-1}\hat{\gamma}_j^2=\|\hat{\gamma}\|_2^2\leq r(\lambda)$

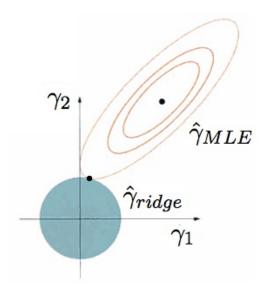
instead of least squares estimator which minimizes

$$||Y - \hat{\beta}_0 \mathbf{1} - Z\hat{\gamma}||_2^2$$
.

<u>Idea:</u> in the presence of collinearity, coefficients are ill-defined: a wildly positive coefficient can be cancelled out by a largely negative coefficient (many coefficient combinations can produce the same effect). By imposing a *size* constraint, we limit the possible coefficient combinations!

183 / 256

L^2 Shrinkage [Ridge Regression]



Ridge Regression

Proposition

Let $Z_{n\times q}$ be a matrix of rank $r\leq q$ with centred column vectors of unit norm. Given $\lambda>0$, the unique minimiser of

$$Q(\hat{eta}_0, \hat{\gamma}) = \|y - \hat{eta}_0 \mathbf{1} - Z\hat{\gamma}\|_2^2 + \lambda \|\hat{\gamma}\|_2^2$$

is

$$(\hat{\beta}_0, \hat{\gamma}) = (\overline{y}, (Z^\top Z + \lambda I)^{-1} Z^\top y).$$

Proof.

Write

$$y = \underbrace{\left(y - \bar{y}\mathbf{1}\right)}_{=y^* \in \mathcal{M}^{\perp}(\mathbf{1})} + \underbrace{\bar{y}\mathbf{1}}_{\in \mathcal{M}(\mathbf{1})}$$

Note also that by assumption $\mathbf{1} \in \mathcal{M}^{\perp}(Z)$. Therefore by Pythagoras' theorem

$$\|y - \hat{eta}_0 \mathbf{1} - Z \hat{\gamma}\|_2^2 = \|\underbrace{(\bar{y} - \hat{eta}_0)\mathbf{1}}_{\in \mathcal{M}(\mathbf{I})} + \underbrace{(y^* - Z \hat{\gamma})}_{\in \mathcal{M}(Z)}\|_2^2 = \|(\bar{y} - \hat{eta}_0)\mathbf{1}\|_2^2 + \|(y^* - Z \hat{\gamma})\|_2^2.$$

(proof ctd)

Therefore, $\min_{\hat{eta}_0,\hat{m{\gamma}}}Q(\hat{eta}_0,\hat{m{\gamma}})=\min_{\hat{eta}_0}\|(ar{y}-\hat{eta}_0)\mathbf{1}\|_2^2+\min_{\hat{m{\gamma}}}\left\{\|(y^*-Z\hat{m{\gamma}})\|_2^2+\lambda\|\hat{m{\gamma}}\|_2^2\right\}$

Clearly, $\arg\min_{\hat{\beta}_0} \|(\bar{y} - \hat{\beta}_0)\mathbf{1}\|_2^2 = \hat{y}$ while the second component can be written

$$\min_{\hat{\gamma} \in \mathbb{R}^q} \left\| inom{Z}{\sqrt{\lambda} I_{q imes q}} \hat{\gamma} - inom{y^*}{\mathbf{0}_{q imes 1}}
ight\|_2^2$$

using block notation. This is the usual least squares problem with solution

$$\left[(Z^ op,\sqrt{\lambda}I_{q imes q})inom{Z}{\sqrt{\lambda}I_{q imes q}}
ight]^{-1}(Z^ op,\sqrt{\lambda}I_{q imes q})inom{y^*}{\mathbf{0}_{q imes 1}} = (Z^ op Z+\lambda I)^{-1}Z^ op y^*$$

Linear Models

Note that $Z^{\top}Z + \lambda I$ is indeed invertible. Writing $Z^{\top}Z = U\Lambda U^{\top}$, we have

$$Z^{ op}Z + \lambda I = U \Lambda U^{ op} + U (\lambda I_{g imes g}) U^{ op} = U (\Lambda + \lambda I_{g imes g}) U^{ op}$$

$$\text{ and } \Lambda = \text{diag}\{\underbrace{\lambda_1, \dots, \lambda_r}_{>0}, \underbrace{\lambda_{r+1}, \dots, \lambda_q}_{=0}\} \ (Z^\top Z \succeq 0 \ \& \ rank(Z^\top Z) = rank(Z)).$$

To complete the proof, observe that $Z^{\top}y^* = Z^{\top}y - \bar{y}Z^{\top}\mathbf{1} = Z^{\top}y$.

Anthony Davison (EPFL)

The Effect of Shrinkage

Note that if the SVD of Z is $Z=V\Omega U^{\top}$, last steps of previous proof may be used to show that

$$\hat{\gamma} = \sum_{j=1}^q rac{\omega_j}{\omega_j^2 + \lambda} (v_j^ op y) u_j,$$

where the v_j s and u_j s are the columns of V and U, respectively.

Compare this to the ordinary least squares solution, when $\lambda = 0$:

$$\hat{\gamma} = \sum_{j=1}^q rac{1}{\omega_j} (v_j^ op y) u_j,$$

which is not even defined if Z is of reduced rank.

Role of λ is to reduce the size of $1/\omega_j$ when ω_j becomes very small.

Bias and Variance

Proposition

Let $\hat{\gamma}$ be the ridge regression estimator of γ . Then

$$extit{bias}(\hat{\gamma}, \gamma) = -\left(rac{1}{\lambda}Z^{ op}Z + I_q
ight)^{-1} \gamma$$

and

$$cov(\hat{\gamma}) = \sigma^2 (Z^\top Z + \lambda I)^{-1} Z^\top Z (Z^\top Z + \lambda I)^{-1}.$$

Proof.

Since $\mathbb{E}(\hat{\gamma}) = (Z^\top Z + \lambda I)^{-1} Z^\top \mathbb{E}(y) = (Z^\top Z + \lambda I)^{-1} Z^\top Z \gamma$, the bias is

$$\begin{aligned} \mathsf{bias}(\hat{\gamma}, \gamma) &= & \mathbb{E}(\hat{\gamma}) - \gamma = \{ (Z^{\top}Z + \lambda I)^{-1} Z^{\top}Z - I \} \gamma \\ &= & \left\{ \left(\frac{1}{\lambda} Z^{\top}Z + I \right)^{-1} \left(\frac{1}{\lambda} Z^{\top}Z + I - I \right) - I \right\} \gamma \\ &= & \left\{ I - \left(\frac{1}{\lambda} Z^{\top}Z + I \right)^{-1} - I \right\} \gamma = - \left(\frac{1}{\lambda} Z^{\top}Z + I \right)^{-1} \gamma. \end{aligned}$$

The covariance term is obvious.

Bias-Variance Tradeoff

Role of λ : Regulates Bias–Variance tradeoff

- $\lambda \uparrow$ decreases variance (collinearity) but increases bias
- ullet $\lambda\downarrow$ decreases bias but variance inflated if collinearity exists

Recall:

$$\mathbb{E}||\hat{\gamma} - \gamma||^2 = \underbrace{\mathbb{E}||\hat{\gamma} - \mathbb{E}\hat{\gamma}||^2}_{Variance = trace[cov(\hat{\gamma})]} + \underbrace{\|\mathbb{E}\hat{\gamma} - \gamma\|^2}_{Bias^2} + \underbrace{2(\mathbb{E}\hat{\gamma} - \gamma)^{\top}\mathbb{E}[\hat{\gamma} - \mathbb{E}\hat{\gamma}]}_{=0}$$

Note that if $Z^{ op}Z = U\Lambda U^{ op}$ $trace(cov(\hat{\gamma})) = \sum_{j=1}^q rac{\lambda_i}{\lambda^2 + \lambda} \sigma^2$

So choose λ so as to optimally increase bias/decrease variance

Use cross validation!

L^1 Shrinkage?

Motivated from Ridge Regression formulation can consider:

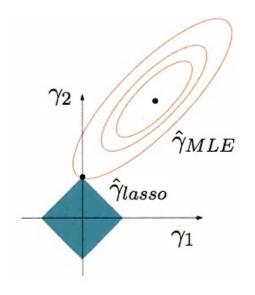
$$\begin{aligned} & \min! \qquad \|Y - \hat{\beta}_0 \mathbf{1} - Z \hat{\gamma}\|_2^2 \quad \text{subject to} \quad \sum_{j=1}^{p-1} |\hat{\gamma}_j| = \|\hat{\gamma}\|_1 \leq r(\lambda) \\ & \iff \\ & \min! \quad \|Y - \hat{\beta}_0 \mathbf{1} - Z \hat{\gamma}\|_2^2 + \lambda \|\hat{\gamma}\|_1. \end{aligned}$$

Shrinks coefficient size by different version of magnitude.

- ullet Resulting estimator non–linear in Y
- No explicit form available, needs quadratic programing algorithm
- Why choose a different type of norm?

 L^1 penalty (almost) produces a "continuous" model selection!

L^1 Shrinkage [The LASSO]



LASSO as the Relaxation of Best Subsets

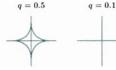
Intuition: L_1 norm induces "sharp" balls!

- Balls more concentrated around the axes
- Induces model selection by regulating the lasso (through λ)

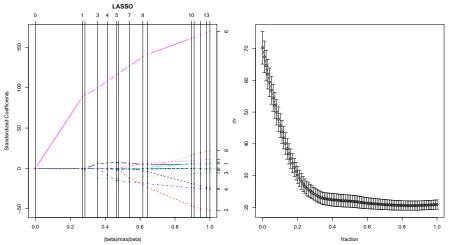
Extreme case: L^0 "Norm", gives best subsets selection!

$$\|\gamma\|_0 = \sum_{j=1}^{p-1} |\gamma_j|^0 = \sum_{j=1}^{p-1} \mathbf{1}_{\{\gamma_j \neq 0\}} = \#\{j : \gamma_j \neq 0\}$$

Generally: $\|\gamma\|_p^p = \sum_{i=1}^{p-1} |\gamma_i|^p$, sharp balls for 0



LASSO profile for Bodyfat Data [LARS algorithm]



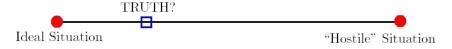
Robust Linear Modeling

Robust/Resistant Methods

The "success" of the LSE in a regression model depends on "assumptions":

- Normality (LSE optimal in this case)
- Not many "extreme" observations (LSE affected from "extremities")

Picture:



- Resistant procedure: not strongly affected by changes to data.
- Robust procedure: not strongly affected by departures from distribution.
 - Often: Robust ⇔ Resistant

Motivating Example: Estimating a Mean

Let $X_1,\ldots,X_n\stackrel{iid}{\sim} F$, estimate $\mu=\int_{-\infty}^{\infty}xF(\,dx)$ by

$$ar{x} = rac{1}{n} \sum_{i=1}^n x_i = rg \min_{\gamma \in \mathbb{R}} \sum_{i=1}^n (x_i - \gamma)^2$$

Some observations:

- Average \bar{x} is optimal (MLE) when F is Normal.
- Extremely sensitive to outliers (low breakdown point).
- Blows up from a single value: $x \mapsto x + \epsilon \implies \bar{x} \mapsto \bar{x} + \epsilon/n$.
- If ϵ large relative to $n \to \text{disaster} \dots$
- ullet May not be optimal for other possible F's ...

Motivating Example: Estimating a Mean

Can we "cure" sensitivity by using different distance function?

$$m=rg\min_{\gamma\in\mathbb{R}}\sum_{i=1}^n|x_i-\gamma|=\left\{egin{array}{cc}x_{(k+1)},&n=2k+1,\ rac{x_{(k)}+x_{(k+1)}}{2},&n=2k.\end{array}
ight.$$

- Median much less sensitive to bad values.
- ullet Higher breakdown point: must blow up at least 50% of obs to blow m up.
- ullet Median is optimal (MLE) when F is Laplace.
- But how well does m perform when $F \simeq \text{Normal } (\textit{relative efficiency})?$

Remember picture:

TRUTH?

Ideal Situation "Hostile" Situation

Motivating Example: Estimating a Mean

Other alternatives?

 $\triangleright \alpha$ -Trimmed mean: throw away most extreme observations:

$$trm = rac{1}{|E^c|} \sum_{i
otin E} x_i,$$

E being subset of $\alpha \times n$ most extreme observations from each end. Both m and trm may 'throw away' information. View as special cases of the \blacktriangleright Weighted estimate:

$$wm = \frac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i}.$$

- Weights downplaying certain observations (i.e., give less weight to extremes . . .)
- How to objectively/automatically choose weight?

Regression Setup

Regression situation is similar. Have:

$$Y = X\beta + \varepsilon$$
, $\varepsilon \sim F$, $\mathbb{E}[\varepsilon] = 0$, $\operatorname{cov}[\varepsilon] = \sigma^2 I$

LSE for β given by

$$\hat{eta} = (X^ op X)^{-1} X^ op y = rg \min_{oldsymbol{\gamma} \in \mathbb{R}^p} \sum_{k=1}^n (y_i - x_i^ op oldsymbol{\gamma})^2$$

- Optimal at F = Normal
- Disastrous if $y_i \mapsto y_i + c$ with c large:

$$\hat{\beta} \mapsto \hat{\beta} + (X^T X)^{-1} x_i c$$

- Gauss-Markov: optimal linear for any F
 - \hookrightarrow May not be overall optimal for other F's

Robust/Resistant Alternatives

- ullet L^1 regression: $ilde{eta} = rg \min_{oldsymbol{\gamma} \in \mathbb{R}^p} \sum_{k=1}^n |y_i x_i^ op oldsymbol{\gamma}|$
- ullet Trimmed least squares: $\check{eta} = rg \min_{\gamma \in \mathbb{R}^p} \sum_{i=1}^K (y_i x_i^ op \gamma)_{(i)}^2$, where we set $K = \lfloor n/2 \rfloor + \lfloor (p+1)/2 \rfloor$
- $K = \lfloor n/2 \rfloor + \lfloor (p+1)/2 \rfloor$ Weighted least squares: $\check{\beta} = (X^\top V^{-1} X)^{-1} X^\top V^{-1} Y$ for a diagonal weight matrix V (recall earlier lecture):

$$V=\left(egin{array}{cccc} w_1 & & & 0 \ & & w_2 & & \ & & & \ddots & \ 0 & & & & w_n \end{array}
ight).$$

Would like to **formalise** the concept of robust/resistant estimation

 \rightarrow Find a general formulation of which above are special cases.

◆ロト ◆部 → ◆意 → ◆意 → ○ ○ ○ ○

M-Estimators

Seek a unifying approach:

• Instead of $(\cdot)^2$ or $|\cdot|$, consider a more general distance function $\rho(\cdot)$.

MLE when errors are Gaussian is obtained as maximising loglikelihood kernel

$$\hat{eta} = rg\max_{oldsymbol{\gamma} \in \mathbb{R}^p} - rac{1}{2} \sum_{i=1}^n \left(rac{y_i - x_i^ op oldsymbol{\gamma}}{\sigma}
ight)^2$$

Replacing $\rho(u)=u^2$ by general $\rho(\cdot)$ yields:

$$\widehat{eta} := rg\min_{oldsymbol{\gamma} \in \mathbb{R}^p} \sum_{i=1}^n
ho\left(rac{y_i - x_i^ op \gamma}{\sigma}
ight)$$

Call this an M(aximum likelihood like)-Estimator.

M-Estimation as Weighted Regression

Obtaining $\displaystyle \operatorname*{arg\,min}_{\gamma \in \mathbb{R}^p} \sum_{i=1}^n \rho\left(\frac{y_i - x_i^{ op} \gamma}{\sigma} \right)$ reduces to solving

$$\sum_{i=1}^n x_i^ op \psi\left(rac{y_i - x_i^ op \gamma}{\sigma}
ight) = 0$$

with $\psi(t)=d
ho(t)/dt$. Letting $w(u)=\psi(u)/u$ this reduces to

$$\sum_{i=1}^n w_i x_i^ op (y_i - x_i^ op \gamma) = 0, \quad ext{where } w_i = w\left(rac{y_i - x_i^ op \gamma}{\sigma}
ight).$$

But this is simply the weighting scenario!

▶ Robust Regression can be written as a Weighted Regression, but the weights depend on the data.

Distance functions are in 1-1 correspondence with loss functions.

Examples of Distance Functions and Weight Functions

Idea: choose ρ to have desirable properties (reduce/eliminate impact of outliers) — same as choosing weight function.

Some typical examples are:

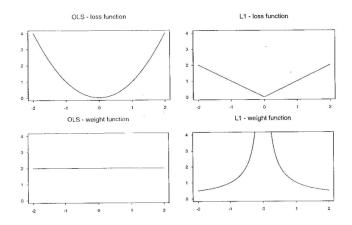
•
$$\rho(z) = z^2$$
 $\Leftrightarrow w(u) = 2$

$$\bullet \ \rho(z) = |z| \qquad \Leftrightarrow w(u) = 1/|u|$$

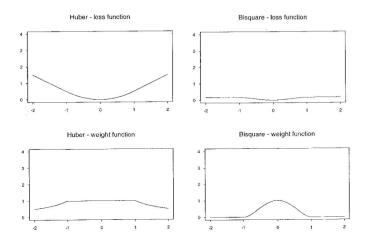
$$ullet$$
 Huber: $ho(z)=\left\{egin{array}{ll} z^2, & ext{if } |z|\leq H \ 2H|z|-H^2, & ext{otherwise} \end{array}
ight.$

• Bisquare:
$$\rho(z) = \left\{ \begin{array}{l} \frac{1}{6}B^2 \left[1-\left\{1-\left(z/B\right)^2\right\}^3\right], \quad |z| \leq B, \\ \frac{1}{6}B^2, \text{ otherwise.} \end{array} \right.$$

Examples of Distance Functions and Weight Functions



Examples of Distance Functions and Weight Functions



Computing a Regression M-Estimator

- Explicit expression for LSE
- ▶ M-Estimation: non-linear optimisation problem use iterative approach
- ▶ Iteratively re-weighted least squares:
 - Obtain initial estimate $\hat{\beta}^{(0)}$
 - $\textbf{ 9} \text{ Form normalised residuals } u_i^{(0)} = (y_i x_i^\top \hat{\beta}^{(0)}) / \mathsf{MAD}(y_i x_i^\top \hat{\beta}^{(0)})$
 - $\textbf{ 0} \ \ \text{Obtain} \ \ w_i^{(0)} = w(u_i^{(0)}) \ \ \text{for the chosen weight function} \ \ w(\cdot)$
 - lacktriangle Perform weighted least squares with $V^{(0)} = \mathrm{diag}\{w_1^{(0)},\ldots,w_n^{(0)}\}$
 - **1** Obtain updated estimate $\hat{\beta}^{(1)}$
 - Iterate until convergence (?)

(Asymptotic) Distribution of M-Estimators

▶ Obtained M-Estimator as the solution to the system

$$X^{\top} \psi(\gamma) = 0$$

instead of $X^{\top}(y - X\gamma) = 0$. Here we defined

$$\psi(\gamma) = \left(\psi\left(rac{y_1 - x_1^ op \gamma}{\sigma}
ight), \ldots, \psi\left(rac{y_n - x_n^ op \gamma}{\sigma}
ight)
ight)^ op$$

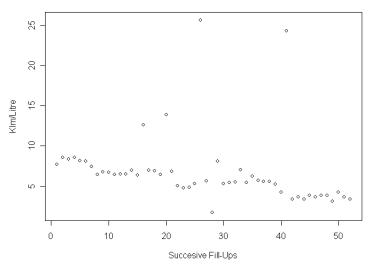
▶If these estimating equations are unbiased, i.e.,

$$\mathbb{E}_{\beta}\left[X^{\top}\Psi(\beta)\right] = 0, \quad \forall \beta \in \mathbb{R}^{p},$$

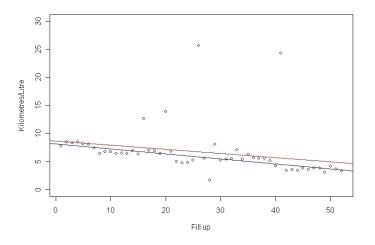
then under mild regularity conditions, as $n \to \infty$, we can show that

$$\hat{\beta}_n \stackrel{d}{\approx} \mathcal{N}_p \left(\beta, \left\{ \mathbb{E}[X^\top \nabla \psi] \right\}^{-1} X^\top \mathbb{E}[\psi \psi^\top] X \left\{ \mathbb{E}[X^\top \nabla \psi] \right\}^{-1} \right).$$

Example: Professor's Van



Example: Professor's Van

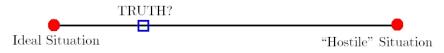


$$\hat{eta}=-0.07$$
 (with $p=0.06$) while $ilde{eta}=-0.09$ (with $p \simeq 0$)

Anthony Davison (EPFL) Linear Models 209 / 256

Asymptotic Relative Efficiency (ARE)

Remember our picture:



- ARE measures quality of one estimator of $\theta_{p\times 1}$ relative to another, often the MLE $\hat{\theta}$, for which $\text{var}(\hat{\theta}) = I(\theta)^{-1}$, for large sample size.
- Generally ARE of $\tilde{\theta}$ relative to $\hat{\theta}$ is less than 1 (100%): low ARE is bad, high ARE is good.
- ARE of $\tilde{\theta}$ relative to $\hat{\theta}$ is

$$\left\{\frac{|\mathsf{var}(\hat{\theta})|}{|\mathsf{var}(\tilde{\theta})|}\right\}^{1/p} \quad (\times 100\%).$$

ullet ARE of $ilde{ heta}_r$ relative to $\hat{ heta}_r$ is

$$\frac{\operatorname{var}(\hat{\theta}_r)}{\operatorname{var}(\tilde{\theta}_r)}$$
 (×100%).

ARE in the Linear model

- Linear model $y = X\beta + \varepsilon$, with $\varepsilon_j \stackrel{iid}{\sim} g(\cdot)$; assume $\text{var}(\varepsilon_j) = \sigma^2 < \infty$ is known.
- Assume MLE is regular, with

$$i_g = \int -rac{\partial^2 \log g(u)}{\partial u^2} g(u) du = \int \left\{rac{\partial \log g(u)}{\partial u}
ight\}^2 g(u) du.$$

ullet ARE of LSE of eta relative to MLE of eta is

$$\frac{1}{\sigma^2 i_g}$$

Examples:

- ARE at $g(\cdot)$ Gaussian: 1
- ARE at $g(\cdot)$ Laplace: 1/2
- ARE of Huber at $g(\cdot)$ Gaussian is 95% with H=1.345

Mallow's Rule

A simple and useful strategy is to perform one's analysis both robustly and by standard methods and to compare the results. If the differences are minor, either set may be presented. If the differences are not minor, one must perforce consider why not, and the robust analysis is already at hand to guide the next steps.

- Perform analysis both ways and compare results.
- Plot weights to see which observations were downweighted.
- Try to understand why.

Nonlinear and Nonparametric Models

The Big Picture

Recall most general version of regression given in Week 1:

$$\{Y_i \mid x_i^{ op} \stackrel{ind}{\sim} \mathsf{Dist}\{g(x_i^{ op})\}, \quad i = 1, \dots, n.$$

So far we have investigated what happens when

$$\left\{egin{array}{ll} g(x^ op) = x^ opeta, \ \operatorname{Dist} = \mathcal{N}(x^ opeta,\sigma^2). \end{array}
ight. egin{array}{ll} eta \in \mathbb{R}^p, \end{array}$$

We now consider a more general situation:

$$Y_i \mid x_i^{ op} \stackrel{ind}{\sim} \mathcal{N}\{\eta(x_i^{ op};eta), \sigma^2\}, \quad i=1,\ldots,n,$$

where $\eta(x_i^\top; \beta)$

- is a KNOWN function,
- ullet that depends on a parameter $eta \in \mathbb{R}^p$,
- but is **not** linear in β .

(ロ) (部) (注) (注) 注 のQで

Example: Logistic Growth

- Decennial population data from US, for 1790–1990.
- \bullet y is population in millions, x is time.

Regression model:

$$Y_i = rac{eta_1}{1 + \exp(eta_2 + eta_3 x_i)} + arepsilon_i, \quad arepsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2) \,\,\, i = 1, \ldots, \, n.$$

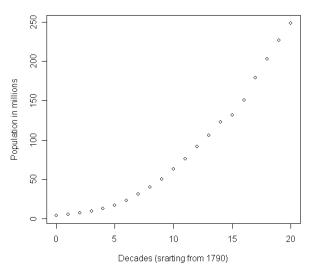
Here

$$\eta(x;eta) = rac{eta_1}{1 + \exp(eta_2 + eta_3 x)}.$$

- Distribution remains Gaussian.
- Cannot transform into a linear regression problem.
- Coefficient interpretation different than in a linear model.
- Related to the differential equation

$$rac{d}{dx}\eta(x)=C imes\eta(x)\{1-\eta(x)\}.$$

Example: Logistic Growth



Basic Observations and Notation

- Still assume independent random variables Y_1, \ldots, Y_n , with observed values y_1, \ldots, y_n , and explanatories x_1, \ldots, x_n .
- Distribution still Gaussian.

Introduce notation:

- $\bullet \ y = (y_1, \ldots, y_n)^{\top} \in \mathbb{R}^n$,
- ullet $\eta(eta)=(\eta_1(eta),\ldots,\eta_n(eta))^ op=(\eta(x_1^ op,eta),\ldots,\eta(x_n^ op,eta))^ op$, i.e.,

$$\eta(eta): \mathbb{R}^p
ightarrow \mathbb{R}^n \qquad eta \in \mathbb{R}^p \mapsto \eta(eta) \in \mathbb{R}^n$$

- Therefore $\eta(\beta)$ is a vector-valued function.
- Analogy with linear case: $\eta(\beta)$ plays the role of $X\beta$ but is no longer linear in β .

Model now is:

$$egin{aligned} y &= \underbrace{\eta(eta)}_{n imes 1} + \mathop{arepsilon}_{n imes 1}, \qquad eta \in \mathbb{R}^p, \quad arepsilon \sim \mathcal{N}_n(0, \sigma^2 I). \end{aligned}$$

Likelihood and ...least squares - Again!

Since $\varepsilon \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2)$, have

$$y \sim \mathcal{N}\{\eta(\beta), \sigma^2\},$$

so likelihood and loglikelihood are

$$egin{aligned} L(eta,\sigma^2) &= rac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{-rac{1}{2\sigma^2}(y-\eta(eta))^ op (y-\eta(eta))
ight\}, \ \ \ell(eta,\sigma^2) &= -rac{1}{2}\left\{n\log 2\pi + n\log \sigma^2 + rac{1}{\sigma^2}(y-\eta(eta))^ op (y-\eta(eta))
ight\}. \end{aligned}$$

... exactly as in linear case, but with $\eta(\beta)$ replacing $X\beta$. Hence, suggests *least* squares estimators,

$$\begin{cases} \hat{\beta} = \arg\min_{\beta \in \mathbb{R}^p} \lVert y - \eta(\beta) \rVert^2 & \text{(assuming identifiability),} \\ \hat{\sigma}^2 = \frac{1}{n} \lVert y - \eta(\hat{\beta}) \rVert^2. \end{cases}$$

◆ロ → ◆個 → ◆ き → も き り へ で り へ で

Model Fitting by Taylor Expansions

Main problem is *non-linearity* — cannot obtain closed form solution in general.

 \hookrightarrow Idea: linearise locally, assuming that η is sufficiently smooth.

First-order Taylor expansion: approximate as

$$\eta(eta) \simeq \eta(eta^{(0)}) + \underbrace{\left[
abla_{eta} \eta
ight]_{eta = eta^{(0)}}}_{n imes p} \underbrace{\left(eta - eta^{(0)}
ight)}_{p imes 1}$$

where β is sufficiently close to $\beta^{(0)}$.

• We dropped higher order terms by appealing to smoothness of η (smoothness \iff "close to zero" higher derivatives).

Model Fitting by Taylor Expansions

Linearised representation suggests Newton–Raphson iteration:

- Suppose an initial estimate $eta^{(0)}$ is available $(||eta^{(0)} \hat{eta}|| < \epsilon)$.
- ullet Let $D^{(0)}=\left[
 abla_{eta}\eta
 ight]_{eta=eta^{(0)}}$ and $eta=u^{(0)}+eta^{(0)}.$
- Taylor expansion yields

$$y - \eta(\beta^{(0)}) \approx D^{(0)}\underbrace{(\beta - \beta^{(0)})}_{u^{(0)}} + \varepsilon.$$

To get β we need $u^{(0)}$. Consider the following iteration:

- Initialise with $\beta^{(0)}$.
- ② Let $u^{(1)} = \underset{u \in \mathbb{R}^p}{\arg \min} \|y \eta(eta^{(0)}) D^{(0)}u\|^2$
- :-) (but this is just a linear least squares problem, with $y^{(0)}=y-\eta(\beta^{(0)})$ and $X^{(0)}=D^{(0)}!)$
- **3** Thus set $u^{(1)} = ([D^{(0)}]^{\top} D^{(0)})^{-1} [D^{(0)}]^{\top} \{ y \eta(\beta^{(0)}) \}.$
- Let $\beta^{(1)} = \beta^{(0)} + u^{(1)}$ and iterate until convergence criterion satisfied. Return last $\beta^{(k)}$ as $\hat{\beta}$.

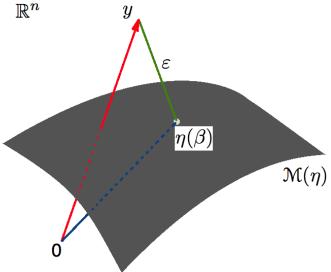
Geometry of Nonlinear Least Squares

As β ranges over \mathbb{R}^p , $\eta(\beta)$ traces a p-dimensional differentiable manifold (smooth surface) in \mathbb{R}^n ,

$$\mathcal{M}(\eta) = \{ \eta(\beta) : \beta \in \mathbb{R}^p \}.$$

- ullet provides the intrinsic coordinates on that manifold.
- y is obtained by selecting a point $\eta(\beta)$ on the manifold, and adding a mean zero Gaussian vector ε .
- Regression asks to find the coordinates of the point on the manifold that generated y.
- Would like to project y on the manifold, but do not have a closed form expression!

Geometry of Nonlinear Least Squares



Anthony Davison (EPFL) Linear Models 222 / 256

Geometry of Linear Approximation

Newton-Raphson algorithm is interpretable via differential geometry:

- The p-dimensional tangent plane at a point $\eta(\beta^{(0)}) \in \mathfrak{M}(\eta)$ is spanned by $\eta(\beta^{(0)}) + [\nabla_{\beta}\eta(\beta)]_{\beta=\beta^{(0)}}u$, $u \in \mathbb{R}^p$.
- Hence we may write that

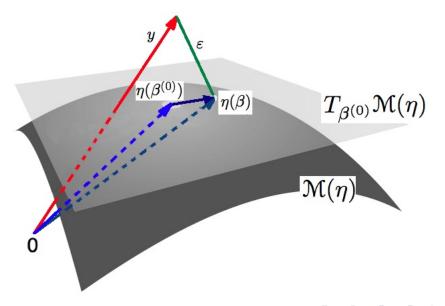
$$T_{oldsymbol{eta}^{(0)}} \mathfrak{M}(\eta) = \{ \eta(eta^{(0)}) + D^{(0)} u : u \in \mathbb{R}^p \}$$

- In other words, the p columns of $D^{(0)}$, when translated by $\eta(\beta^{(0)})$, form a basis for the tangent plane at $\eta(\beta^{(0)})$.
- Taylor expansion merely says that if β is close to $\beta^{(0)}$, we approximately have $\eta(\beta) \eta(\beta^{(0)}) \in T_{\beta^{(0)}} \mathcal{M}(\eta)$. This is equivalent to the expression

$$\eta(eta) - \eta(eta^{(0)}) pprox \underbrace{\left[
abla_{eta}\eta\right]_{eta=eta^{(0)}}}_{D^{(0)}}\underbrace{\left(eta-eta^{(0)}
ight)}_{u^{(0)}}.$$

- Therefore, $y \eta(\beta^{(0)}) \approx D^{(0)} u^{(0)} + \varepsilon$ means that $\mathbb{E}[y]$ approximately lies in $T_{\beta^{(0)}} \mathcal{M}(\eta)$.
- Newton-Raphson algorithm ≡ iterated projection on approximating linear subspaces.

Geometry of Nonlinear Least Squares



Geometry of Linear Approximation

- Summarising, suppose we consider $\eta(\beta^{(0)})$ as the origin of space (i.e., now the tangent space is a subspace).
- Then $y \eta(\beta^{(0)})$ is approximately the response obtained when adding ε to an element $D^{(0)}(\beta \beta^{(0)}) \in T_{\beta_{(0)}} \mathcal{M}(\eta)$.
- So, approximately, we have our usual linear problem, and we can use orthogonal projection to solve it.
- Amounts to approximating the manifold $\mathcal{M}(\eta)$ by a plane $T_{\beta_{(0)}}\mathcal{M}(\eta)$ locally around $\eta(\beta^{(0)})$.

Once initial value $\beta^{(0)}$ is updated to $\beta^{(1)}$, use a new tangent plane approximation and repeat the whole procedure.

But how do we obtain our initial $\beta^{(0)}$?

Choosing $\beta^{(0)}$

Successful linearisation depends on good initial value.

- Occasionally, can find initial values by inspection in simple problems.
- More generally, it takes some experimentation.
 - E.g., one can try fitting polynomial models to data.
 - Use these to find fitted values at fixed design points.
 - Solve a system of equations to get initial values.

Example: consider the model $y_j = eta_0 + eta_1 \exp\{(-x_j/ heta)\} + arepsilon_j$

- Fit a polynomial regression to data
- ② Find fitted values \tilde{y}_0 , \tilde{y}_1 , \tilde{y}_2 at x_0 , $x_0 + \delta$, $x_0 + 2\delta$.
- Equate fitted values with model expectation:

$$\tilde{y}_k = \beta_0 + \beta_1 \exp\{-(x_0 + k\delta)/\theta\}, \quad k = 0, 1, 2.$$

- System yields initial estimate $\theta^{(0)} = \delta/\log\left[(\tilde{y}_0 \tilde{y}_1)/(\tilde{y}_1 \tilde{y}_2)\right]$
- **3** Get initial values for β_0 , β_1 by linear regression, once $\theta^{(0)}$ is at hand.

Approximate CIs for Parameters

Under smoothness conditions on η , one can in general prove that

$$oxed{S^{-1/2} \left\{
abla_{eta} \eta(\hat{eta})^{ op}
abla_{eta} \eta(\hat{eta})
ight\}^{1/2} (\hat{eta} - eta) pprox N_p(0, I_p)}$$

for large n, where $S = (n - p)^{-1} ||e||^2$. May thus mimic linear case:

$$c^{ op}\hat{eta} \stackrel{d}{pprox} \mathcal{N}_1 \left[c^{ op}eta, S^2c^{ op} \left\{
abla_eta\eta(\hat{eta})^{ op}
abla_eta\eta(\hat{eta})
ight\}^{-1} c
ight].$$

So base confidence intervals (and tests) on

$$rac{c^{ op}\hat{eta}-c^{ op}eta}{\sqrt{S^2c^{ op}\left\{
abla_{eta}\eta(\hat{eta})^{ op}
abla_{eta}\eta(\hat{eta})
ight\}^{-1}c}}\stackrel{d}{pprox}N(0,1),$$

which gives a $(1 - \alpha) \times 100\%$ CI:

$$\boxed{c^{\top} \hat{\beta} \pm z_{\alpha/2} \sqrt{S^2 c^{\top} \left\{ \nabla_{\beta} \eta(\hat{\beta})^{\top} \nabla_{\beta} \eta(\hat{\beta}) \right\}^{-1} c}}$$

A More Flexible Regression Model

Until today we have discussed the following setup:

$$Y_i \mid x_i \overset{ind}{\sim} \mathsf{Dist}[y \mid heta_i]
ightarrow \left\{egin{array}{l} heta_i = g(x_i; eta), \ eta \in \mathfrak{B} \subset \mathbb{R}^p, \end{array}
ight.$$

with $g(\cdot; \beta)$ known up to β to be estimated from data, e.g.

- ullet Dist $(\cdot \mid \mu) = \mathcal{N}(\cdot \mid \mu)$ and $\mu = g(x \mid \beta) = x^{\top}\beta$,
- ullet Dist $(\cdot \mid \mu) = \mathcal{N}(\cdot \mid \mu)$ and $\mu = g(x \mid \beta) = \eta(x; \beta)$.

Would now like to extend model to a more flexible dependence:

$$Y_i \mid x_i \overset{ind}{\sim} \mathsf{Dist}[y \mid heta_i]
ightarrow \left\{egin{array}{l} heta_i = g(x_i), \ g \in \mathfrak{F} \subset L^2(\mathbb{R}^p) \ ext{(say)}, \end{array}
ight.$$

with g unknown, to be estimated given data $\{(y_i, x_i)\}_{i=1}^n$.

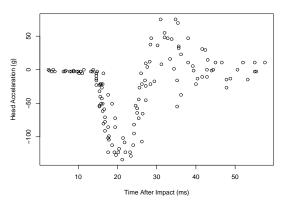
- A nonparametric problem (parameter ∞-dimensional)!
- How to estimate *g* in this context?
- \mathfrak{F} is usually assumed to be a class of smooth functions (e.g., C^k).

Scatterplot Smoothing

Start from simplest problem:

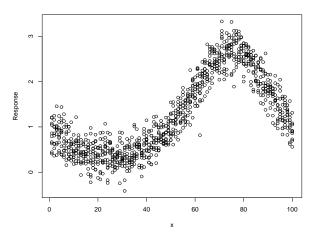
$$egin{aligned} \mathsf{Dist} &\equiv \mathcal{N}(\mu, \sigma^2) \ x_i \in \mathbb{R} \end{aligned} egin{aligned} & \longrightarrow & Y_i = g(x_i) + arepsilon_i, \quad arepsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2) \end{aligned}$$

Figure: Motorcycle Accident Data



Exploiting Smoothness

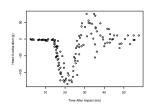
• Ideally: multiple y's at each x_i ($n \to \infty$ and large *covariate classes*):



- ullet Then average y's at each x_i and interpolate . . .
- But this is never the case . . .

Exploiting Smoothness

• Usually unique x_i distinct:



- Here is where the smoothness assumption comes in
- ullet Since have unique y at each x_i , need to borrow information from nearby \dots
- ... use continuity!!! (or even better, smoothness)
- ▶ Recall: A function $g : \mathbb{R} \to \mathbb{R}$ is *continuous* if:

$$orall \; \epsilon > 0 \; \exists \; \delta > 0 : \; |x-x_0| < \delta \implies |g(x)-g(x_0)| < \epsilon.$$

- ▶ So maybe average y_i 's corresponding to x_i 's in a δ -neighbourhood of x as $\hat{g}(x)$?
- ▶ Motivates the use of a kernel smoother . . .

Kernel Smoothing

Naive idea: $\hat{g}(x_0)$ should be the average of y_i -values with x_i 's "close" to x_0 .

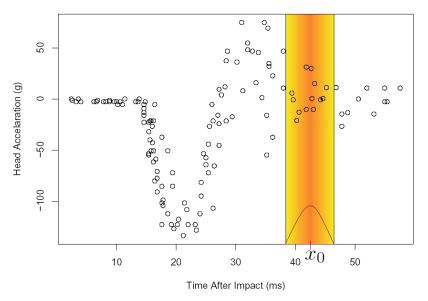
$$\hat{g}(x_0) = rac{1}{\sum_{i=1}^n \mathbf{1}\{|x_i - x_0| \leq \lambda\}} \sum_{i=1}^n y_i \mathbf{1}\{|x_i - x_0| \leq \lambda\}.$$

A weighted average! Choose other weights? Kernel estimator:

$$\hat{g}(x_0) = rac{1}{\sum_{i=1}^n K\left(rac{x_i-x_0}{\lambda}
ight)} \sum_{i=1}^n y_i K\left(rac{x_i-x_0}{\lambda}
ight).$$

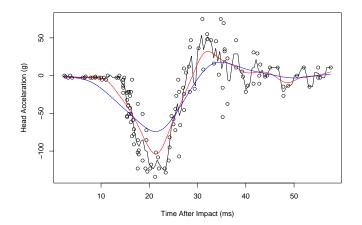
- ullet K is a weight function (kernel), e.g. a pdf
 - \hookrightarrow Usually symmetric, non-negative, decreasing away from zero
- ullet λ is the bandwidth parameter
 - \hookrightarrow small λ gives local behaviour, large λ gives global behaviour
- ullet Choice of K not so important, choice of λ very important!
- The resulting fitted values are linear in the responses, i.e., $\hat{y} = S_{\lambda} y$, where the smoothing matrix S_{λ} depends on x_1, \ldots, x_n , K and λ . Analogous to a projection matrix in linear regression, but S_{λ} is NOT a projection.

Visualising a Kernel at Work



Motorcycle Data Kernel Smooth

- > plot(time,accel,xlab="Time After Impact (ms)",ylab="Head Accelaration (g)")
- > lines(ksmooth(time,accel,kernel="normal",bandwidth=0.7))
- > lines(ksmooth(time,accel,kernel="normal",bandwidth=5),col="red")
- > lines(ksmooth(time,accel,kernel="normal",bandwidth=10),col="blue")



Penalised Likelihood

Find $h \in C^2$ that minimises

$$\underbrace{\sum_{i=1}^{n}\{y_{i}-h(x_{i})\}^{2}}_{\text{Fit Penalty}} \quad + \quad \underbrace{\lambda \int_{I}\{h''(t)\}^{2}dt}_{\text{Roughness Penalty}}$$

- ullet λ to balance fidelity to the data and smoothness of the estimated h.

Remarkably, problem has unique explicit solution!

- \hookrightarrow Natural Cubic Spline with knots at $\{x_i\}_{i=1}^n$:
 - piecewise polynomials of degree 3,
 - with pieces defined at the knots,
 - with two continuous derivatives at the knots,
 - and linear outside the data boundary.

Cubic Spline Details

Can represent splines via natural spline basis functions B_j , as

$$s(x) = \sum_{j=1}^n \gamma_j B_j(x).$$

Letting

$$B_{ij}=B_j(x_i), \quad \Omega_{ij}=\int B_i''(x)B_j''(x)dx,$$

our penalised likelihood becomes

$$\mathsf{min!}\left\{(y - B\gamma)^\top (y - B\gamma) + \lambda \gamma^\top \Omega \gamma\right\}.$$

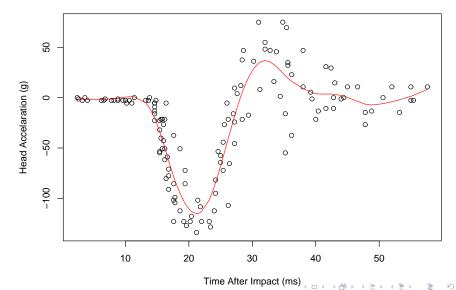
Differentiating and equating with zero yields

$$(B^{\top}B + \lambda\Omega)\hat{\gamma} = B^{\top}y \implies \hat{\gamma} = (B^{\top}B + \lambda\Omega)^{-1}B^{\top}y.$$

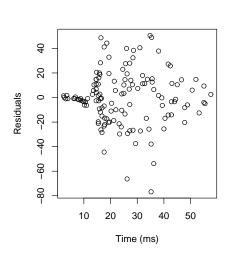
- The smoothing matrix is $S_{\lambda} = B(B^{\top}B + \lambda\Omega)^{-1}B^{\top}$.
- The cubic spline fit is approximately a kernel smoother.

Motorcycle Example Cubic Spline Fit

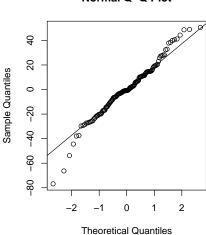
lines(smooth.spline(time,accel),col="red")



Motorcycle Example Cubic Spline Residuals



Normal Q-Q Plot



Equivalent degrees of freedom

• Least squares estimation: $y = X_{n \times p} \beta + \varepsilon$, we have $\hat{y} = Hy$, with trace(H) = p, in terms of the projection matrix $H = X(X^{\top}X)^{-1}X^{\top}$. Here

$$\hat{y} = \underbrace{B(B^{\top}B + \lambda\Omega)^{-1}B^{\top}}_{S_{\lambda}} y.$$

• Idea: define equivalent degrees of freedom of smoother

$$\operatorname{trace}(S_{\lambda}) = \sum_{j=1}^{n} \frac{1}{1 + \lambda \eta_{j}}$$

where η_i are eigenvalues of $K = (B^\top B)^{-1/2} \Omega(B^\top B)^{-1/2}$.

- Hence $\operatorname{trace}(S_{\lambda})$ is monotone decreasing in λ , with $\operatorname{trace}(S_{\lambda}) \to 2$ as $\lambda \to \infty$ (K will have twos zero eigenvalues) and $\operatorname{trace}(S_{\lambda}) \to n$ as $\lambda \to 0$. Note 1–1 map $\lambda \leftrightarrow \operatorname{trace}(S_{\lambda}) = \operatorname{df}$, so usually determine roughness using df (interpretation easier).
- Each eigenvalue of S_{λ} lies in (0,1), so this is a smoothing, NOT a projection, matrix.

Bias/Variance Tradeoff

Focus on the fit for the given grid x_1, \ldots, x_n :

$$\hat{\mathbf{g}} = (\hat{g}(x_1), \ldots, \hat{g}(x_n)), \quad \mathbf{g} = (g(x_1), \ldots, g(x_n))$$

Consider the mean squared error:

$$\mathbb{E}(\|\mathbf{g} - \hat{\mathbf{g}}\|^2) = \underbrace{\mathbb{E}\{\|\mathbb{E}(\hat{\mathbf{g}}) - \hat{\mathbf{g}}\|^2\}}_{\text{variance}} + \underbrace{\|\mathbf{g} - \mathbb{E}(\hat{\mathbf{g}})\|^2}_{\text{bias}^2}.$$

When estimator potentially biased, need to worry about both! In the case of a linear smoother, for which $\hat{\mathbf{g}}=S_\lambda y$, we find that

$$\mathbb{E}(\|\mathbf{g} - \hat{\mathbf{g}}\|^2) = \frac{\mathsf{trace}(S_{\lambda}S_{\lambda}^{\top})}{n}\sigma^2 + \frac{(\mathbf{g} - S_{\lambda}\mathbf{g})^{\top}(\mathbf{g} - S_{\lambda}\mathbf{g})}{n},$$

SO

- $\lambda \uparrow \implies \text{variance} \downarrow \text{but bias} \uparrow$,
- $\lambda \downarrow \implies$ bias \downarrow but variance \uparrow .

Choosing λ

- Fitted values are $\hat{y} = S_{\lambda} y$.
- ullet Fitted value \hat{y}_{i}^{-} obtained when y_{j} is dropped from fit is

$$S_{jj}(\lambda)(y_j - \hat{y}_j^-) = \hat{y}_j - \hat{y}_j^-.$$

Cross-validation sum of squares is

$$\mathsf{CV}(\lambda) = \sum_{j=1}^n (y_j - \hat{y}_j^-)^2 = \sum_{j=1}^n \left\{ \frac{y_j - \hat{y}_j}{1 - S_{jj}(\lambda)} \right\}^2,$$

and generalised cross-validation sum of squares is

$$\mathsf{GCV}(\lambda) = \sum_{j=1}^n \left\{ rac{y_j - \hat{y}_j}{1 - \mathsf{trace}(S_\lambda)/n}
ight\}^2,$$

where $S_{jj}(\lambda)$ is (j,j) element of S_{λ} .

Orthogonal Series: "Parametrising" The Problem

Depending on what $\mathfrak{F}\ni g(\cdot)$ is (Hilbert space) can write:

$$g(x) = \sum_{k=1}^{\infty} eta_k \psi_k(x)$$
 (in an appropriate sense),

with $\{\psi\}_{k=1}^{\infty}$ known (orthogonal) basis functions for $\mathfrak{F},$ e.g.,

- $\mathfrak{F} = L^2(-\pi,\pi)$,
- ullet $\{\psi_k\}=\{e^{-ikx}\}_{k\in\mathbb{Z}}$, $\psi_i\perp\psi_j$, i
 eq j.
- ullet Gives Fourier series expansion, $eta_k = rac{1}{2\pi} \int_{-\pi}^{\pi} g(x) \, e^{-ikx} \, dx$.

Idea: if truncate series, then have simple linear regression!

$$Y_i = \sum_{k=1}^{ au} eta_k \psi_k(x_i) + arepsilon_i, \quad au < \infty$$

Notice: truncation has implications, e.g., in Fourier case:

- Truncating implies assume $g \in \mathfrak{G} \subset L^2$.
- ullet Interpret this as a smoothness assumption on g.
- $\bullet \ \ \mathsf{How to \ choose} \ \tau \ \mathsf{optimally?}$

Convolution: Series Truncation $\stackrel{?}{\simeq}$ Smoothing

Easy exercise in Fourier analysis:

$$\sum_{k=- au}^{ au} eta_k \, e^{-ikx} = rac{1}{2\pi} \int_{-\pi}^{\pi} g(y) D_{ au}(x-y) \, dy$$

with the *Dirichlet kernel* of order τ , $D_{\tau}(u) = \sin \{(\tau + 1/2) u\}/\sin(u/2)$. Recall kernel smoother:

$$\hat{g}(x_0) = \sum_{i=1}^n rac{y_i K_\lambda(x_i - x_0)}{\sum_{i=1}^n K_\lambda(x_i - x_0)} = rac{1}{c} \int_I y(x) K_\lambda(x - x_0) dx,$$

with

$$y(x) = \sum_{i=1}^n y_i \delta(x-x_i).$$

- ullet So if K is the Dirichlet kernel, we can do series approximation via kernel smoothing.
- Works for other series expansions with other kernels (e.g., Fourier with convergence factors)

From $x \in \mathbb{R}$ to $(x_1, \ldots, x_d) \in \mathbb{R}^p$

So far: how to estimate $g:\mathbb{R} \to \mathbb{R}$ (assumed smooth) in

$$Y_i = g(x_i) + \varepsilon_i, \quad \varepsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2), \text{ given data } \{(y_i, x_i)\}_{i=1}^n.$$

- ▶ Generalise to include multivariate explanatories?
- ▶ "Immediate" Generalisation: $g: \mathbb{R}^p \to \mathbb{R}$ (smooth)

$$Y_j = g(x_{j1}, \ldots, x_{jp}) + arepsilon_j, \quad arepsilon_j \overset{iid}{\sim} \mathcal{N}(0, \sigma^2)$$

- ▶ Estimation by (e.g.) multivariate kernel method.
- ► Two basic drawbacks of this approach . . .

What is "local" in \mathbb{R}^p ?

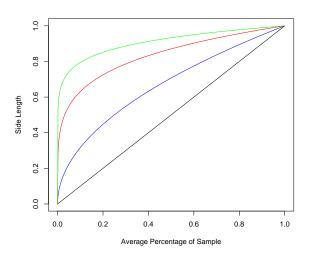
- → Need some definition of "local" in the space of explanatories
- \hookrightarrow Use some metric on $\mathbb{R}^p \ni (x_1,\ldots,x_p)$!

But which one?

- Choice of metric ←⇒ choice of geometry
 - \hookrightarrow e.g., curvature reflects intertwining of dimensions
- Geometry

 reflects structure in the explanatories
 - potentially different units of measurement (variable stretching of space)
 - g may be of higher variation in some dimensions (need finer neighbourhoods there)
 - statistical dependencies present in the explanatories ("local" should reflect these)

Curse of Dimensionality $(\mathcal{U}[0,1]^p)$



$$p = 1, p = 2, p = 5, p = 10$$

Anthony Davison (EPFL)

Linear Models

Curse of Dimensionality

"neighbourhoods with a fixed number of points become less local as the dimensions increase"

Bellman (1961)

- Need to have ever larger samples as dimension grows.

Tackling the Dimensionality Issue

Attempt to find a link/compromise between:

- our mastery of 1D case (at least we can do that well ...),
- and higher dimensional explanatories (and associated difficulties).

One approach: Projection-Pursuit Regression

$$Y = \sum_{k=1}^K h_k(artheta_k^ op \mathbf{x}) + arepsilon, \quad \|artheta_k\| = 1, \; arepsilon \sim \mathcal{N}(0, \sigma^2).$$

- ullet Additively decomposes g into smooth functions $h_k:\mathbb{R} o \mathbb{R}.$

- ullet Each h_k is a ridge function of ${f x}$: varies only in the direction defined by $artheta_k$

Projection Pursuit Regression

How is the model fitted to data?

Assume only one term, K=1 and consider penalized likelihood:

$$\min_{h \in \mathcal{O}^2, \|\boldsymbol{\vartheta}\| = 1} \qquad \left\{ \sum_{i=1}^n \{y_i - h_1([\boldsymbol{\vartheta}^\top \mathbf{x}]_i)\}^2 + \int_I \{h_1''(t)\}^2 dt \right\}.$$

Two steps:

- *Smooth*: Given a direction ϑ , fitting $g_1(\vartheta^\top \mathbf{x})$ is done via 1D smoothing splines.
- Pursue: Given h_1 , have a non-linear regression problem w.r.t. ϑ .

Hence, iterate between the two steps

- \hookrightarrow Complication is that h_1 not explicitly known, so need numerical derivatives.
- \hookrightarrow Computationally intensive (impractical in the '80's).
- → Further terms added in forward stepwise manner.

Additive Models

Projection pursuit:

- (+) Can uniformly approximate $C^1(\text{compact}[\mathbb{R}^p])$ function arbitrarily well as $K \to \infty$ (very useful for prediction)
- (-) Interpretability? What do terms mean within problem?

Need something that can be interpreted variable-by-variable

► Compromise: Additive Model

$$Y_j = lpha_j + \sum_{k=1}^p f_k(x_{jk}) + arepsilon_j, \quad arepsilon_j \overset{iid}{\sim} \mathcal{N}(0, \sigma^2),$$

• f_j 's univariate smooth functions, $\sum_j f_k(x_{jk}) = 0$. In our standard setting, have:

$$Y_j \mid \widetilde{\pmb{x}}_j \overset{ind}{\sim} \mathsf{Dist}(\cdot \mid heta_j)
ightarrow \left\{egin{array}{l} \mathsf{Dist} = \mathcal{N}(\mu_j, \sigma^2), \ heta_j = \mu_j = lpha_j + \sum_{k=1}^p f_k(x_{jk}). \end{array}
ight.$$

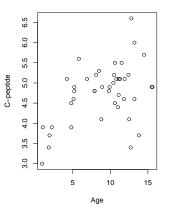
The Backfitting Algorithm

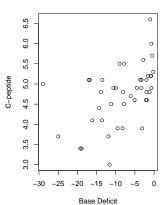
- ► How to fit additive model?
- \hookrightarrow Know how to fit each f_k separately quite well
- \hookrightarrow Take advantage of this . . .
- ▶ Motivation: Fix *j* and drop it for ease:

$$\mathbb{E}\left[Y-lpha-\sum_{m
eq k}f_m(x_m)
ight]=f_k(x_k)$$

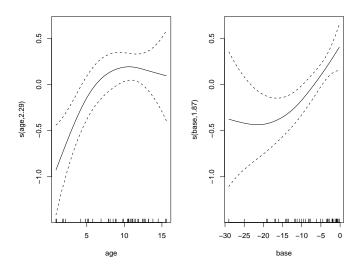
- ▶ Suggests the *Backfitting Algorithm*:
- (1) Initialise: $\alpha = \text{ave}\{y_j\}$, $f_k = f_k^0$, $k = 1, \ldots, p$.
- (2) Cycle: $f_k = \mathcal{S}_k(y-\alpha-\sum_{m \neq k}\mathbf{f}_m)$ $k=1,\ldots,p,1,\ldots,p,\ldots$
- (3) Stop: when individual functions don't change
- $\triangleright S$ is arbitrary scatterplot smoother

Example: Diabetes Data



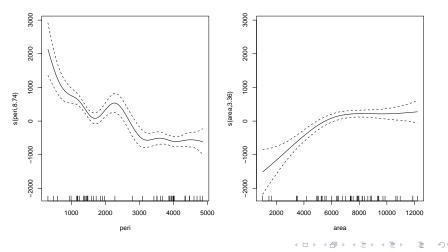


Example: Diabetes Data



Example: Rock Permeability Data

Measurements on 48 rock samples from a petroleum reservoir: rock.gam<-gam(perm 1+s(peri)+s(area),family=gaussian)



Example: Rock Permeability Data

```
Family: gaussian
Link function: identity
Formula:
perm ~1 + s(peri) + s(area)
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 415.45 27.18 15.29 <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
         edf Est.rank F p-value
s(peri) 8.739 9 18.286 9.49e-11 ***
s(area) 3.357 7 6.364 7.41e-05 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.815 Deviance explained = 86.3%
```

Comments

Non-parametric regression very useful:

- Exploratory analysis (what sort of model appropriate?)
- Confirmatory analysis (is my model reasonable?)
- Estimation (accept general form)

Miscellanea:

- Many more variants available (supersmoother . . .)
- Robust procedures also available (see lowess()).
- Although can often transform to a parametric problem for fixed n, typically asymptotics have $p \to \infty$ as $n \to \infty$ with $p/n \to 0$, so linear model asymptotics need to be generalised.