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1 The Linear Model slide 2

1.1 Introduction slide 3

Dictionary

� Regression: (statistics) a measure of the relation between the mean value of

– one variable (e.g., output), denoted y (the response variable) and

– corresponding values of other variables (e.g., time and cost), denoted x (explanatory
variables).

� The explanatory variables are also called covariates or features (ML).

� We avoid the terms dependent variable (Y ) and independent variable (x) used in older books.

� Questions we try and answer:

– (description/explanation) how does y depend on x? How much of the variation of y is due
to x? Do I need all of x to explain the variation in y?

– (prediction) what will y be if x = x+?

– (causation) if I change x, what will happen to y?

� The causation question presupposes that we can change (some of) x, which is not always true.
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Linear model

� Simplest explanation of y in terms of x is linear model:

y = g(x) = x1β1 + · · ·+ xpβp = xTβ,

where
y ∈ R, xT = (x1, . . . , xp) ∈ R

p, βT = (β1, . . . , βp) ∈ R
p.

� The data consist of n instances/examples/cases (xj, yj) for j = 1, . . . , n, so

yn×1 =



y1
...
yn


 , Xn×p =



x11 · · · x1p
...

...
xn1 · · · xnp


 , βp×1 =



β1
...
βp




and we write
y = Xβ.

� Key point: linearity refers to linearity in β, not in terms of elements of X, which might be
polynomials, or basis functions, or . . .

� Sometimes we can transform to a linear model. For example, the multiplicative expression
y = γxβ11 x

β2
2 becomes

log y = log γ + β1 log x1 + β2 log x2.
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Notation

� Vectors are column vectors

� We write Xn×p to give the dimensions of a matrix or vector

� aT (row vector) is the transpose of a (column vector)

� j ∈ {1, . . . , n} (or sometimes i) indexes the rows of y (cases/examples)

� xT

j is the jth row of X

� r, s, t, . . . ∈ {1, . . . , p} indexes the columns of X (covariates/features)

� Roman letters (y, X, z, . . . ) denote observed quantities, and may be the realisations of random
variables

� Greek letters (β, γ, θ, σ, . . .) denote unknown (often vector) parameters of models

� β̂ denotes an estimate of β

� α denotes the level of significance tests and confidence intervals

� If Q is scalar (or a row vector) and β is a vector, then ∂Q/∂β denotes the vector (or matrix) the
same shape as β with elements ∂Q/∂βr.

� If Q is scalar and β, γ are vectors, then ∂2Q/∂β∂γT denotes the matrix with (r, s) element
∂2Q/∂βr∂γs.

� u ⊥ v means that the vectors u and v are orthogonal (i.e., uTv = 0); ditto for matrices.

� Y ⊥⊥ Z means that the random variables Y and Z are independent.
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Useful matrix decompositions

� Singular value decomposition (SVD): any real matrix X can be written in the form

Xn×p = Un×nDn×pV
T

p×p

where

– U = (u1, . . . , un) and V = (v1, . . . , vp) are orthogonal (i.e., UTU = UUT = In,
V TV = V V T = Ip) and D is n× p rectangular diagonal with real diagonal entries (singular
values) d1 ≥ · · · ≥ dm ≥ 0, where m = min(n, p),

– if one or more dj = 0, then X is singular, and

– the uj and vr respectively span the column and row spaces of X.

� The SVD implies that the ranks of X, XTX and XXT are equal and at most m.

� Spectral theorem: any real symmetric matrix H can be written as

Hn×n = Un×nDn×nU
T

n×n,

where

– D = diag(d1, . . . , dn) contains the eigenvalues of H;

– U is an orthogonal matrix whose columns are the corresponding eigenvectors; and

– if H is positive semi-definite then d1 ≥ · · · ≥ dn ≥ 0.

Regression Methods Autumn 2024 – slide 7

4



Least squares fit

� Assume that
y = Xβ

and find the ‘best fit’ by choosing β to minimise the (squared) Euclidean distance between y and
Xβ, i.e., the sum of squares

‖y −Xβ‖2 = (y −Xβ)T(y −Xβ) =

n∑

j=1

(yj − xT

j β)
2.

� In vector space terms, y ∈ R
n and Xβ ∈ span(X) ⊂ R

n.

� The ‘best fit’ vector ŷ is the vector in span(X) closest to y; Pythagoras’ theorem (sketch) gives
ŷ ⊥ (y − ŷ) (but see below).

� We call ŷ ∈ R
n the fitted value(s) and e = y − ŷ ∈ R

n the residual (vector).

Lemma 1 When X has rank p and n ≥ p then ŷ = Xβ̂ = Hy, where

β̂ = (XTX)−1XTy, H = X(XTX)−1XT.

The ‘hat matrix’ H has rank p, is symmetric and idempotent, and satisfies HX = X: it gives the
orthogonal projection of Rn onto span(X).

Regression Methods Autumn 2024 – slide 8

Note to Lemma 1

� If X has rank p, so too does the p× p matrix XTX, which is therefore invertible.

� The sum of squares

Q = (y −Xβ)T(y −Xβ) = yTy − βTXTy − yTXβ + βTXTXβ = yTy − 2yTXβ + βTXTXβ

has first and second derivatives (respectively a p× 1 vector and p× p matrix)

∂Q

∂β
= −2XTy + 2XTXβ,

∂2Q

∂β∂βT
= 2XTX

with respect to β. Setting ∂Q/∂β = 0 implies that (XTX)β = XTy, and as XTX is invertible
we can write

β̂ = (XTX)−1XTy, ŷ = Xβ̂ = X(XTX)−1XTy = Hy,

say. The matrix XTX is positive definite, so (y −Xβ)T(y −Xβ) is minimised at β̂.

� The n× n ‘hat matrix’ H (which ‘puts a hat’ on y) satisfies HT = H, H2 = H, so it is
symmetric and idempotent, i.e., its eigenvalues equal 0 or 1, and their multiplicities must be n− p
and p, as its rank is p. H is the matrix that projects Rn orthogonally onto the span of the
columns of X, span(X).

� The inner product between ŷ and y − ŷ equals zero, because ŷ = Hy, y − ŷ = (I −H)y, and
ŷT(y − ŷ) = yTHT(I −H)y = yT(H −H)y = 0. Hence ŷ and y − ŷ are orthogonal.

� Clearly HX = X(XTX)−1XTX = X, so H(Xβ) = Xβ for any β ∈ R
p, i.e., a vector in

span(X) is left unchanged by multiplication by H.
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Analysis of variance I

Lemma 2 Let Xn×p = (X0,X1, . . . ,XR) have rank p, where p ≤ n, and let Hr denote the projection
matrices formed using (X0, . . . ,Xr), for r = 0, . . . , R; hence HR = H. Define Pr = Hr −Hr−1 for
r = 1, . . . , R and PR+1 = I −H. Then (i) HrHs = Hr whenever r ≤ s, (ii) H0Pr = 0 for any r, and
(iii) the matrices Pr are symmetric and idempotent, with PrPs = 0 when r 6= s.

� In the setup of Lemma 2 suppose we fit the models with projection matrices H0, . . . ,HR = H
and corresponding fitted values ŷr = Hry. Then

y = ŷ0 + (ŷ1 − ŷ0) + · · ·+ (ŷR − ŷR−1) + (y − ŷR)

= H0y + (H1 −H0)y + · · · + (HR −HR−1)y + (I −H)y

= H0y + P1y + · · · + PRy + PR+1y,

and Lemma 2 implies that the terms on the RHS are orthogonal, i.e.,

(H0y)
T(Pry) = 0, (Psy)

T(Pry) = 0, r 6= s.

� Hence Pythagoras’ theorem gives the analysis of variance (ANOVA) decomposition

‖y‖2 = ‖ŷ0‖2 +
R∑

r=1

‖ŷr − ŷr−1‖2 + ‖y − ŷ‖2.
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Note to Lemma 2

� (i) Let V0 ⊂ · · · ⊂ VR denote the linear spaces onto which R
n is projected by H0, . . . ,HR = H,

and suppose that r ≤ s. Now Hry ∈ Vr for any y ∈ R
n, so as Vr ⊂ Vs, Hry ∈ Vs. Hence

HsHry = Hry for any y ∈ R
n, so HsHr = Hr. This implies that

HsHr = Hr = HT

r = (HsHr)
T = HT

r H
T

s = HrHs, s ≥ r.

� (ii) For r = 1, . . . , R, (i) yields H0Pr = H0Hr −H0Hr−1 = H0 −H0 = 0, and
H0PR+1 = H0(I −HR) = 0.

� (iii) The matrices P1, . . . , PR are symmetric because

PT

r = (Hr −Hr−1)
T = HT

r −HT

r−1 = Hr −Hr−1 = Pr,

and idempotent because (i) gives

P 2
r = (Hr −Hr−1)(Hr −Hr−1)

= H2
r −HrHr−1 −Hr−1Hr +H2

r−1

= Hr −Hr−1 −Hr−1 +Hr−1

= Hr −Hr−1 = Pr.

Moreover if r < s ≤ R, then

PrPs = (Hr −Hr−1)(Hs −Hs−1)

= HrHs −HrHs−1 −HsHr−1 +Hr−1Hs−1

= Hr −Hr −Hr−1 +Hr−1

= 0.

The corresponding results for PR+1 are equally easy to check.
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Analysis of variance II

� Usually X0 = 1n; then ŷ0 = 1n(1
T

n1n)
−11T

ny = y1n and

‖y‖2 − ‖ŷ0‖2 =
n∑

j=1

y2j −
n∑

j=1

y2 =
n∑

j=1

(yj − y)2,

equals n times the empirical variance of y1, . . . , yn. Hence

n∑

j=1

(yj − y)2 = ‖y‖2 − ‖ŷ0‖2 =
R∑

r=1

‖ŷr − ŷr−1‖2 + ‖y − ŷ‖2

decomposes (‘analyses’) the variability of y around its average y into

– the contributions ‖ŷr − ŷr−1‖2 due to adding the columns of Xr to X0, . . . ,Xr−1,

– the residual sum of squares ‖y − ŷ‖2 left after fitting X = (X0, . . . ,XR).

� Large ‖ŷr − ŷr−1‖2 implies that Xr explains a lot of the variation of y even after allowing for that
explained by X0, . . . ,Xr−1.

� The

– degrees of freedom of a fit is the rank νr of the corresponding Hr, and the

– residual degrees of freedom is n− νR = n− p.
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Terms

� A constant column X0 = 1n is almost always present in the design matrix, so

Xβ =
(
1n X1 · · · XR

)




β0
β1
...
βR


 = 1nβ0 +X1β1 + · · ·+XRβR,

where the matrices X1, . . . ,XR, the terms, are successively included.

� The baseline model with only 1n has fitted value and residual vector

ŷ0 = y1n, y − ŷ0 = y − y1n.

� Starting from the baseline we ask which terms lead to large reductions in the residual sum of
squares, i.e., best explain the variation of y.

� The successive residual degrees of freedom, i.e., the ranks of the matrices I −Hr, are

n− 1 = n− ν0 ≥ n− ν1 ≥ · · · ≥ n− νR.

� When the columns of Xr+1 depend linearly on those of 1n,X1, . . . ,Xr, we have νr+1 = νr, so
inclusion of Xr+1 does not change the fitted value or improve the fit.
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Model formulae

� A mean vector such as 1nβ0 +X1β1 +X2β2 is often written as the right-hand side of

y ∼ X1+ X2

where

– the columns of 1s is (silently) included first by default,

– X1 and X2 represent the vector subspaces of Rn generated by the corresponding terms, and

– + represents addition of vector subspaces.

� Software generally drops any column of a design matrix that is linearly dependent on previous
columns, and this affects which elements of β can be estimated and the meaning of estimates
corresponding to later columns.

� Carefully choosing the order of terms in a model can give easily interpreted estimates of the
parameters of interest — for example, if X2 is full-rank and a column of 1s lies in
span(X1) + span(X2) then

y ∼ X1+ X2, y ∼ X2+ X1− 1,

span the same linear space but the second estimates the parameters of β2 (unadjusted for the
mean) and the parameters of β1, adjusted for the presence of X2.
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ANOVA

Terms Residual df Residual SS Term added Reduction in Reduction in SS Mean square
residual df

1n n− ν0 = n− 1 SS0
1n,X1 n− ν1 SS1 X1 ν1 − ν0 SS0 − SS1

SS0−SS1

ν1−ν0
1n,X1,X2 n− ν2 SS2 X2 ν2 − ν1 SS1 − SS2

SS1−SS2

ν2−ν1
...

...
...

...
...

...
...

1n,X1, . . . ,XR n− νR = n− p SSR XR νR − νR−1 SSR−1 − SSR
SSR−1−SSR
νR−νR−1

� The sum of squares when including terms 1n,X1, . . . ,Xr is

SSr = ‖y − ŷr‖2.

� The ‘mean square’ for term Xr,

MSr =
SSr−1 − SSr
νr − νr−1

is the average reduction in SSr per degree of freedom when Xr is added to the model.

� Usually show only the RHS of the table and the bottom line of its LHS (next slide).
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ANOVA table

Term added df Reduction in SS Mean square

X1 ν1 − ν0 SS0 − SS1 MS1 = (SS0 − SS1)/(ν1 − ν0)
X2 ν2 − ν1 SS1 − SS2 MS2 = (SS1 − SS2)/(ν2 − ν1)
...

...
...

...
XR νR − νR−1 SSR−1 − SSR MSR = (SSR−1 − SSR)/(νR − νR−1)

Residual n− νR SSR MSRes = SSR/(n − νR)

� Used to screen which terms give the largest reductions, comparing MSr with the residual mean
square MSRes.

� Judge ‘significance’ of reductions relative to residual using F -tests (later).

� Problem: the order of adding terms matters, so there is no unique reduction in general.
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Coefficient of determination

� Coefficient of determination R2 measures reduction in variance of y as

R2 =
‖ŷ − y1n‖2
‖y − y1n‖2

=
{(H −H0)y)}T(H −H0)y

{(I −H0)y)}T(I −H0)y
=
yT(H −H0)y

yT(I −H0)y
,

where H0 and H are the hat matrices for regression on 1n and X, and 1n ∈ span(X).

� R2 ∈ [0, 1] is the squared empirical correlation between y and ŷ, so R2 ≈ 1 implies that most of
the variation in y is explained by ŷ.

� There is a geometric interpretation, as the terms on the right of

(In −H0)y = (In −H)y + (H −H0)y

are orthogonal (check this).

� Adding columns to X must increase R2, unlike the adjusted R2,

R2
a = R2 + (1−R2)

n− 1

n− p
.

� If 1n 6∈ span(X), use

R2
0 =

ŷTŷ

yTy
, R2

0,a = R2
0 + (1−R2

0)
n

n− p
.

Regression Methods Autumn 2024 – slide 15
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Comments

� We have supposed that Xn×p has rank p:

– if X is rank-deficient, then a least squares algorithm usually drops columns that lie in the span
of preceding ones, but care is needed to construct X so that the resulting β̂ is easy to
interpret;

– if X is nearly rank-deficient, then regularisation may be needed. More later . . .

� Everything so far as purely numerical:

– least squares estimation is a numerical technique for using X to approximate y;

– ŷ = Xβ̂ is the resulting approximation, which lies in span(X);

– β̂ gives the coefficients of the columns of X for the best approximation;

– the coefficient of determination R2 measures how much of the overall variation of y was
explained by X; and

– the ANOVA decomposition summarises how much of the variation in y is explained by
different subsets of columns of X (terms).

� For statistics we need to add some distributional assumptions . . . shortly . . .

� First some reminders . . .
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1.2 Inference slide 17

Reminder: Moment-generating function

Definition 3 The moment-generating function (MGF) of a random vector Yn×1 is

MY (t) = E(et
TY ) = E(e

∑n
j=1

tjYj ), t ∈ T = {t ∈ R
n :MY (t) <∞},

and the cumulant-generating function of Y is KY (t) = logMY (t), t ∈ T .

Then

� 0 ∈ T , so MY (0) = 1 and KY (0) = 0;

� if T contains an open set, then

µ = E(Y ) = K ′
Y (0) =

∂KY (t)

∂t

∣∣∣∣
t=0

, Ω = var(Y ) =
∂2KY (t)

∂t∂tT

∣∣∣∣
t=0

;

� if A,B are disjoint subsets of {1, . . . , n} and YA denotes the sub-vector of Y containing
{Yj : j ∈ A}, etc., then YA ⊥⊥ YB if and only if

MY (t) = E(et
T
A
YA+tT

B
YB) =MYA(tA)MYB(tB), t ∈ T ;

� the MGF of YA equals MY (t) evaluated with tB = 0;

� if we recognise an MGF, then we know the probability distribution that gave it.

Regression Methods Autumn 2024 – slide 18
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Reminder: Multivariate normal distribution

A random variable Yn×1 with real components has the multivariate normal distribution,
Y ∼ Nn(µ,Ω), if a

TY ∼ N (aTµ, aTΩa) for every constant vector an×1, and then

(a) Ω is symmetric semi-positive definite with real components and

E(Y ) = µn×1, var(Y ) = Ωn×n, MY (t) = exp(tTµ+ 1
2 t

TΩt), t ∈ R
n,

where we call µ the mean vector and Ω the (co)variance matrix of X;

(b) for any constants am×1 and Bm×n, a+BY ∼ Nm (a+Bµ,BΩBT);

(c) if Y T = (Y T

1 , Y
T

2 ), where Y1 is m× 1, and µ and Ω are partitioned correspondingly, then the
marginal and conditional distributions of Y1 are also multivariate normal:

Y1 ∼ Nm(µ1,Ω11), Y1 | Y2 = y2 ∼ Nm

{
µ1 +Ω12Ω

−1
22 (y2 − µ2),Ω11 − Ω12Ω

−1
22 Ω21

}
;

(d) Y1 ⊥⊥ Y2 iff Ω12 = 0, and a+BY ⊥⊥ c+DY iff BΩDT = 0;

(e) if Y1, . . . , Yn
iid∼ N (µ, σ2), then Yn×1 ∼ Nn(µ1n, σ

2In); and finally,

(f) Y has a density on R
n iff Ω is positive definite (i.e., has rank n), and then

f(y;µ,Ω) =
1

(2π)n/2|Ω|1/2 exp
{
−1

2(y − µ)TΩ−1(y − µ)
}
, y ∈ R

n. (1)

Regression Methods Autumn 2024 – slide 19
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Note: Multivariate normal distribution

(a) Let ej denote the n-vector with 1 in the jth place and zeros everywhere else.

� Then Yj = eTj Y ∼ N(µj, ωjj), giving the mean and variance of Yj.

� Now var(Yj + Yk) = var(Yj) + var(Yk) + 2cov(Yj , Yk), and

Yj + Yk = (ej + ek)
TY ∼ N (µj + µk, ωjj + ωkk + 2ωjk),

which implies that cov(Yj , Yk) = ωjk = ωkj. This gives the mean and covariance matrix of Y .

� Since uTY ∼ N (uTµ, uTΩu), its MGF is MuTY (t) = E(etu
TY ) = exp(tuTµ+ 1

2t
2uTΩu). The

MGF of Y is MY (u) = E(eu
TY ) =MuTY (1) = exp(uTµ+ 1

2u
TΩu), for any u ∈ R

p, as stated.

(b) The MGF of a+BY equals

E [exp{tT(a+BY )}] = E [exp{tTa+ (BTt)TY )}]
= et

TaMY (B
Tt)

= exp{tTa+ (BTt)Tµ+ 1
2(B

Tt)TΩ(BTt)}
= exp

{
tT(a+Bµ) + 1

2t
T(BΩBT)t

}
,

which is the MGF of the Nm(a+Bµ,BΩBT) distribution. Hence linear combinations of normal
variables are themselves normal.

(c) Write Y T = (Y T

1 , Y
T

2 ) and partition µ and Ω conformally. Then

MY (t) = exp
{
tT1µ1 + tT2µ2 +

1
2 (t

T

1Ω11t1 + 2tT1Ω12t2 + tT2Ω22t2)
}

and by setting t2 = 0 and t1 = 0 we see that MY1(t1) = exp
(
tT1µ1 +

1
2 t

T

1Ω11t1
)
and

MY2(t2) = exp
(
tT2µ2 +

1
2t

T

2Ω22t2
)
. Hence the marginal distribution of Y1 is Nm(µ1,Ω11).

For the conditional distribution, note that W = Y1 − Ω12Ω
−1
22 Y2 is a linear combination of Y and

E(W ) = µ1 − Ω12Ω
−1
22 µ2, var(W ) = Ω11 − Ω12Ω

−1
22 Ω21, cov(W,Y2) = Ω12 − Ω12Ω

−1
22 Ω22 = 0.

Hence W ⊥⊥ Y2. As Y1 =W +Ω12Ω
−1
22 Y2 and conditioning on Y2 does not change the distribution of

W ,

E(Y1 | Y2 = y2) = E(W ) + Ω12Ω
−1
22 y2, var(Y1 | Y2 = y2) = var(W +Ω12Ω

−1
22 y2) = var(W ).

Putting the pieces together gives the stated conditional distribution.

(d) The joint MGF given in (c) factorises iff the variables are independent, and on inspecting it we
see that

MY (t) =MY1(t1)MY2(t2) ⇐⇒ Ω12 = 0.

The variance matrix of (
a
c

)
+

(
B
D

)
Y

is (
BΩBT BΩDT

DΩBT DΩDT

)
,

so a+BY ⊥⊥ c+DY iff BΩDT = 0.
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Note: Multivariate normal distribution II

(e) Each Yj has mean µ and variance σ2, and since they are independent, cov(Yj, Yk) = 0 for
j 6= k. If u ∈ R

n, then uTY is a linear combination of normal variables, with mean∑n
j=1 ujµ = uTµ1n and variance

∑n
j=1 u

2
jσ

2 = uTσ2Inu, so Y ∼ Nn(µ1n, σ
2In), as required.

(f) Since Ω is symmetric and positive semi-definite, the spectral theorem tells us that we may write
Ω = ADAT, where D = diag(d1, . . . , dn) contains the (real) eigenvalues of Ω, with
d1 ≥ · · · ≥ dn ≥ 0, and A is a n× n orthogonal matrix, i.e., ATA = AAT = In and |A| = 1. The
columns A1, . . . , An of A are the eigenvectors corresponding to the respective eigenvalues,

Ω = ADAT =

n∑

j=1

djaja
T

j ,

with |Ω| = |ADAT| = |A| × |D| × |AT| = |D| and Ω−1 = AD−1AT if the inverse exists.

� Now let Z1, . . . , Zn
iid∼ N (0, 1) Z = (Z1, . . . , Zn)

T, and u ∈ R
n, set and consider

uT(µ+AD1/2Z) = uTµ+
n∑

j=1

Zju
Tajd

1/2
j .

This is a linear combination of normal variables, so it has a normal distribution, with mean uTµ
and variance

var


uTµ+

n∑

j=1

Zju
Tajd

1/2
j


 =

n∑

j=1

dj(u
Taj)

2var(Zj) = uT




n∑

j=1

djaja
T

j


u = uTΩu,

so we can write X = µ+AD1/2Z ∼ Nn(µ,Ω).

� If Ω has rank n, then dn > 0. The change of variables z 7→ x = µ+AD1/2z has Jacobian

∣∣∣∣
∂x

∂z

∣∣∣∣ = |AD1/2| = |A||D|1/2 = 1× |D|1/2 = |Ω|1/2 > 0.

Moreover z = D−1/2AT(x− µ), and therefore zTz = (x− µ)TΩ−1(x− µ). Hence using the joint
density of Z, fZ(z) = (2π)−n/2 exp(−∑n

j=1 z
2
j /2),

fX(x) = fZ(z)|z=D−1/2AT(x−µ)

∣∣∣∣
∂z

∂x

∣∣∣∣ = (2π)−n/2 exp

(
−z

Tz

2

)∣∣∣∣
z=D−1/2AT(x−µ)

|Ω|−1/2,

which reduces to (1). If dn = 0, then the Jacobian is zero, so the transformation z 7→ x is
singular and X does not have a density on R

n.

� Now suppose that dm > dm+1 = 0, so just m eigenvalues of Ω are positive. Then

X = µ+
m∑

j=1

Zjajd
1/2
j ∈ S = µ+ span(a1, . . . , am),

where S is a hyperplane of dimension m passing through µ and generated by the vectors
a1, . . . , am. In this case the previous argument shows that X has an m-dimensional Gaussian
density on S, but places no probability elsewhere.

Regression Methods Autumn 2024 – note 2 of slide 19
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Reminder: χ2 distribution

Definition 4 If Yj
ind∼ N (µj , σ

2), then W = Y 2
1 + · · · + Y 2

ν has the non-central chi-square
distribution with ν degrees of freedom (df) and non-centrality parameter
δ2 = (µ21 + · · ·+ µ2ν)/σ

2; we write W ∼ σ2χ2
ν(δ

2). Then

MW (t) = exp

(
tσ2δ2

1− 2tσ2

)
(1− 2σ2t)−ν/2, t < 1/(2σ2).

If δ2 = 0 and σ2 = 1 then W has the (central) chi-square distribution with ν df, we write W ∼ χ2
ν ,

its MGF is MW (t) = (1− 2t)−ν/2, and its p-quantile is cν(p).

Chi-square variables satisfy

� E(W ) = σ2(ν + δ2), var(W ) = 2σ4(ν + 2δ2);

� if W1 ∼ χ2
ν1 ⊥⊥W2 ∼ χ2

ν2 , then W1 +W2 ∼ χ2
ν1+ν2 ;

� W ∼ χ2
ν implies that W has the gamma density

f(w) =
βαwα−1

Γ(α)
e−βw, w > 0, α, β > 0,

with α = ν/2 and β = 1/2.
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Reminder: χ2
ν densities

Left: central densities with ν = 1, 2, 4, 6 (solid, large dashes, small dashes, dot-dash).

Right: non-central densities with ν = 4 and δ = 0, 2, 4, 10 (solid, large dashes, small dashes,
dot-dash).
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Reminder: Student t distribution

Definition 5 If Z ∼ N (0, 1) ⊥⊥W ∼ χ2
ν , then T = Z/(W/ν)1/2 has the Student t distribution

with ν df, T ∼ tν , and we write tν(p) for the corresponding p-quantile. The density function of T is

fT (t) =
Γ{(ν + 1)/2}√
νπΓ(ν/2)

1

(1 + t2/ν)(ν+1)/2
, −∞ < t <∞, ν = 1, 2, . . . .

Properties:

� the mean and variance exist only for ν ≥ 2 and ν ≥ 3 respectively, and then

E(T ) = 0, var(T ) =
ν

ν − 2
;

� with ν = 1 we have the Cauchy density,

1

π(1 + t2)
, −∞ < t <∞,

and then T has no moments;

� as ν → ∞, the limiting distribution of T is N (0, 1); usually the approximation is ‘good enough’
for ν > 25 (say).
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Reminder: Student t densities

Student t density functions with ν = 1, 5, 10, 20 (black, ν = 20), and the standard normal density
(red):
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Reminder: F distribution

Definition 6 If W1,W2
ind∼ χ2

ν1 , χ
2
ν2 , then

F =
W1/ν1
W2/ν2

has the F distribution with ν1 and ν2 df: we write F ∼ Fν1,ν2 .
The density function is

fF (u) =
Γ
(
1
2ν1 +

1
2ν2
)
ν
ν1/2
1 ν

ν2/2
2

Γ
(
1
2ν1
)
Γ
(
1
2ν2
) u

1
2ν1−1

(ν2 + ν1u)
(ν1+ν2)/2

, u > 0, ν1, ν2 = 1, 2, . . . ,

and the p-quantile is written Fν1,ν2(p).
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Reminder: Computation

� Quantiles of the N (µ, σ2), χ2
ν , tν , Fν1,ν2 distributions can be found in tables, or in environments

such as R (see http://www.r-project.org/), where they can also be simulated.

� Examples:

R : Copyright 2005, The R Foundation for Statistical Computing

Version 2.2.1 (2005-12-20 r36812)

...

> qnorm(0.025) # this is a comment; access normal quantiles

[1] -1.959964 # the [1] means this is the first element of a vector

> ?qnorm # help on use of function qnorm()

> qchisq(0.025,df=3) # chi-squared quantiles, nu=3

[1] 0.2157953

> qt(0.025,df=3) # t quantiles, nu=3

[1] -3.182446

> qf(0.025,df1=3,df2=4) # F quantiles, nu1=3, nu2=4

[1] 0.06622087
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Statistical models

� Least squares fitting gives a deterministic description of the variation in some numbers y in terms
of other numbers X.

� A statistical model is a description of data y in terms of a collection of probability distributions
on the sample space for y.

� We distinguish

– primary aspects of a model, which specify what questions we aim to answer, from

– secondary aspects, which complete the model, indicate what analysis might be suitable, and
determine the precision of conclusions.

� Often the primary aspects are embodied in one or more parameters of the model.

� (Almost) all models are tentative, and we must check that they are reasonable.

16
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Second-order and normal assumptions

� Two distributional assumptions are in general use for the linear model:

– second-order assumptions,

y ∼ (Xβ, σ2V ), i.e., E(y) = Xβ, var(y) = σ2Vn×n;

– normal assumptions,
y ∼ Nn(Xβ, σ

2V ),

i.e., y has a multivariate normal distribution with mean vector Xβ and positive definite
(co)variance matrix σ2V .

� X is called the design matrix: more later.

� V is assumed known. Unless stated otherwise we set V = In, so the yj are uncorrelated; if
normal they are therefore independent.

� If V 6= In, then we can perform weighted least squares (WLS) estimation, minimising

‖y −Xβ‖2V = (y −Xβ)TW (y −Xβ),

where W = V −1 is the weight matrix.

� Above the linearity is (usually) primary, whereas the distributional assumption, use of weights,
. . . , are (usually) secondary.
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Consequences of second-order assumptions

Lemma 7 Under the second-order assumptions, β̂ is an unbiased estimator of β,

E(β̂) = β, var(β̂) = σ2(XTX)−1.

and S2 = (n − p)−1‖y − ŷ‖2 is an unbiased estimator of σ2.

Theorem 8 (Gauss–Markov) The least squares estimator β̂ has the smallest variance among all
estimators β̃ = Ap×ny; it is the best linear unbiased estimator (BLUE) of β.

� Obviously these results hold under the (stronger) normal assumptions.

� The Gauss–Markov theorem only concerns linear estimators. Nonlinear estimators of β might
have smaller variance than σ2(XTX)−1 (and in fact the optimal maximum likelihood estimators
of β for non-normal models will be nonlinear in y).

Regression Methods Autumn 2024 – slide 28
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Note to Lemma 7

� Recall that expectation is linear, and that var(Ap×ny) = Avar(y)AT.

� Set Ap×n = (XTX)−1XT and note that

E(β̂) = E(Ay) = AE(y) = (XTX)−1XTXβ = β,

var(β̂) = Avar(y)AT = (XTX)−1XTInσ
2{(XTX)−1XT}T = σ2(XTX)−1.

� Recall that E(yyT) = var(y) + E(y)E(y)T = σ2In +XββTXT, and note that

‖y − ŷ‖2 = (y − ŷ)T(y − ŷ) = yT(In −H)T(In −H)y = yT(In −H)y = tr{(In −H)yyT}.

Hence E(‖y − ŷ‖2) equals

E[tr{(In −H)yyT}] = tr{(In −H)E(yyT)} = tr{(In −H)(σ2In +XββTXT)} = σ2tr(In −H),

because (In −H)X = 0. Moreover tr(In) = n and

tr(H) = tr{X(XTX)−1XT} = tr{(XTX)−1XTX} = tr(Ip) = p,

so E(S2) = σ2, because

E(‖y − ŷ‖2) = σ2tr(In −H) = σ2(n − p).
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Note to Theorem 8

� Let β̃ denote any unbiased estimator of β that is linear in y. Then a p× n matrix A exists such
that β̃ = Ay, and unbiasedness implies that E(β̃) = AXβ = β for any parameter vector β; this
entails AX = Ip. Now

var(β̃)− var(β̂) = Aσ2InA
T − σ2(XTX)−1

= σ2
{
AAT −AX(XTX)−1XTAT

}

= σ2A(In −H)AT

= σ2A(In −H)(In −H)TAT

and this p× p matrix is positive semidefinite. Thus β̂ has smallest variance in finite samples
among all linear unbiased estimators of β.

� This is a finite-sample result that holds for all n and X (of rank p, with n ≥ p).

Regression Methods Autumn 2024 – note 2 of slide 28
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Second-order assumptions and large samples

� We can write yj = xT

j β + σεj , where εj
ind∼ (0, 1), so

β̂ = (XTX)−1XTy =
n∑

j=1

(XTX)−1xjyj = β + σn−1
n∑

j=1

ajεj,

say, where a1, . . . , an are p× 1 vectors. We have E(β̂) = β and var(β̂) = (XTX)−1, but is β̂
approximately normal for large n?

� The aj , or equivalently X, must be such that no single yj can dominate in n−1
∑
ajεj .

Theorem 9 (no proof) Let {Xn} be a sequence of n× p design matrices each of rank p, let
hn11, . . . , h

n
nn be the diagonal elements of the hat matrices Xn(X

T

nXn)
−1XT

n and let
yn ∼ (Xnβ, σ

2In) for each n. If
lim
n→∞

max
j=1,...,n

hjj = 0,

then the corresponding sequence of least squares estimators β̂n satisfies

(XT

nXn)
1/2(β̂n − β)

D−→ Np(0, σ
2Ip), n→ ∞,

i.e., if H has a ‘well-behaved’ diagonal, then β̂
·∼ Np{β, σ2(XTX)−1} in large samples.
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Normal-theory linear model

The following results allow exact inferences for β and σ2, and in analysis of variance.

Theorem 10 Under the normal-theory linear model,

β̂ ∼ Np{β, σ2(XTX)−1} ⊥⊥ (n − p)S2

σ2
∼ χ2

n−p.

Lemma 11 If y ∼ Nn(µ, σ
2In) and H is symmetric and idempotent with rank p, then

yTHy ∼ σ2χ2
p(δ

2), where σ2δ2 = µTHµ.

Theorem 12 If y ∼ Nn(µ, σ
2In) and a linear model is fitted whose design matrix X is structured as

in Lemma 2, then the sums of squares in the ANOVA decomposition

n∑

j=1

(yj − y)2 =
R∑

r=1

‖ŷr − ŷr−1‖2 + ‖y − ŷ‖2 =
R+1∑

r=1

‖Pry‖2

are independent and ‖Pry‖2 ∼ σ2χ2
νr−1−νr(δ

2
r/σ

2), where σ2δ2r = µTPrµ. If Xr does not explain any

variation in µ after allowing for X0, . . . ,Xr−1, then Prµ = 0, so δ2r = 0.

Theorem 12 implies that the sums of squares for terms that explain variation in y will tend to be
larger than sums of squares for other terms, which can be used to estimate σ2.

Regression Methods Autumn 2024 – slide 30
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Note to Theorem 10

� The first part is easy, because β̂ is a linear combination of normal variables so it is normal, and its
mean and variance matrix were given by Lemma 7.

� Likewise the residual e = y − ŷ = (I −H)y is a linear combination of y with mean 0n and
variance (I −H)σ2, so e ∼ Nn{0p, (I −H)σ2}.

� As cov(β̂, e) equals

cov{(XTX)−1XTy, (I −H)y} = (XTX)−1XTcov(y)(I −H)T = σ2(XTX)−1{(I −H)X}T = 0,

we see that β̂ is independent of (any function of) e, and therefore in particular of

(n− p)S2/σ2 = ‖y − ŷ‖2/σ2 = eTe/σ2.

� The eigenvalues of H are p 1’s and n− p 0’s, so those of I −H are n− p 1’s and p 0’s. The
spectral decomposition implies that there exists an n× n orthogonal matrix U such that
I −H = UDUT, where D = diag(1, . . . , 1, 0, . . . , 0) and UUT = UTU = In. Thus Z = UTe/σ
has mean vector 0n and variance matrix

var(Z) = UTvar(e)U/σ2 = UT(I −H)σ2U/σ2 = UTUDUTU = D,

i.e. the Z1, . . . , Zn are independent normal variables, n− p of them have variance 1 and p of
them have variance 0 and therefore equal 0 with probability one. Hence, as required,

(n− p)S2/σ2 = eTe/σ2 = (UZ)T(UZ) = ZTUTUZ =

n−p∑

j=1

Z2
j ∼ χ2

n−p.
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Note to Lemma 11

The spectral decomposition of H is UDUT, where D is diagonal with p 1’s and n− p 0’s, and
Z = UTy ∼ Nn(U

Tµ, σ2In); note that the Zj are independent. Now

yTHy = (UTy)TD(UTy) =

n∑

j=1

djZ
2
j =

∑

j:dj=1

Z2
j ,

which has a (possibly non-central) χ2 distribution with p = tr(H) degrees of freedom, scale parameter
σ2 and

σ2δ2 =
∑

j:dj=1

E(Zj)
2 =

n∑

j=1

djE(Zj)
2 = (UTµ)TD(UTµ) = µTHµ.

Regression Methods Autumn 2024 – note 2 of slide 30
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Note to Theorem 12

� As PrPs = 0 for r 6= s, we have cov(Pry, Psy) = Prvar(y)P
T

s = σ2PrPs = 0, i.e., Pry and Psy
are independent. Hence the terms in the ANOVA decomposition are independent.

� Pr is a symmetric idempotent matrix, so Lemma 11 gives

‖Pry‖2 ∼ σ2χ2
ν(δ

2
r/σ

2), δ2r = µTPrµ,

where ν = rank(Pr). These ranks are νr−1 − νr for r = 1, . . . , R, and νR+1 = n− p for
PR+1 = In −H.

� If Xr does not explain any variation in µ after allowing for X0, . . . ,Xr−1, then
Hrµ = Hr−1µ ∈ Vr−1, i.e., Prµ = 0, and thus δ2r = 0.
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Inference on β

� Theorem 10 implies that for any constant cp×1, c
Tβ̂ ∼ N{cTβ, σ2cT(XTX)−1c}, so

Z =
cTβ̂ − cTβ

σ
√
cT(XTX)−1c

∼ N (0, 1) ⊥⊥ (n− p)S2/σ2 =W ∼ χ2
n−p,

and thus
cTβ̂r − cTβr

S
√
cT(XTX)−1c

=
Z√

W/(n− p)
∼ tn−p.

� Let vrs denote the (r, s) element of (XTX)−1, so vrr denotes its rth diagonal element.

� Different choices of c allow inferences on the elements of β.

� For example, if cT = (c1, . . . , cp), cr = 1 and cs = 0 for s 6= r, then cTβ = βr, and we

– test the hypothesis that βr = β0r by comparing (β̂r −β0r )/(Sv
1/2
rr ) to the tn−p distribution, and

– a (1− α) confidence interval for βr has limits

β̂r ± Sv1/2rr tn−p(1− α/2), 0 < α < 1.

� Likewise we can compare βr and βs by setting cr = 1, cs = −1 and all other ct = 0.
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Prediction

� Inference for the value of a further random variable Y+ with known p× 1 covariate vector x+ and
satisfying the linear model, so Y+ ∼ N (xT

+β, σ
2) independent of the other variables, is performed

by noting that Y+ ⊥⊥ β̂, S2 and

Y+ − xT

+β̂ ∼ N
[
0, σ2{1 + xT

+(X
TX)−1x+}

]
,

so
Y+ − xT

+β̂

S{1 + xT

+(X
TX)−1x+}1/2

∼ tn−p,

which leads to prediction intervals for Y+ once β̂ and S have been observed.

� Although we expect inferences for β and σ2 to hold as approximations under second-order
assumptions, this is not the case for inference on Y+. (Why not?)
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1.3 Analysis of Variance slide 33

Analysis of variance

� We previously saw that

n∑

j=1

(yj − y)2 = ‖y‖2 − ‖ŷ0‖2 =
R∑

r=1

‖ŷr − ŷr−1‖2 + ‖y − ŷ‖2

decomposes (‘analyses’) the variability of y around its average y into

– the contributions ‖ŷr − ŷr−1‖2 due to adding the columns of Xr to X0, . . . ,Xr−1,

– the residual sum of squares ‖y − ŷ‖2 left after fitting X = (X0, . . . ,XR).

� Large ‖ŷr − ŷr−1‖2 implies that Xr explains a lot of the variation of y even after allowing for that
explained by X0, . . . ,Xr−1.

� Theorem 12 implies that under the normal assumptions, and if E(y) = µ lies in the column space
of X, the sums of squares on the RHS above are independent and satisfy

‖ŷr − ŷr−1‖2 = ‖Pry‖2 ∼ σ2χ2
νr−1−νr(δ

2
r/σ

2) ⊥⊥ ‖y − ŷ‖2 ∼ σ2χ2
n−p.

Hence if δ2r = 0, i.e., µ ∈ span(X0, . . . ,Xr−1), then

‖ŷr − ŷr−1‖2/(νr−1 − νr)

‖y − ŷ‖2/(n − p)
∼ Fνr−1−νr ,n−p.
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ANOVA table

Term added df Reduction in SS Mean square

X1 n− 1− ν1 SS0 − SS1 MS1 = (SS0 − SS1)/(n − 1− ν1)
X2 ν1 − ν2 SS1 − SS2 MS2 = (SS1 − SS2)/(ν1 − ν2)
...

...
...

...
XR νR−1 − νR SSR−1 − SSR MSR = (SSR−1 − SSR)/(νR−1 − νR)

Residual νR = n− p SSR MSRes = SSR/νR

� If µ ∈ span(X) then the residual mean square MSRes gives an estimate of σ2.

� We test for an effect of term Xr by noting that

– if Xr explains no more than (X0, . . . ,Xr−1), then

Fr =
MSr
MSRes

∼ Fνr−1−νr,νR ,

– if Xr does have additional explanatory power, then the distribution of MSr is shifted to the
right, and we expect Fr to be large relative to its null distribution.
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Example: Cement data

Percentage weights in clinkers of 4 four constitutents of cement (x1, . . . , x4) and heat evolved y in
calories, in n = 13 samples.
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Example: Cement data

> cement

x1 x2 x3 x4 y

1 7 26 6 60 78.5

2 1 29 15 52 74.3

3 11 56 8 20 104.3

4 11 31 8 47 87.6

5 7 52 6 33 95.9

6 11 55 9 22 109.2

7 3 71 17 6 102.7

8 1 31 22 44 72.5

9 2 54 18 22 93.1

10 21 47 4 26 115.9

11 1 40 23 34 83.8

12 11 66 9 12 113.3

13 10 68 8 12 109.4

Regression Methods Autumn 2024 – slide 37

23



Example: Cement data

� Reductions in overall sum of squares when terms entered in the order given.

� Clearly x1 and x2 should be included, maybe not the others.

Term df Reduction in Mean square F
sum of squares

x1 1 1450.1 1450.1 242.5
x2 1 1207.8 1207.8 202.0
x3 1 9.79 9.79 1.64
x4 1 0.25 0.25 0.04

Residual 8 47.86 5.98
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Example: Cement data

� What if we change the order of the terms?

Term df Reduction in Mean square F
sum of squares

x4 1 1831.9 1831.9 306.2
x3 1 708.1 708.1 118.4
x2 1 101.9 101.9 17.04
x1 1 26.0 26.0 4.34

Residual 8 47.86 5.98

� Should x1 and x2 be included or not?
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Orthogonality

� In general, the ANOVA and ANOVA table depend on the order of inclusion of terms.

� Its interpretation is unclear if Xr is significant when included early, but not when it is included
late. Is the term important or not?

� In a model with orthogonal terms,

Xβ = 1nβ0 +X1β1 +X2β2, XT

r Xs = XT

r 1n = 0, r 6= s.

we obtain 

β̂0
β̂1
β̂2


 =



1T1 0 0
0 XT

1X1 0
0 0 XT

2X2




−1

(
1 X1 X2

)
T

y

so since ŷ = Xβ̂, we have

yTy − ŷTŷ = yTy − ny2 − β̂T

1X
T

1X1β̂1 − β̂T

2X
T

2X2β̂2,

and the residual sums of squares for the sub-models 1nβ0, 1nβ0 +X1β1, 1nβ0 +X2β2 are

yTy − ny2, yTy − ny2 − β̂T

1X
T

1X1β̂1, yTy − ny2 − β̂T

2X
T

2X2β̂2,

so the reductions do not depend on the order of inclusion. Hooray!
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Balance

� Balanced design matrices induce orthogonality after fitting 1n (or a more complex design X0).

� Gram–Schmidt orthogonalisation with respect to early terms makes later terms mutually
orthogonal, leading to a clear interpretation of the ANOVA for the later terms.

� If we write H0 = X0(X
T

0X0)
−1XT

0 and let

Zr = P0Xr = (In −H0)Xr, r = 1, 2,

denote the versions of X1 and X2 after adjusting for X0, then

X0β0 +X1β1 +X2β2 = (X0β0 +H0X1β1 +H0X2β2) + P0X1β1 + P0X2β2

= Z0γ0 + Z1β1 + Z2β2,

say, and ZT

1 Z0 = ZT

2 Z0 = 0, because P0X0 = P0H0 = 0.

� If the design satisfies ZT

1 Z2 = 0, then the order of inclusion of X1, X2 is irrelevant, provided X0

is already present in the fit.

Example 13 (3× 2 layout) Observations and their means written as

y11 y12
y21 y22
y31 y32

,
µ+ α1 + δ1 µ+ α2 + δ1
µ+ α1 + δ2 µ+ α2 + δ2
µ+ α1 + δ3 µ+ α2 + δ3

.
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Note to Example 13

� In terms of the parameter vector (µ, α1, α2, δ1, δ2, δ3)
T, the design matrix is

X∗
6×6 =




1 1 0 1 0 0
1 0 1 1 0 0
1 1 0 0 1 0
1 0 1 0 1 0
1 1 0 0 0 1
1 0 1 0 0 1



, with responses y =




y11
y12
y21
y22
y31
y32



,

with X0 ≡ 16 the first column of X∗, columns 2–3 the term X∗
1 for columns, and columns 4–6

the term X∗
2 for rows.

� This model has six parameters, but they cannot all be estimated, because X0 lies in the column
spaces of X∗

1 and X∗
2 , and it is easy to check that X∗ has rank 4. The usual way to deal with this

is to set α1 = δ1 = 0, corresponding to dropping columns 2 and 4 of X∗, giving the so-called
corner-point parametrization in which the means are

y11 y12
y21 y22
y31 y32

,
µ µ+ α2

µ+ δ2 µ+ α2 + δ2
µ+ δ3 µ+ α2 + δ3

,

i.e.,

– the ‘grand mean’ µ corresponds to the mean of observations with the first level of every factor,

– α2 corresponds to the mean difference between column 2 and column 1,

– δ2 corresponds to the mean difference between row 2 and row 1, and

– δ3 corresponds to the mean difference between row 3 and row 1.

This is the default in R. More rarely we might set
∑

c αc =
∑

r δr = 0.

� Even after these columns are dropped to give

X =




1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 0
1 0 0 1
1 1 0 1



,

the terms X1 for columns and X2 for rows are not orthogonal, and they are not orthogonal to 1n.
On the other hand Z1 and Z2 in the corresponding centred matrix,




1 −1
2 −1

3 −1
3

1 1
2 −1

3 −1
3

1 −1
2

2
3 −1

3
1 1

2
2
3 −1

3
1 −1

2 −1
3

2
3

1 1
2 −1

3
2
3




are orthogonal to the constant by construction and to each other because the design is balanced:
δ2 and δ3 each occur equally often with α2 and without α2. This balance implies that if µ is fitted
first, the reductions in sums of squares due to X1 and X2, or equivalently Z1 and Z2, are unique.
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26



1.4 Diagnostics slide 42

Assumptions and model checking

� How heavily do our conclusions depend on our assumptions?

� In any given context,

– primary aspects relate to the questions our analysis will address,

– secondary aspects relate to how we go about finding answers to them.

� Concerns about primary aspects suggest that we should start again.

� Concerns about secondary aspects suggest that we modify the analysis.

� Regression diagnostics check that a fitted model is adequate:

– Does y depend linearly on the columns of X?

– Does y depend systematically on variables omitted from X?

– Are the variances constant?

– Are the responses uncorrelated/independent?

– Are there outliers or otherwise unusual data?

– Are the responses normally distributed?

� Usually these involve plots, sometimes tests — beware over-interpretation!

� Key question: ‘how would the failure I see/suspect change my conclusions?’
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Residuals

� The raw residuals
e = y − ŷ = y −Xβ̂ = (In −H)y

have E(e) = 0, var(e) = σ2(In −H) if model correct, so

var(ej) = σ2(1− hjj) cov(ej , ek) = −σ2hjk, j 6= k.

� To (roughly) equalise the variances we define standardized residuals

rj =
ej

s(1− hjj)1/2
=

yj − xT

j β̂

s(1− hjj)1/2
, j = 1, . . . , n,

with s replacing σ. Then E(rj) = 0 and var(rj)
.
= 1.

� Although eTŷ = cov(e, ŷ) = 0 (check!), this only implies no linear relation between e and ŷ.

� We check

– linearity by plotting rj against the covariates (those in X and those not in X);

– constant variance by plotting rj (or |rj |) against fitted values ŷj;

– independence by ACF of residuals (if data time-ordered);

– for outliers, which are visible as unusual residuals; and

– normality using a normal QQ-plot of rj.
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Checking linearity

� Plot r against each covariate, included or not in the model, and against ŷ, which is uncorrelated
with e (as ŷTe = 0):
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Checking the variance

� Does var(y) depend on E(y)?

� Variance function shows how var(y) depends on µ = E(y). For normal linear model should have
var(y) = σ2, so variance is constant function of µ

� Plot r or |r| against ŷ:
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Checking independence

� Dependence can greatly increase uncertainty of final conclusions.

� Substantive knowledge is helpful in suggesting whether it might be present:

– were the data gathered in temporal/spatial/. . . order?

– were the data sampled/gathered in groups (e.g., spatial, several observations on different
individuals, . . . )?

– was randomisation used? If so, how?

� If observations are time-ordered, try using correlogram (ACF) and partial correlogram (PACF) to
estimate serial correlations and partial correlations

corr(rj, rj+t), corr(rj , rj+t | rj+1, . . . , rj+t−1), t = 1, . . .

� On next page, top panels show uncorrelated residuals, lower ones show evidence of correlation,
suggesting use of a time series model.
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Checking independence
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Checking for outliers and normality

� Normal Q-Q plot for Y1, . . . , Yn
iid∼ N (µ, σ2) graphs ordered values

Y(1) ≤ Y(2) ≤ · · · ≤ Y(n)

against (approximate) expected normal order statistics

Φ−1{1/(n + 1)},Φ−1{2/(n + 1)}, . . . ,Φ−1{n/(n + 1)}.

� Normality — roughly straight line, slope σ, intercept µ.

� Outliers, skewness, heavy tails (easily) seen.

� Beware over-interpretation of such plots when n is small — often useful to add simulation
envelope.

� Apply to standardized residuals rj from regression model.
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Checking normality, n = 50
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Checking normality, n = 200
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Leverage and influence

� Does case (xj , yj) strongly influence the fitted model (picture)?

� As
var(yj − ŷj) = var(yj − xT

j β) = σ2(1− hjj),

having leverage hjj
.
= 1 implies that ŷj ≈ yj — need one parameter to fit this case.

� As tr(H) =
∑n

j=1 hjj = p, the average hjj is p/n. If hjj > 2p/n, then jth case should be
checked (rule of thumb), e.g. by refitting without (xj , yj).

� Let ŷ−j be fitted values for (all) data when (xj , yj) is dropped and use Cook’s distance

Cj =
1

ps2
(ŷ − ŷ−j)

T(ŷ − ŷ−j) = · · · =
r2jhjj

p(1− hjj)

to measure the difference between ŷ and ŷ−j.

� Large Cj implies large rj and/or large hjj.

� Cases with Cj > 8/(n − 2p) worth a closer look (rule of thumb).

� High leverage and/or influence need not be bad, just need to be aware of it.

� These ideas are not very useful in large samples, since the plots become uninformative.
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Response transformation

� Linear model for y may be better applied for some transformation g(y), especially if some y are
much larger than others, or the variance is non-constant.

� Survival times yptj in 10-hour units of animals in a 3× 4 factorial experiment with four replicates,
with (below) average (standard deviation) for the poison × treatment combinations:

– generally see higher SD and mean together,

– times must be positive, so linear model inappropriate?

Treatment Poison 1 Poison 2 Poison 3

A 0.31, 0.45, 0.46, 0.43 0.36, 0.29, 0.40, 0.23 0.22, 0.21, 0.18, 0.23
B 0.82, 1.10, 0.88, 0.72 0.92, 0.61, 0.49, 1.24 0.30, 0.37, 0.38, 0.29
C 0.43, 0.45, 0.63, 0.76 0.44, 0.35, 0.31, 0.40 0.23, 0.25, 0.24, 0.22
D 0.45, 0.71, 0.66, 0.62 0.56, 1.02, 0.71, 0.38 0.30, 0.36, 0.31, 0.33

Treatment Poison 1 Poison 2 Poison 3 Average

A 0.41 (0.07) 0.32 (0.08) 0.21 (0.02) 0.31
B 0.88 (0.16) 0.82 (0.34) 0.34 (0.05) 0.68
C 0.57 (0.16) 0.38 (0.06) 0.24 (0.01) 0.39
D 0.61 (0.11) 0.67 (0.27) 0.33 (0.03) 0.53

Average 0.62 0.55 0.28 0.48
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Example: Poison data

Upper panels: dependence of responses on the factor levels. Lower left: χ2
3 probability plots of the

3s2pt, where s
2
pt is the sample variance of yptj. Lower right: same for y−1

ptj.
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Box–Cox transformation

� For y > 0, the Box–Cox transformation

y(λ) =

{
yλ−1
λ , λ 6= 0,

log y, λ = 0,

includes the inverse (λ = −1), log (λ = 0), cube and square roots (λ = 1
3 ,

1
2 ), original scale

(λ = 1) and square (λ = 2); sometimes map y 7→ y + c > 0.

� Suppose normal linear model
y(λ) ∼ Nn(Xβ, σ

2In)

applies for some β, σ and λ to be determined. Here X contains 1n, so use of y(λ) just changes
intercept and rescales β and σ.

� Use profile log likelihood for λ to choose ‘best’ transformation (usually from list above to aid
interpretation).

� Interpretation of β depends on λ, so usually we ignore the fact that λ was estimated, unless we
are not interested in β (e.g., when performing ‘automatic’ prediction).
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Example: Poison data

� Fits of two-way layout model, with interaction:

y
(λ)
tpj ∼ N (µ + αt + βp + γtp, σ

2), t = 1, 2, 3, 4, p = 1, 2, 3, j = 1, 2, 3, 4.

� Analyses of variance with responses y and y−1. For MS and F read ‘Mean square’ and ‘F
statistic’.

� The terms explain appreciably more of the variation of y−1, suggesting that this is a preferable
choice of response.

Term df Response y Response y−1

SS MS F SS MS F

Poisons 2 1.033 0.517 23.22 34.88 17.44 72.63
Treatments 3 0.921 0.307 13.81 20.41 6.80 28.34
Treatments × Poisons 6 0.250 0.042 1.87 1.57 0.26 1.09

Residual 36 0.801 0.022 8.64 0.24
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Example: Poison data

Top: residuals for model without interactions γtp; clearly problematic.
Lower right: profile log likelihood for Box–Cox λ, showing 95% confidence interval.
Lower left: residuals for the two-way layout model (no interactions) for 1/y .
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Summary on model-checking

� Recall the distinction between primary and secondary assumptions. Use of the standard linear
model when the secondary assumptions fail leads to inefficient estimation and over-confident
uncertainty assessment, but is not usually disastrous per se.

� When they fail . . .

– Linearity (primary): add terms (e.g., x2) to the model, transform the covariate (e.g., to
log x), or question the basic setup;

– Constant variance (secondary): use a response transformation (below), weighted least
squares, or question primary aspects. Non-constant variance affects uncertainty assessment,
but not estimation;

– Lack of correlation (independence) (secondary): use a correlated error model (e.g., time
series or random effects). Dependence affects uncertainty assessment, but not estimation;

– normality (secondary): often does not matter, because the CLT applies to the estimators. It
does matter for prediction, which is affected by the distribution of individual responses;

� Checking leverage and influence may be useful in small and moderate samples, but rarely in large
samples. In any case, automatic dropping of outlying and/or influential cases is dangerous!

Regression Methods Autumn 2024 – slide 58

34



1.5 Model Building slide 59

Goals

� What to do faced with a set of data?

� Two main aims:

– understand (science) — maybe have prior idea/hypotheses on how response depends on
explanatory variables. Interpretation is key.

– predict/control (technology) — don’t really care how y depends on X. Interpretation not
critical (though this describes only prediction in the narrowest of senses).

� There is no reason that a single model will do both, or even that there must be a single ‘best’
model:

– maybe two models with different interpretations both fit about equally well, and then future
work might aim to choose between them;

– prediction with a mixture of models might be better than using a single model.
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Meta-algorithm

� Collect data intended to answer question of interest;

� examine data (graphs, look for outliers, problems with sampling scheme);

� choose/construct response variable (transformations? independence?);

� consider what models are coherent with context of problem (limiting properties, units, similar
problems/datasets, covariates that must be included, . . .);

� iterate:

– fit models, compare quality of fits;

– check interpretations of β̂, σ̂2 and

– check fit (diagnostics, outliers, . . .)

until satisfied; finally

� give conclusions—careful interpretation of best model(s) in terms of original problem, consider
deficiencies, and explain what extra data might overcome them.
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Initial examination of data

� Plot y against covariates, look for outliers, non-constant variance, nonlinearity, etc.

� Plot covariates against each other, look for dependence.

� Try to understand covariates (e.g., dimensions), are transformations needed?

� May need to reduce dimension of X by regularisation — many ways to do this (later).
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1.6 Variable Selection slide 63

Albert Einstein (1879–1955)

‘Everything should be made as simple as possible, but no simpler.’
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William of Occam (?1285–1347/9)

Occam’s razor: Pluralitas non est ponenda sine necessitate: entities should not be multiplied beyond
necessity.
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Automatic variable selection

� Assume linear model E(y) = Xβ

� 2p possible subsets of columns of X, plus transformations, . . .

� Example: p = 17 gives 131072 possible subsets of variables

� Fast algorithms (e.g., branch and bound, leaps in R) exist visit them all or just subsets (e.g.,
stepwise), but we need criteria for comparing models.

� Many proposals for model comparison

– cross-validation,

– information criteria (AIC, AICc, BIC, NIC, TIC, . . .)

– Mallow’s Cp,

– . . .

� Most involve minimising estimated prediction error for future data like those observed !
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Prediction error

� True model y ∼ (µ, σ2In), we assume (perhaps incorrectly) that µ = Xβ, fit Xn×p and obtain
fitted value

Xβ̂ = Hy ∼ (Hµ, σ2H).

� Terminology

– the true model has µ = Xβ and all βr 6= 0;

– a correct model has µ = Xβ but some βr = 0;

– a wrong model has µ 6∈ span(X);

so (In −H)µ = 0 if the model is true or correct, and (In −H)µ 6= 0 if it is wrong.

� The prediction error for an independent dataset y+ with mean vector µ is

∆ = n−1E
{
(y+ −Xβ̂)T(y+ −Xβ̂)

}
=





n−1µT(I −H)µ+ (1 + p/n)σ2, wrong,

(1 + q/n)σ2, true,

(1 + p/n)σ2, correct,

where E(·) is over both y+ and y and p ≥ q = #{βr : βr 6= 0} when µ ∈ span(X).

� In principle we should write ∆ ≡ ∆(X).
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Note: Computation of ∆

Let y ∼ (µ, σ2I) and fit Xβ, obtaining fitted value

Xβ̂ = Hy ∼ (Hµ, σ2H),

where Hµ = µ, i.e., (I −H)µ = 0 if µ ∈ span(X), but otherwise (I −H)µ 6= 0.
We have a new data set y+ ∼ (µ, σ2I), and we compute the average error in predicting y+ using Xβ̂,
i.e.,

∆ = n−1E
{
(y+ −Xβ̂)T(y+ −Xβ̂)

}
.

Let e+ = y+ −Xβ̂ and note that as the trace of a scalar is the scalar and trace is a linear operator,

E(eT+e+) = E{tr(eT+e+)} = E{tr(e+eT+)} = tr{E(e+eT+)} = tr{var(e+) + E(e+)E(e+)
T)}.

Now as y+ and y are independent and var(Xβ̂) = σ2H, we have

y+ −Xβ̂ ∼ (µ −Hµ, σ2I + σ2H),

so the computation above gives

E
{
(y+ −Xβ̂)T(y+ −Xβ̂)

}
= tr{σ2(I +H) + (I −H)µµT(I −H)} = σ2(n+ p) + µT(I −H)µ,

because tr(I +H) = n+ p and I −H is symmetric and idempotent, giving

∆ =





n−1µT(I −H)µ+ (1 + p/n)σ2, wrong model,

(1 + q/n)σ2, true model,

(1 + p/n)σ2, correct model.

Regression Methods Autumn 2024 – note 1 of slide 67

Bias/variance trade-off

� Minimising ∆ involves balancing the

– bias n−1µT(I −H)µ, which is reduced by including useful terms in X, and

– variance (1 + p/n)σ2, which is increased by including useless terms in X.

� We would like to minimise ∆, but it depends on the unknown µ and σ.

� The cross-validation estimator of ∆ splits the data into X ′, y′ and X∗, y∗, then

– for each possible subset S of columns of X∗:

⊲ compute β̂∗S by regressing y∗ on X∗
S ;

⊲ use β̂∗S to estimate the prediction error for S by

∆̂S = (n′)−1(y′ −X ′
S β̂

∗
S)

T(y′ −X ′
S β̂

∗
S);

– finally choose the set of columns S for which ∆̂S is minimised.

� This estimator depends on the split, and since X ′ 6= X∗ in general, ∆̂S does not estimate ∆S , so
it would be preferable to use the entire dataset . . .
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Leave-one-out cross-validation

� Simplest way to use entire dataset is leave-one-out cross-validation (CV), minimising

n∆̂CV = CV =
n∑

j=1

(yj − xT

j β̂−j)
2,

where β̂−j is estimate computed without (xj , yj).

� This seems to require n fits, but the lemma below implies that with one fit we have

CV =
n∑

j=1

(yj − xT

j β̂)
2

(1− hjj)2
.

Lemma 14 For a fit ŷ = Hy where H has jth diagonal element hjj and ŷj,−j is the fitted value for
yj obtained when (xj , yj) is dropped,

yj − ŷj,−j =
yj − ŷj
1− hjj

,

and therefore
n∑

j=1

(yj − ŷj,−j)
2 =

n∑

j=1

(yj − ŷj)
2

(1− hjj)2
.
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Note to Lemma 14

� Consider any linear fit ŷ = Hy, and note that ŷj =
∑n

i=1 hjiyi.

� Now suppose we leave out (xj , yj) and compute the corresponding (penalized) estimate

β̂−j = argminβ
∑

i 6=j

(yi − xT

i β)
2 + λp(β),

and fitted value y∗j = ŷj,−j = xT

j β̂−j corresponding to xj .

� Inserting (xj , y
∗
j ) back into the dataset used to compute β̂−j changes nothing, because

(y∗ − xT

j β̂−j)
2 = 0 and p(β) does not depend on the data. For this new dataset,

y∗j =
∑

i 6=j

hjiyi + hjjy
∗
j =

n∑

i=1

hjiyi + hjj(y
∗
j − yj) = ŷj + hjj(y

∗
j − yj)

so
yj − y∗j = yj − ŷj + hjj(yj − y∗j ),

leading to

yj − y∗j = yj − ŷj,−j =
yj − ŷj
1− hjj

,

and thus to the given formula.
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Generalized cross-validation

� Leave-one-out CV can be unstable if some of the hjj are large.

� Generalised cross-validation (GCV) replaces all the hjj by their average tr(H)/n = p/n, giving

GCV =

n∑

j=1

(yj − xT

j β̂)
2

(1− p/n)2
,

and hence
E(GCV) = µT(I −H)µ/(1− p/n)2 + nσ2/(1 − p/n) ≈ n∆.

� Often choose the model that minimises GCV or CV.

� Note that these only require the second-order assumptions.
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Note: Properties of GCV

We have (1− p/n)2GCV = eTe where e = y −Xβ̂ = (I −H)y ∼ ((I −H)µ, (I −H)σ2), and

E (eTe) = E {tr (eeT)} = tr {E(e)E(e)T + var(e)} = µT(I −H)µ + σ2tr(I −H).

Now note that tr(I −H) = n− p and divide by (1− p/n)2 to give (almost) the required result, for
which we need also (1− p/n)−1 ≈ 1 + p/n, for p≪ n.
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Akaike information criterion

� The above arguments apply only to least squares estimators. More generally, we could aim to
minimise the Kullback–Leibler discrepancy

D(fθ, g) =

∫
log

{
g(y)

f(y; θ)

}
g(y) dy ≥ 0,

between candidate model fθ ≡ f(y; θ) and true model g, based on Y1, . . . , Yn
iid∼ g.

� Suppose that θg minimises D(fθ, g) within the family of candidate models, and is estimated by

the MLE θ̂, with log likelihood ℓ̂.

� We suppose there is an independent sample Y +
1 , . . . , Y

+
n

iid∼ g and aim to estimate

Eg


E+

g




n∑

j=1

log

{
g(Y +

j )

f(Y +
j ; θ̂)

}


 = nEg

{
D(f

θ̂
, g)
}
; (2)

the outer expectation is over the distribution of θ̂, which is independent of Y +.

� After tedious expansions we end up trying to minimise the Akaike information criterion

AIC = −2ℓ̂+ 2p (≡ n log RSS + 2p in linear model).
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Note: Derivation of AIC

� Taylor series expansion shows that log f(y; θ̂) approximately equals

log f(y; θg) + (θ̂ − θg)
T
∂ log f(y; θg)

∂θ
+ 1

2(θ̂ − θg)
T
∂2 log f(y; θg)

∂θ∂θT
(θ̂ − θg),

and as θg minimizes D(fθ, g),

∫
∂ log f(y; θg)

∂θ
g(y) dy = 0.

Hence taking expectation over Y +
1 , . . . , Y

+
n , we get

nD(f
θ̂
, g) = n

∫
log

{
g(y)

f(y; θ̂)

}
g(y) dy

.
= nD(fθg , g) +

1
2tr
{
(θ̂ − θg)(θ̂ − θg)

TIg(θg)
}
,

where we have used the fact that the trace of a scalar is itself.

� Expectation over the distribution of θ̂ gives its variance matrix, Ig(θg)
−1K(θg)Ig(θg)

−1, and hence

nEg
{
D(f

θ̂
, g)
} .
= nD(fθg , g) +

1
2tr
{
Ig(θg)

−1K(θg)
}
, (3)

where the second term penalizes the dimension p of θ. The first term here is O(n) but the second
is O(p). When fθg = g, Ig(θg) = K(θg) so tr

{
Ig(θg)

−1K(θg)
}
= p.

� To build an estimator, note that
∫
log g(y) g(y) dy is constant and can be ignored. Now

ℓ(θ̂) = ℓ(θg) + {ℓ(θ̂)− ℓ(θg)}, so
Eg

{
−ℓ(θ̂)

}
= −Eg

{
ℓ(θg) +

1
2W (θg)

}

.
= nD(fθg , g) − 1

2tr
{
I(θg)

−1K(θg)
}
− n

∫
log g(y) g(y) dy,

where we have used the fact that under the wrong model, the likelihood ratio statistic W (θg) has

mean approximately tr
{
I(θg)

−1K(θg)
}
. Hence −ℓ(θ̂) tends to underestimate

nD(fθg , g)− n
∫
log g(y) g(y) dy. On reflection this is obvious, because ℓ(θ̂) ≥ ℓ(θg) by definition

of θ̂. As p increases, so will the extent of overestimation.

� An estimator is −ℓ(θ̂) + c, where c estimates tr
{
I(θg)

−1K(θg)
}
. Two possible choices of c are p

and tr(Î−1K̂), and these lead to

AIC = 2{−ℓ(θ̂) + p}, NIC = 2{−ℓ(θ̂) + tr(Ĵ−1K̂)}; (4)

another possibility is BIC = −2ℓ(θ̂) + p log n.

� The model is chosen to minimize AIC, say, with the factor 2 putting differences of AIC on the
same scale as likelihood ratio statistics. Such criteria are used far beyond random samples, and
even in cases where the theory above doesn’t work.

� In particular, the maximised log-likelihood for a normal-theory linear model with residual sum of
squares RSS can be shown to be

−n
2
log(2πσ̂)− n

2
≡ −n

2
log RSS + constants,

which leads to the formula given on the slide.
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Other model selection criteria

� ‘Corrected’ AIC for (normal-theory) regression problems:

AICc ≡ n log σ̂2 + n
1 + p/n

1− (p + 2)/n
.

� Bayes’ information criterion
BIC = −2ℓ̂+ p log n.

� Mallows Cp:

Cp =
SSp
s2

+ 2p− n,

where SSp is RSS for fitted model and s2 estimates σ2.

� When the true model is a candidate and n→ ∞,

– AIC is inconsistent — it will not choose the true model with probability one, but tends to
pick a more complex model;

– AICc is also inconsistent but gives better results in finite samples;

– BIC is consistent — it chooses the true model with probability → 1.

These results suppose that the models are fixed, but in practice we also have p→ ∞ when
n→ ∞, because we fit ever more complex models when we have more data.
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Simulation experiment

Number of times models were selected using various model selection criteria in 50 repetitions using
simulated normal data for each of 20 design matrices. The true model has p = 3.

n Number of covariates
1 2 3 4 5 6 7

10 Cp 131 504 91 63 83 128
BIC 72 373 97 83 109 266
AIC 52 329 97 91 125 306
AICc 15 398 565 18 4

20 Cp 4 673 121 88 61 53
BIC 6 781 104 52 30 27
AIC 2 577 144 104 76 97
AICc 8 859 94 30 8 1

40 Cp 712 107 73 66 42
BIC 904 56 20 15 5
AIC 673 114 90 69 54
AICc 786 105 52 41 16
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Stepwise methods

� In principle we might wish to fit all 2p possible choices of covariates, but in practice this is
possible only for ‘modest’ p, using leaps or similar methods (or approximations).

� When p is too large for exhaustive searches, we instead consider subsets of the models, using the
methods below (or variants).

� Forward selection: starting from the model with a constant only,

1. add each remaining term separately to the current model;

2. if none of these terms improves the fit, stop; otherwise

3. update the current model to include the most useful new term; go to 1

� Backward elimination: starting from the model with all terms,

1. if all terms are ‘useful’, stop; otherwise

2. update current model by dropping the ‘least useful’ term; go to 1

� Stepwise: starting from an arbitrary model,

1. consider three options—add a term, delete a term, swap a term in the model for one not in
the model;

2. if model unchanged, stop; otherwise go to 1

� ‘Useful’ means ‘reduces the AIC’ (but in the past meant ‘is significant using an F test’).
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Stepwise methods: Comments

� Original formulation of stepwise used F tests (or even arbitrary numbers!) to assess significance,
but this finds spurious models.

� Systematic search minimising AIC or similar over all possible models is preferable, but is often
infeasible.

� Compare AICs for different models at each step—i.e., use AIC (or AICc) as objective function.

� Important not to fixate on a specific model, or assume that there is a single ‘best’ model, but to
consider any models whose AIC is within (say) 2 of the minimum — especially if the
interpretations of competing models differ.
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Example: Nuclear power stations

> nuclear

cost date t1 t2 cap pr ne ct bw cum.n pt

1 460.05 68.58 14 46 687 0 1 0 0 14 0

2 452.99 67.33 10 73 1065 0 0 1 0 1 0

3 443.22 67.33 10 85 1065 1 0 1 0 1 0

4 652.32 68.00 11 67 1065 0 1 1 0 12 0

5 642.23 68.00 11 78 1065 1 1 1 0 12 0

6 345.39 67.92 13 51 514 0 1 1 0 3 0

7 272.37 68.17 12 50 822 0 0 0 0 5 0

8 317.21 68.42 14 59 457 0 0 0 0 1 0

9 457.12 68.42 15 55 822 1 0 0 0 5 0

10 690.19 68.33 12 71 792 0 1 1 1 2 0

...

32 270.71 67.83 7 80 886 1 0 0 1 11 1
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Example: Nuclear power stations

Full model Backward Forward
Est (SE) t Est (SE) t Est (SE) t

Constant −14.24 (4.229) −3.37 −13.26 (3.140) −4.22 −7.627 (2.875) −2.66
date 0.209 (0.065) 3.21 0.212 (0.043) 4.91 0.136 (0.040) 3.38
log(T1) 0.092 (0.244) 0.38
log(T2) 0.290 (0.273) 1.05
log(cap) 0.694 (0.136) 5.10 0.723 (0.119) 6.09 0.671 (0.141) 4.75
PR −0.092 (0.077) −1.20
NE 0.258 (0.077) 3.35 0.249 (0.074) 3.36
CT 0.120 (0.066) 1.82 0.140 (0.060) 2.32
BW 0.033 (0.101) 0.33
log(N) −0.080 (0.046) −1.74 −0.088 (0.042) −2.11
PT −0.224 (0.123) −1.83 −0.226 (0.114) −1.99 −0.490 (0.103) −4.77

s (df) 0.164 (21) 0.159 (25) 0.195 (28)
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1.7 Robustness and Estimating Functions slide 78

M-estimation

� The least squares estimates are linear in y and therefore very sensitive to outliers.

� When yi 7→ yi + c,

β̂ =

n∑

j=1

(XTX)−1xjyj 7→
n∑

j=1

(XTX)−1xjyj + (XTX)−1xic = β̂ + (XTX)−1xic,

which could be arbitrarily far from β̂.

� Try and fix this by replacing

min
β

n∑

j=1

(yj − xT

j β)
2 by min

β

n∑

j=1

ρ
{
(yj − xT

j β)/σ
}
,

for function ρ(·) that will give a more robust M(aximum likelihood-like)-estimator, or
equivalently solving the p× 1 system of estimating equations

1

σ

n∑

j=1

xjρ
′
{
(yj − xT

j β)/σ
}
= XTρ′ = 0

say, where ρ′n×1 has jth element dρ(u)/du for u = (yj − xT

j β)/σ.
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Choice of ρ

� Choose ρ(u) to have desirable properties, e.g., to downweight outliers:

ρ(u) = u2/2 (normal errors),

ρ(u) = |u| (Laplace errors),

ρ(u) = ν log(1 + u2/ν)/2 (tν errors),

ρ(u) =

{
u2/2, |u| < c,

c(2|u| − c)/2, otherwise,
(Huber function).

� The function ρ′(u) is also called the influence function of the estimator, as its value determines
what influence an observation at u has on the estimator:

– Huber ρ′(u) is bounded,

– tν function is bounded and redescending, as limu→±∞ ρ′(u) = 0;

– Tukey’s biweight

ρ′(u) = u
{
1− (u/c)2

}2
I(|u| < c),

which gives ρ′(u) = 0 when |u| > c, is also redescending, giving no weight to observations
outside ±c.
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ρ and ρ′

Functions ρ and ρ′ for least squares (black), t5 (red), Laplace (blue), Huber (green) and biweight
(cyan) estimators.
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Estimation

� We need to solve
XTρ′ = 0,

where ρ′ has jth element

σ−1ρ′{(yj − xT

j β)/σ} ∝
ρ′{(yj − xT

j β)/σ}
yj − xT

j β
× (yj − xT

j β) = wj(β, σ)(yj − xT

j β),

say, so we write the estimating equation as

XTW (y −Xβ) = 0,

with W = diag{w1(β, σ), . . . , wn(β, σ)}.
� We use iterative weighted least squares: choose some initial β̃ and σ, then iterate to

convergence the steps

– compute W using the current β̃,

– compute the weighted least squares estimate,

β̃ = (XTWX)−1XTWy.

� Estimate σ using median absolute deviation of residuals yj − xT

j β̃ at each iteration, or similar
robust scale estimate.
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M-estimator variance

� Estimator β̃ is solution to p× 1 system of equations

g(y;β) = XTρ′ = 0.

� Can show that if the estimating function g is unbiased, i.e.

E {g(Y ;β);β} = 0, for any β,

then under mild regularity conditions

β̃
·∼ Np

(
β,E

{
−∂g(Y ;β)

∂βT

}−1

var {g(Y ;β)}E
{
−∂g(Y ;β)

∂βT

}−1
)
.

This is another sandwich variance matrix, with

E

{
−∂g(Y ;β)

∂βT

}
= XTW1X, var {g(Y ;β)} = XTW2X,

so if W1 = A(σ)In, W2 = σ2B(σ)In, then

var(β̃)
.
= σ2(XTX)−1 ×B(σ)/A(σ)2.
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Note: Sandwich matrix I

� The p× 1 estimating function is

g(y;β) =
n∑

j=1

xjρ
′

(
yj − xT

j β

σ

)
,

and unbiasedness implies that if the individual densities are σ−1f{(yj − xT

j β)/σ}, then

0 = E {g(y;β)} =

n∑

j=1

xj

∫
ρ′
(
yj − xT

j β

σ

)
σ−1f

(
yj − xT

j β

σ

)
dyj = XTan×1,

say, where aj is the jth integral above, and setting u = (yj − xT

j β)/σ shows that all the aj equal

∫
ρ′ (u) f(u) du = 0; (5)

this is true by symmetry if the error distribution and ρ′ are symmetric around the origin. Now

∂g(y;β)

∂βT
= − 1

σ

n∑

j=1

xjx
T

j ρ
′′

(
yj − xT

j β

σ

)
,

whose expectation is (using the same transformation)

E

{
∂g(y;β)

∂βT

}
= − 1

σ

n∑

j=1

xjx
T

j E

{
ρ′′
(
Yj − xT

j β

σ

)}

= − 1

σ

n∑

j=1

xjx
T

j

∫
ρ′′(u)f(u) du = − 1

σ
XTXA(σ),

say.

� The components of these sums are independent, so

var {g(Y ;β)} = var





n∑

j=1

xjρ
′

(
Yj − xT

j β

σ

)
,



 =

n∑

j=1

xjx
T

j var

{
ρ′
(
Yj − xT

j β

σ

)}
,

where the substitution u = (yj − xT

j β)/σ and (??) show that the variance term can be written as

var

{
ρ′
(
Yj − xT

j β

σ

)}
=

∫
ρ′(u)2f(u) du = B(σ).

� The sandwich variance formula is therefore

{
− 1

σ
XTXA(σ)

}−1

XTXB(σ)

{
− 1

σ
XTXA(σ)

}−1

= (XTX)−1 × σ2B(σ)

A(σ)2
.

The variance of the LSE is var(Yj)(X
TX)−1, so the asymptotic relative efficiency of the

M-estimator based on ρ and the LSE is

var(Yj)

σ2
× A(σ)2

B(σ)
.
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Note: Sandwich matrix II

� As a check on this, note that for the normal distribution ρ′(u) = u, f(u) = (2π)−1e−u
2/2, so

A(σ) = B(σ) = 1, which gives ARE of 1. If we take ρ′(u) = sign(u) with the normal density, we
have B(σ) = 1, A(σ) = −2/(2π)1/2, so the sandwich variance formula gives σ2(XTX)−1π/2. So
using the ρ-function corresponding to the Laplace distribution when the data are in fact normally
distributed leads to an estimator which is π/2 ≈ 1.57 times more variable than would be the case
if the appropriate ρ-function were used.

� If we take the ρ-function ρ′(u) = u corresponding to the normal density, and the errors are in fact
Laplace, g(u) = (1/2)e−|u|, we have

A(σ) =

∫
(−1)f(u) du = 1, B(σ) =

∫
u2f(u) du = 2

and the asymptotic relative efficiency is 1/2.
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Efficiency

� Efficiency of M-estimators of β relative to LSEs of β is

var(Yj)

σ2
× A(σ)2

B(σ)
;

for example, the Huber estimator is 95% efficient if c = 1.345.

� In practice need to balance robustness and efficiency, increasing the latter by increasing c.

� High numbers of outliers can wreck M-estimators.

� Highly robust least trimmed squares estimators obtained by minimising

q∑

j=1

(yj − xT

j β)
2
(j),

where q = ⌊n/2⌋+ ⌊(p + 1)/2⌋.
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Example: Survival data

Left: log survival proportions for rats given doses of radiation, with lines fitted by least squares with
(solid) and without (dots) the outlier, and a Huber fit for the entire data (dashes). Right: simulated
data with a batch of outliers (circles), and fits by least squares to all data (solid), least squares to
good data only (large dash), Huber (dot-dash), biweight (dashes), and least trimmed squares
(medium dash). The Huber and biweight fits are the same to plotting accuracy.
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Simulation (right-hand panel on slide 85)

Table 1: Bias (standard deviation) of estimators of slope in sample of 25 good data and k outliers,
estimated from 200 replications.

k Least squares M-estimation Least trimmed
No outliers With outliers Huber Biweight squares

1 0.00 (0.07) 0.17 (0.06) 0.07 (0.07) 0.01 (0.07) −0.01 (0.13)
2 0.00 (0.07) 0.26 (0.06) 0.13 (0.07) 0.02 (0.09) 0.01 (0.14)
5 0.00 (0.07) 0.41 (0.05) 0.38 (0.06) 0.19 (0.19) 0.01 (0.14)
10 0.00 (0.06) 0.48 (0.04) 0.48 (0.04) 0.46 (0.12) 0.05 (0.20)

Good strategy is initial fit using least trimmed squares, then robust fit using this as starting point.
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Quantile regression

� The Laplace distribution has

ρ(u) = |u| = uI(u ≥ 0) − uI(u < 0),

and for continuous Y , the solution to E{ρ′(Y − θ)} = 0 is the median of Y . Hence

argmin

n∑

j=1

ρ(yj − xT

j β)

estimates the median of y as a linear function of Xβ.

� Quantile regression takes τ ∈ (0, 1) and uses the check function

ρτ (u) = τuI(u ≥ 0)− (1− τ)uI(u < 0);

then

β̃τ = argmin
n∑

j=1

ρτ (yj − xT

j β)

estimates the τ quantile of y as a linear function of Xβ.

� For numerical purposes it may be better to round the cusp of ρ.

� Note that ρ′′τ (u) = 0, so it’s better to bootstrap to find var(β̃τ ).
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Expectile regression

� Quantile regression can be used to estimate value-at-risk in finance settings, but it has the
drawback of just counting how many residuals are above/below the quantile.

� Expectile regression extends the LSE in the same way, taking

ρτ (y − θ) = ητ (y − θ)− ητ (y), ητ (u) = |I(u ≤ 0)− τ |u2,

so τ = 1/2 gives the LSE, while taking τ > 1/2 leads to a more general form of LSE, with good
properties for risk estimation in finance applications (coherent elicitable risk measure).
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2 General Models slide 89

Smoking data

Table 2: Lung cancer deaths in British male physicians (Doll and Hill, 1952). The table gives man-years
at risk T/number of cases y of lung cancer, cross-classified by years of smoking t, taken to be age minus
20 years, and number of cigarettes smoked per day, d.

Years of Daily cigarette consumption d
smoking t

Nonsmokers 1–9 10–14 15–19 20–24 25–34 35+

15–19 10366/1 3121 3577 4317 5683 3042 670
20–24 8162 2937 3286/1 4214 6385/1 4050/1 1166
25–29 5969 2288 2546/1 3185 5483/1 4290/4 1482
30–34 4496 2015 2219/2 2560/4 4687/6 4268/9 1580/4
35–39 3512 1648/1 1826 1893 3646/5 3529/9 1336/6
40–44 2201 1310/2 1386/1 1334/2 2411/12 2424/11 924/10
45–49 1421 927 988/2 849/2 1567/9 1409/10 556/7
50–54 1121 710/3 684/4 470/2 857/7 663/5 255/4
55–59 826/2 606 449/3 280/5 416/7 284/3 104/1
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Smoking data

Lung cancer deaths in British male physicians. The figure shows the rate of deaths per 1000
man-years at risk, for each of three levels of daily cigarette consumption.
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Smoking data

� Suppose number of deaths y has Poisson distribution, mean Tλ(d, t), where T is man-years at
risk, d is number of cigarettes smoked daily and t is time smoking (years).

� Take
λ(d, t) = β0t

β1
(
1 + β2d

β3
)
:

– background rate of lung cancer is β0t
β1 for non-smoker,

– additional risk due to smoking d cigarettes/day is β2d
β3 .

� With xj = (Tj , dj , tj), can write this as

yj ∼ Poiss{µ(β;xj)},
µ(β;x) = Tβ0t

β1
(
1 + β2d

β3
)
, j = 1, . . . , n :

a nonlinear model with Poisson-distributed response.

Regression Methods Autumn 2024 – slide 92

Comments

� Linear model y ∼ (Xβ, σ2In)

– applicable for continuous response y ∈ R

– assumes linear dependence of mean response E(y) on covariates X

– sometimes assumes y normal

� Lots of data not like this

� Need extensions for

– nonlinear dependence on covariates

– arbitrary response distribution (binomial, Poisson, exponential, . . . )

– dependent responses

– variance non-constant (and related to mean?)

– censoring, truncation, . . .

– . . .

Regression Methods Autumn 2024 – slide 93

Simple fixes

� Just fit a linear model anyway

– Might work as an approximation, but usually extrapolates really badly.

� Fit a linear model to transformed responses

– E.g., take variance-stabilising transformation for y, such as 2
√
y when y is Poisson

– Can be helpful, but usually the obvious transformation can’t give linearity.

� Instead we attempt to fit the model using likelihood estimation.
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2.1 Inference slide 95

Revision: Likelihood

Definition 15 Let y be a data set, assumed to be the realisation of a random variable Y ∼ f(y; θ),
where the unknown parameter θ lies in the parameter space Ωθ ⊂ R

p. Then the likelihood (for θ
based on y) and the corresponding log likelihood are

L(θ) = L(θ; y) = fY (y; θ), ℓ(θ) = logL(θ), θ ∈ Ωθ.

The maximum likelihood estimate (MLE) θ̂ satisfies ℓ(θ̂) ≥ ℓ(θ), for all θ ∈ Ωθ.
Often θ̂ is unique and in many cases it satisfies the score (or likelihood) equation

∂ℓ(θ)

∂θ
= 0,

which is interpreted as a vector equation of dimension p× 1 if θ is a p× 1 vector.
The observed information and expected (Fisher) information are defined as

J(θ) = −∂
2ℓ(θ)

∂θ∂θT
, I(θ) = E {J(θ)} ;

these are p× p matrices if θ has dimension p.
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Revision: Maximum likelihood estimator

� In large samples from a regular model in which the true parameter is θ0p×1, the maximum

likelihood estimator θ̂ has an approximate normal distribution,

θ̂
·∼ Np

{
θ0, J(θ̂)−1

}
,

so we can compute an approximate (1− 2α) confidence interval for the rth parameter θ0r as

θ̂r ± zαv
1/2
rr ,

where vrr is the rth diagonal element of the matrix J(θ̂)−1.

� This is easily implemented:

– we code the negative log likelihood −ℓ(θ) (and check the code carefully!);

– we minimise −ℓ(θ) numerically, ensuring that the minimisation routine returns θ̂ and the
Hessian matrix J(θ̂) = −∂2ℓ(θ)/∂θ∂θT|

θ=θ̂

– we compute J(θ̂)−1, and use the square roots of its diagonal elements, v
1/2
11 , . . . , v

1/2
dd , as

standard errors for the corresponding elements of θ̂.
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Revision: Regular model

We say that a statistical model f(y; θ) is regular (for likelihood inference) if

1. the true value θ0 of θ is interior to the parameter space Ωθ ⊂ R
p;

2. the densities defined by any two different values of θ are distinct;

3. there is an open set I ⊂ Ωθ containing θ0 within which the first three derivatives of the log
likelihood with respect to elements of θ exist almost surely, and

|∂3 log f(Yj; θ)/∂θr∂θs∂θt| ≤ g(Yj)

uniformly for θ ∈ I, where 0 < E0{g(Yj)} = K <∞; and

4. for θ ∈ I we can interchange differentation with respect to θ and integration, that is,

∂

∂θ

∫
f(y; θ) dy =

∫
∂f(y; θ)

∂θ
dy,

∂2

∂θ∂θT

∫
f(y; θ) dy =

∫
∂2f(y; θ)

∂θ∂θT
dy.

The results are also true under weaker conditions, for non-identically distributed and dependent data.
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Revision: Comments on regular models

Condition

1. is needed so that θ̂ can lie ‘on both sides’ of θ0 and hence can have a limiting normal distribution,
once standardized—fails, for example, if θ has a discrete component (e.g. changepoint
γ ∈ {1, . . . , n});

2. is needed to be able to identify the model on the basis of the data;

3. ensures the validity of Taylor series expansions of ℓ(θ)—not usually a problem;

4. ensures that the score statistic has a limiting normal distribution—can fail in some models —
sometimes good news, leading to faster convergence than n−1/2.

All the above assumes the postulated model is correct! — there is a literature on what happens
when we fit the wrong model, or if the parameter dimension increases with n, or . . . usually there are
no generic results for such cases.
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Revision: Likelihood ratio statistic

� Model fB(y) is nested within model fA(y) if A reduces to B on restricting some parameters:

– for example, the model Y1, . . . , Yn
iid∼ N (0, σ2) is nested within the model

Y1, . . . , Yn
iid∼ N (µ, σ2), because the first is obtained from the second by setting µ = 0;

– the maximised log likelihoods satisfy ℓ̂A ≥ ℓ̂B, because the more comprehensive model A
contains the simpler model B.

� The likelihood ratio statistic for comparing them is

W = 2(ℓ̂A − ℓ̂B).

� If the model is regular, the simpler model is true, and A has q more parameters than B, then

W
·∼ χ2

q .

� This implicitly assumes that ML inference for model A is OK, so that the approximation
θ̂A

·∼ N{θA, JA(θ̂A)−1} is adequate.
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Revision: Profile log likelihood

� Consider a regular log likelihood ℓ(ψ, λ), where the parameter of interest ψ is variation
independent of the nuisance parameter λ, i.e., (ψ, λ) ∈ Ωψ ×Ωλ, and the overall MLE is (ψ̂, λ̂).

� For a confidence set for ψ, without reference to λ, we use the profile log likelihood

ℓp(ψ) = max
λ∈Ωλ

ℓ(ψ, λ) = ℓ(ψ, λ̂ψ),

say, and, based on the limiting distribution of the likelihood ratio statistic, take as (1− 2α)
confidence region the set

{
ψ ∈ Ωψ : 2{ℓ(ψ̂, λ̂)− ℓ(ψ, λ̂ψ)} ≤ χ2

dimψ(1− 2α)
}
.

� When ψ is scalar, this yields

{
ψ ∈ Ωψ : ℓ(ψ, λ̂ψ)} ≥ ℓ(ψ̂, λ̂)− 1

2χ
2
1(1− 2α)

}
,

and 1
2χ

2
1(0.95) = 1.92.

� Such intervals are generally better than the standard interval ψ̂ ± zαSE, particularly when the
distribution of ψ̂ is asymmetric, but require more computation, since they involve many
maximisations of ℓ.
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Model setup

� Independent random variables Y1, . . . , Yn, with observed values y1, . . . , yn, and covariates
x1, . . . , xn.

� Suppose that probability density of Yj is f(yj; ηj , φ), where ηj = η(β, xj), and φ is common to all
models.

� Log likelihood is

ℓ(β, φ) =
n∑

j=1

ℓj(β, φ) =
n∑

j=1

log f{yj; η(β, xj), φ}.

� More generally, just let ℓj(β, φ) denote the log likelihood contribution from the jth observation.

� Suppose φ known (for now), suppress it, and estimate β.

Example 16 (Normal regression model) Express the normal regression model in the terms above.
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Note to Example 16

Here Yj
ind∼ N (µj , σ

2) with µj = ηj = η(xj ;β), so obviously

ηj = η(xj ;β), φ = σ2, ℓj ≡ −1
2{(yj − ηj)

2/φ+ log φ}.
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Iterative weighted least squares (IWLS)

� General approach for estimation in regression models, based on Newton–Raphson iteration

� Assume that φ is fixed, and write

ℓ(β) =

n∑

j=1

ℓj{ηj(β)}.

� MLEs β̂ usually satisfy

∂ℓ(β̂)

∂βr
= 0, r = 1, . . . , p,

or equivalently

∂ℓ(β̂)

∂β
=
∂ηT

∂β

∂ℓ

∂η
=
∂ηT

∂β
u(β̂) =

n∑

j=1

∂ηj
∂β

∂ℓj{ηj(β)}
∂ηj

= 0, (6)

where u(β) is n× 1 vector with jth element ∂ℓ/∂ηj .
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IWLS II

� Newton–Raphson update step:
β̂ = (XTWX)−1XTWz,

where

Xn×p = ∂η/∂βT, (design matrix)

Wn×n = diag{E(−∂2ℓj/∂η2j )}, (weights)

zn×1 = Xβ +W−1u, (adjusted dependent variable)

� Thus to obtain MLEs β̂ we use the IWLS algorithm:

� take an initial β̂. Repeat

– compute X,W, u, z;

– compute new β̂ and replace the preceding value;

until changes in ℓ(β̂) (or, sometimes, β̂, or both) are lower than some tolerance.

� Sometimes a line search is added, if ℓ(β̂new) < ℓ(β̂old): i.e., we half the step length and try again.
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Derivation of IWLS algorithm

� To find the maximum likelihood estimate β̂ starting from a trial value β, we make a Taylor series
expansion in (3), to obtain

∂ηT(β)

∂β
u(β) +





n∑

j=1

∂ηj(β)

∂β

∂2ℓj(β)

∂η2j

∂ηj(β)

∂βT
+

n∑

j=1

∂2ηj(β)

∂β∂βT
uj(β)



 (β̂ − β)

.
= 0. (7)

If we denote the p× p matrix in braces on the left by −J(β), assumed invertible, we can
rearrange (??) to obtain

β̂
.
= β + J(β)−1 ∂η

T(β)

∂β
u(β). (8)

This suggests that maximum likelihood estimates may be obtained by starting from a particular
β, using (??) to obtain β̂, then setting β equal to β̂, and iterating (??) until convergence. This is
the Newton–Raphson algorithm applied to our particular setting. In practice it can be more
convenient to replace J(β) by its expected value

I(β) =

n∑

j=1

∂ηj(β)

∂β
E

(
−∂

2ℓj
∂η2j

)
∂ηj(β)

∂βT
;

the other term vanishes because E{uj(β)} = 0. We write

I(β) = X(β)TW (β)X(β), (9)

where X(β) is the n× p matrix ∂η(β)/∂βT and W (β) is the n× n diagonal matrix whose jth
diagonal element is E(−∂2ℓj/∂η2j ).

� If we replace J(β) by X(β)TW (β)X(β) and reorganize (??), we obtain

β̂ = (XTWX)−1XTW (Xβ +W−1u) = (XTWX)−1XTWz, (10)

say, where the dependence of the terms on the right on β has been suppressed. That is, starting
from β, the updated estimate β̂ is obtained by weighted linear regression of the n× 1 vector
adjusted dependent variable

z = X(β)β +W (β)−1u(β)

on the columns of X(β), using weight matrix W (β). The maximum likelihood estimates are
obtained by repeating this step until the log likelihood, the estimates, or more often both, are
essentially unchanged. The variable z plays the role of the response or dependent variable in the
weighted least squares step.

� Often the structure of a model simplifies the estimation of an unknown value of φ. It may be
estimated by a separate step between iterations of β̂, by including it in the step (??), or from the
profile log likelihood ℓp(φ).
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Examples

Example 17 (Normal nonlinear model) Give the components of the IWLS algorithm for the
normal nonlinear model.
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Note to Example 17

� Here the mean of the jth observation is ηj = η(xj ;β). The log likelihood contribution ℓj(ηj) is

ℓj(ηj , σ
2) ≡ −1

2

{
log σ2 +

1

σ2
(yj − ηj)

2

}
,

so

uj(ηj) =
∂ℓj
∂ηj

=
1

σ2
(yj − ηj),

∂2ℓj
∂η2j

= − 1

σ2
;

the jth element on the diagonal of W is the constant σ−2.
The jth row of the matrix X = ∂η/∂βT is (∂ηj/∂β0, . . . , ∂ηj/∂βp−1), and as ηj is nonlinear as a
function of β, X depends on β.
After some simplification, we see that the new value for β̂ given by (??) is

β̂
.
= (XTX)−1XT(Xβ + y − η), (11)

where X and η are evaluated at the current β. Here η 6= Xβ and (??) must be iterated.

� The log likelihood is a function of β only through the sum of squares,
SS(β) =

∑n
j=1{yj − ηj(β)}2. The profile log likelihood for σ2 is

ℓp(σ
2) = max

β
ℓ(β, σ2) ≡ −1

2

{
n log σ2 + SS(β̂)/σ2

}
,

so the maximum likelihood estimator of σ2 is σ̂2 = SS(β̂)/n. Although S2 = SS(β̂)/(n − p) is
not unbiased when the model is nonlinear, it turns out to have smaller bias than σ̂2, and is
preferable in applications.

� In some cases the error variance depends on covariates, and we write the variance of the jth
response as σ2j = σ2(xj, γ). Such models may be fitted by alternating iterative weighted least
squares updates for β treating γ as fixed at a current value with those for γ with β fixed,
convergence being attained when neither estimates nor log likelihood change materially.
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Deviance

� Let η̂j = ηj(β̂, xj), where β̂ is MLE of β, giving maximised log likelihood ℓ(β̂) and
η̂T = (η̂1, . . . , η̂n).

� Let η̃j be the value of ηj that maximises log f(yj; ηj), and let η̃T = (η̃1, . . . , η̃n). This
corresponds to the saturated model, with

#parameters in η = #observations in y,

which will give the largest likelihood possible.

� Define the scaled deviance:

D = 2

n∑

j=1

{log f(yj; η̃j)− log f(yj; η̂j)} ≥ 0.

� Small D implies η̂ ≈ η̃, so model fits well.

� Large D implies poor fit — like SS(β̂) in linear model.
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Differences of deviances

� Consider two models:

– Model A: βT = (β1, . . . , βp) ∈ R
p vary freely — MLEs η̂A = η(β̂A);

– Model B: (β1, . . . , βq) ∈ R
q vary freely, but βq+1, . . . , βp are fixed — hence q free parameters,

MLEs η̂B = η(β̂B).

� Model B is nested within model A: B can be obtained by restricting A.

� Likelihood ratio statistic for comparing the models is

2(ℓ̂A − ℓ̂B) = 2

n∑

j=1

{
log f(yj; η̂

A
j )− log f(yj; η̂

B
j )
}
= DB −DA,

and this
·∼ χ2

p−q if the models are regular.

� If φ unknown, replace it by an estimate: same distributional approximations will apply.

Example 18 (Normal linear model) Find the difference of deviances in the normal linear model.
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Note to Example 18

� Suppose that the yj are normal with means ηj and known variance φ. Then

log f(yj; ηj , φ) = −1
2

{
log(2πφ) + (yj − ηj)

2/φ
}

is maximized with respect to ηj when η̃j = yj, giving log f(yj; η̃j , φ) = −1
2 log(2πφ). Therefore

the scaled deviance for a model with fitted means η̂j is

D = φ−1
n∑

j=1

(yj − η̂j)
2,

which is just the residual sum of squares for the model, divided by φ. If ηj = xT

j β is the correct

normal linear model, the distribution of the residual sum of squares is φχ2
n−p, so values of D

extreme relative to the χ2
n−p distribution call the model into question.

� The difference between deviances for nested models A and B in which β has dimensions p and
q < p,

DB −DA = φ−1
n∑

j=1

{
(yj − η̂Bj )

2 − (yj − η̂Aj )
2
} ·∼ χ2

p−q

when model B is correct. This distribution is exact for linear models.

� If φ is unknown, it is replaced by an estimate. The large-sample properties of deviance differences
outlined above still apply, though in small samples it may be better to replace the approximating
χ2 distribution by an F distribution with denominator degrees of freedom equal to the degrees of
freedom for estimation of φ.
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2.2 Model Checking slide 108

Model checking

� Two basic approaches:

– overall tests either using generic statistic (e.g., chi-squared) or by model expansion (e.g.,
adding a term and testing for significance);

– regression diagnostics for detecting a few possibly dodgy observations.

� Most widely used diagnostics in the linear model y = Xn×pβ + ε are residuals ej = yj − ŷj and
(much better) standardized residuals

rj =
yj − ŷj

s(1− hjj)1/2
, j = 1, . . . , n,

where the leverage hjj is the jth diagonal element of the hat matrix H = X(XTX)−1XT, and
the Cook statistic

Cj =
1

ps2
(ŷ − ŷ−j)

T(ŷ − ŷ−j) =
r2jhjj

p(1− hjj)
,

which measures the effect of deleting the jth case (xj , yj) on the fitted model.
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Diagnostics in general case

� Linear model ideas work as approximations (2nd order Taylor series, painful expansions).

� Leverage hjj defined as jth diagonal element of

H =W 1/2X(XTWX)−1XTW 1/2,

depends in general on β̂, unlike in linear model.

� Cook statistic is change in deviance

Cj = 2p−1
{
ℓ(β̂)− ℓ(β̂−j)

}
.
=

hjj
p(1− hjj)

r2Pj,

where β̂−j is MLE when jth case (xj , yj) is dropped, and rPj is standardized Pearson residual
(see below).

� There are several types of residual (see next page).
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Residuals in general case

� Deviance residual:
dj = sign(η̃j − η̂j)[2{ℓj(η̃j ;φ)− ℓj(η̂j ;φ)}]1/2,

for which
∑
d2j = D is deviance.

� Pearson residual: uj(β̂)/

√
wj(β̂).

� Standardized versions

rDj =
dj

(1− hjj)1/2
, rPj =

uj(β̂)

{wj(β̂)(1− hjj)}1/2
,

and (even better)

r∗j = rDj + r−1
Dj log(rPj/rDj)

·∼ N(0, 1)

for many models.

� These all reduce to usual standardized residual for normal linear model.
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Example

Example 19 (Gumbel linear model) Give the components of the IWLS algorithm for fitting the
linear model

yj = β0 + β1(xj − x) + τεj , j = 1, . . . , n,

with Gumbel errors having density function

f(yj; ηj , τ) = τ−1 exp

{
−yj − ηj

τ
− exp

(
−yj − ηj

τ

)}
,

where τ > 0 and ηj = β0 + β1(xj − x); this distribution is natural for maxima; note that τ2 is not the
variance.
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Note to Example 19

� As the data are annual maxima, it is more appropriate to suppose that yj has the Gumbel density

f(yj; ηj , τ) = τ−1 exp

{
−yj − ηj

τ
− exp

(
−yj − ηj

τ

)}
, (12)

where τ is a scale parameter and ηj = β0 + β1(xj − x); here we have replaced the γs with βs for
continuity with the general discussion above.

� In this case

ℓj(ηj , τ) = − log τ − yj − ηj
τ

− exp

(
−yj − ηj

τ

)
, (13)

and it is straightforward to establish that

∂ℓj(ηj , τ)

∂ηj
= τ−1

{
1− exp

(
−yj − ηj

τ

)}
, E

{
−∂

2ℓj(ηj , τ)

∂η2j

}
= τ−2,

that ∂η/∂βT = X is the n× 2 matrix whose jth row is (1, xj − x), and W = τ−2In. Hence (??)

becomes β̂
.
= (XTX)−1(Xβ + τ2u), where the jth element of u is τ−1[1− exp{−(yj − ηj)/τ}].

� Here it is simplest to fix τ , to obtain β̂ by iterating (??) for each fixed value of τ , and then to
repeat this over a range of values of τ , giving the profile log likelihood ℓp(τ) and hence confidence
intervals for τ . Confidence intervals for β0 and β1 are obtained from the information matrix.

� With starting value chosen to be the least squares estimates of β, and with τ = 5, 19 iterations of
(??) were required to give estimates and a maximized log likelihood whose relative change was
less than 10−6 between successive iterations. We then took τ = 5.5, . . . , 40, using β̂ from the
preceding iteration as starting-value for the next; in most cases just three iterations were needed.
The left panel of Figure 1 shows a close-up of ℓp(τ); its maximum is at τ̂ = 14.5, and the 95%
confidence interval for τ is (11.9, 18.1). The maximum likelihood estimates of β0 and β1 are
111.4 and 0.563, with standard errors 2.14 and 0.137; these compare with standard errors 2.61
and 0.177 for the least squares estimates. There is some gain in precision in using the more
appropriate model.

Regression Methods Autumn 2024 – note 1 of slide 112

64



Venice data

Example 20 (Venice sea level data) The figure below shows annual maximum sea levels in Venice,
from 1931–1981. The very large value in 1966 is not an outlier. The fit of a Gumbel model to the
data using IWLS gives MLEs (SEs) β̂0 = 111.4 (2.14) (cm) and β̂1 = 0.563 (0.137) (cm/year). The
standard errors for LSEs are 2.61, 0.177, larger than for MLEs with Gumbel model — gain in precision
through using appropriate model.
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Venice data

Figure 1: Gumbel analysis of Venice data. Left panel: profile log likelihood ℓp(τ) = maxβ ℓ(β, τ),
with 95% confidence interval (11.9, 18.1) (cm) for τ . Right panel: normal probability plot of residuals
r∗j .
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Summary

� For regression problems with independent responses yj dependent on parameters β through
parameter ηj = η(xj ;β), generalise least squares estimation to maximum likelihood estimation,
using iterative weighted least squares algorithm: iterate to convergence

β̂ = (XTWX)−1XTWz, z = Xβ +W−1u,

where

Xn×p ≡ X(β) =
∂η

∂βT
, un×1 ≡ u(η) =

∂ℓ

∂η
, Wn×n ≡W (η) = −E

{
∂2ℓ

∂η∂ηT

}
,

with ℓ the log likelihood for the data.

� Standard likelihood theory is used for confidence intervals and model comparison.

� Linear model diagnostics (residuals, leverage, Cook statistics, . . . ) generalise to this setting.

� Next: generalized linear models (GLMs), wide class of models with exponential family-like
response distributions.
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2.3 Generalized Linear Models slide 116

Motivation

� Need to generalise linear model beyond normal responses, e.g. to data with y ∈ {0, 1, . . . ,m}, or
y ∈ {0, 1, . . .}, or y > 0.

� Consider exponential family response distributions (binomial, Poisson, . . . ), which have an
elegant unifying theory, and encompass many possibilities (in addition to the normal)

� Basic idea is to build models such that

E(y) = µ, g(µ) = η = xTβ,

where g is a suitable function, and y ∼ exponential family (almost).

� Warnings:

– Don’t confuse Generalized Linear Model (GLM) with General Linear Model (GLM, in older
books, the latter is y = Xβ + ε, with cov(ε) = σ2V not diagonal);

– Don’t write y = µ+ ε, since in a GLM the distribution of ε usually depends on µ.
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Generalized linear model (GLM)

� Normal linear model has three key aspects:

– structure for covariates: linear predictor, η = xTβ;

– response distribution: y ∼ N(µ, σ2);

– linear relation η = µ between µ = E(y) and η.

� GLM extends last two to

– Y has density/mass function

f(y; θ, φ) = exp

{
yθ − b(θ)

φ
+ c(y;φ)

}
, y ∈ Y, θ ∈ Ωθ, φ > 0, (14)

where

⊲ Y is the support of Y ,

⊲ Ωθ is the parameter space of valid values for θ ≡ θ(η), and

⊲ the dispersion parameter φ is often known;

– η = g(µ), where g is monotone link function

⊲ the canonical link function giving η = θ = b′−1(µ) has nice statistical properties;

⊲ but a range of link functions are possible for each distribution of Y .
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Examples

Example 21 (GLM density) Show that the moment-generating function of f(y; θ, φ) is
MY (t) = exp[{b(θ + tφ)− b(θ)}/φ], and deduce that

E(Y ) = b′(θ) = µ, var(Y ) = φb′′(θ) = φb′′{b′−1(µ)} = φV (µ);

the function µ 7→ V (µ) is known as the variance function.

Example 22 (Poisson distribution) Write the Poisson mass function as a GLM density, and find its
canonical link function.

Example 23 (Normal distribution) Write the normal density function as a GLM density, and find
its canonical link function.
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Note to Example 21

� Suppose that Y has a continuous density; if not the argument below is the same, except that
integrals are replaced by summations.

� Let Ωθ = {θ : b(θ) <∞}. Then
MY (t) = E{exp(tY )}

=

∫
ety exp

{
yθ − b(θ)

φ
+ c(y;φ)

}
dy

=

∫
exp

{
y(θ + tφ)− b(θ)

φ
+ c(y;φ)

}
dy.

If θ + tφ ∈ Ωθ, then

∫
exp

{
y(θ + tφ)− b(θ + tφ)

φ
+ c(y;φ)

}
dy = 1,

so
MY (t) = E{exp(tY )} = exp [{b(θ + tφ)− b(θ)} /φ] .

� Hence the cumulant-generating function of Y is

KY (t) = logMY (t) = {b(θ + tφ)− b(θ)} /φ,

and differentiating twice with respect to t and setting t = 0 yields

E(Y ) = K ′
Y (t)

∣∣
t=0

= b′(θ), var(Y ) = K ′′
Y (t)

∣∣
t=0

= φb′′(θ).

� One can show that b(θ) is strictly convex on Ωθ. Thus b
′(θ) is a monotonic increasing function of

θ, so b′−1(·) exists and is itself monotonic, so V (µ) = b′′{b′−1(µ)} is well-defined.
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Note to Example 22

The Poisson density may be written as

f(y;µ) = exp (y log µ− µ− log y!) , y = 0, 1, . . . , µ > 0,

which has GLM form (4) with θ = log µ, b(θ) = eθ, φ = 1, and c(y;φ) = − log y!. The mean of y is
µ = b′(θ) = eθ = µ, and its variance is b′′(θ) = eθ = µ, so the variance function is linear: V (µ) = µ.
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Note to Example 23

The normal density with mean µ and variance σ2 may be written

f(y;µ, σ2) = exp

{
−(y2 − 2yµ+ µ2)

2σ2
− 1

2 log(2πσ
2)

}
,

so
θ = µ, φ = σ2, b(θ) = 1

2θ
2, c(y;φ) = − 1

2φy
2 − 1

2 log(2πφ).

As the first and second derivatives of b(θ) are θ and 1, we have V (µ) = 1; the variance function is
constant.
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Estimation of β

Example 24 (IWLS algorithm) Find the components of the IWLS algorithm for a GLM.

� If canonical link is used then θj = xT

j β, so if φ is known, then

ℓ(β) =

n∑

j=1

{
yjx

T

j β − b(xT

j β)

φ
+ c(yj;φ)

}

= {yTXβ −K(β)}/φ + C(y;φ),

say, which in terms of β is a linear exponential family with

– canonical parameter βp×1

– canonical statistic (XTy)p×1,

and many nice properties then hold.

� If X is full rank, then ℓ(β) is (almost always) strictly concave and has a unique maximum in
terms of β.

� Problem: the maximum may be at infinity in certain (rare) cases—this can arise with binomial
responses: beware of θ̂r ≈ ±36.
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Note to Example 24

� To compute the quantities needed for the IWLS step β̂ = (XTWX)−1XTW (Xβ +W−1u), we
need

Xn×p =
∂η

∂βT
, Wn×n = diag{E(−∂2ℓj/∂η2j )}, un×1 = {∂ℓj/∂ηj},

where (with φj instead of φ for generality, see the next slide),

ℓj(β) =

{
yjθj − b(θj)

φj
+ c(yj ;φj)

}
, b′(θj) = µj, ηj = g(µj) = xT

j β.

� First note that ∂ηj/∂βr = xjr, so X = ∂η/∂βT is just a matrix of constants.

� We need the first and second derivatives of ℓj with respect to ηj , so we write

∂ℓj
∂ηj

=
∂µj
∂ηj

∂θj
∂µj

∂ℓj
∂θj

,

with
∂ηj
∂µj

= g′(µj),
∂µj
∂θj

= b′′(θj) = V (µj),
∂ℓj
∂θj

=
yj − b′(θj)

φj
,

which yields

uj =
∂ℓj
∂ηj

=
yj − b(θj)

g′(µj)φjV (µj)
=

yj − µj
g′(µj)φjV (µj)

=
A(θj)

B(θj)
,

say, where E(A) = 0. For the second derivative, we note that

∂2ℓj
∂η2j

=
∂

∂ηj

∂ℓj
∂ηj

=

(
∂µj
∂ηj

∂θj
∂µj

∂

∂θj

)
∂ℓj
∂ηj

=
∂µj
∂ηj

∂θj
∂µj

{
A′(θj)

B(θj)
− A(θj)B

′(θj)

B(θj)2

}
,

and on noting that B(θj) is non-random and A′(θj) = −b′′(θj) = −V (µj), we obtain

wj = E

(
−∂

2ℓj
∂η2j

)
=

1

g′(µj)

1

V (µj)

V (µj)

g′(µj)φjV (µj)
=

1

g′(µj)2φjV (µj)
.
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Note to Example 24, part II

� From above we see that the components of the score statistic u(β) and the weight matrix W (β)
may be expressed in terms of components µj of the mean vector µ as

uj =
∂θj
∂ηj

∂ℓj(θj)

∂θj
=

yj − µj
g′(µj)φjV (µj)

,

wj =

(
∂θj
∂ηj

)2 ∂2ℓj(θj)

∂θ2j
=

1

g′(µj)2φjV (µj)
, (15)

where g′(µj) = dg(µj)/dµj . Thus β̂ is obtained by iterative weighted least squares regression of
response

z = Xβ + g′(µ)(y − µ) = η + g′(µ)(y − µ)

on the columns of X using weights (??).

� By using y as an initial value for µ and g(y) as an initial value for η = Xβ, we avoid needing an
initial value for β.

� It may be necessary to modify y slightly for this initial step. For example if we use the log link for
Poisson data, and some yj equal zero, then we may need to replace them with some small
positive value to avoid taking log 0 for some components of the initial η = log y.
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Estimation of φ

� When φ unknown, it is often replaced by φj = φaj , with known aj and a
−1
j treated as a weight.

Then we replace the scaled deviance by the deviance φD.

� If the model is correct and φ is known, then Pearson’s statistic

P =
1

φ

n∑

j=1

(yj − µ̂j)
2

ajV (µ̂j)

·∼ χ2
n−p,

analogously to the sum of squares in a linear model, with E(P )
.
= n− p.

� The MLE of φ can be badly behaved, so usually we prefer the method of moments estimator

φ̂ =
1

n− p

n∑

j=1

(yj − µ̂j)
2/{ajV (µ̂j)},

which is obtained by solving the equation P = n− p, based on noting that E(χ2
n−p) = n− p.

� If the data are sparse (e.g., many small binomial or Poisson counts), then standard asymptotic
results are suspect.
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Example: Jacamar data

Table 3: Response (N=not sampled, S = sampled and rejected, E = eaten) of a rufous-tailed jacamar
to individuals of seven species of palatable butterflies with artifically coloured wing undersides. Data
from Peng Chai, University of Texas.

Aphrissa Phoebis Dryas Pierella Consul Siproeta
boisduvalli argante iulia luna fabius stelenes†
N/S/E N/S/E N/S/E N/S/E N/S/E N/S/E

Unpainted 0/0/14 6/1/0 1/0/2 4/1/5 0/0/0 0/0/1
Brown 7/1/2 2/1/0 1/0/1 2/2/4 0/0/3 0/0/1
Yellow 7/2/1 4/0/2 5/0/1 2/0/5 0/0/1 0/0/3
Blue 6/0/0 0/0/0 0/0/1 4/0/3 0/0/1 0/1/1
Green 3/0/1 1/1/0 5/0/0 6/0/2 0/0/1 0/0/3
Red 4/0/0 0/0/0 6/0/0 4/0/2 0/0/1 3/0/1
Orange 4/2/0 6/0/0 4/1/1 7/0/1 0/0/2 1/1/1
Black 4/0/0 0/0/0 1/0/1 4/2/2 7/1/0 0/1/0

† includes Philaethria dido also.
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Jacamar data

Figure 2: Proportion of butterflies eaten (±2SE) for different species and wing colour.
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Jacamar data

� How does a bird respond to the species s and wing colour c of its prey?

� Response has 3 (ordered) categories: not attacked (N), attacked but then rejected (S), attacked
and eaten (E)

� The data form an 8× 6 layout, with a 3-category response in each cell, total mcs

� Assume that the number in category E (response) is binomial:

Rcs ∼ B(mcs, πcs), c = 1, . . . , 8, s = 1, . . . , 6,

where c is colour and s is species, with probability that bird attacks and eats butterfly is

πcs =
exp(αc + γs)

1 + exp(αc + γs)
, c = 1, . . . , 8, s = 1, . . . , 6,

so

– large αc corresponds to colours that the jacamar likes to eat,

– large γs corresponds to species that it likes.

� This is a GLM with response ycs = rcs/mcs, E(ycs) = πcs, and canonical (logit) link function

η = log{π/(1 − π)}, ηcs = αc + γs.
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Jacamar data: Analysis of deviance

Table 4: Deviances and analysis of deviance for models fitted to jacamar data. The lower part shows
results for the reduced data, without two outliers.

Full data Without outliers
Terms df Deviance df Deviance

1 43 134.24 35 73.68
1+Species 38 114.59 31 46.04
1+Colour 36 108.46 28 63.20
1+Species+Colour 31 67.28 24 28.02

Terms df Deviance Terms df Deviance
reduction reduction

Species (unadj. for Colour) 5 19.64 Species (adj. for Colour) 5 41.18
Colour (adj. for Species) 7 47.31 Colour (unadj. for Species) 7 25.78

Species (unadj. for Colour) 4 27.63 Species (adj. for Colour) 4 35.18
Colour (adj. for Species) 7 18.03 Colour (unadj. for Species) 7 10.48
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Jacamar data: Residuals

Figure 3: Standardized deviance residuals rD for binomial two-way layout fitted to jacamar data.
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Jacamar data: Parameter estimates

Table 5: Estimated parameters and standard errors for the jacamar data, without 2 outliers.

Aphrissa Phoebis Dryas Pierella Consul Siproeta
boisduvalli argante iulia luna fabius stelenes

–1.99 (0.79) –2.22 (0.85) –0.56 (0.67) 0.16 (0.54) — 1.50 (0.78)

Brown Yellow Blue Green Red Orange Black

0.16 (0.73) 0.33 (0.68) –0.53 (0.81) –0.83 (0.75) –1.93 (0.88) –1.94 (0.85) –1.26 (0.86)

� Interpretation

� Residual deviance: 28.02, with 24 df

� Pearson statistic: 25.58, with 24 df

� Standardized residuals in range −2.03 to 1.96: OK.
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Example: Chimpanzee data

Table 6: Times in minutes taken by four chimpanzees to learn ten words.

Chimpanzee Word
1 2 3 4 5 6 7 8 9 10

1 178 60 177 36 225 345 40 2 287 14
2 78 14 80 15 10 115 10 12 129 80
3 99 18 20 25 15 54 25 10 476 55
4 297 20 195 18 24 420 40 15 372 190

� A two-way layout.

� Times vary from 2 to 476 minutes — need transformation (e.g., logarithm) if use linear model.
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Chimpanzee data

� How does learning time depend on word w and chimp c?

� Response is continuous and positive, so we try fitting the gamma distribution with mean µ and
shape parameter ν, i.e.,

f(y;µ, ν) =
1

Γ(ν)
yν−1

(
ν

µ

)ν
exp(−νy/µ), y > 0, ν, µ > 0,

so dispersion parameter is φ = 1/ν (φ = ν = 1 for exponential).

� Possible link functions:

η = log µ, (log, most common), η = 1/µ, (reciprocal, canonical)

� Linear model structure:

ηcw = αc + γw, c = 1, . . . , 4, w = 1, . . . , 10,

but the interpretation of the αc and γw will depend on the link function.

� With the log link, the deviances for models 1, 1+Chimp, 1+Word, and 1+Chimp+Word are
60.38, 53.43, 21.19, and 14.97. How many df are there for each model?
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Chimpanzee data: Analysis of deviance

Table 7: Analysis of deviance for models fitted to chimpanzee data.

Term df Deviance Term df Deviance
reduction reduction

Chimp (unadj. for Word) 3 6.95 Chimp (adj. for Word) 3 6.22
Word (adj. for Chimp) 9 38.46 Word (unadj. for Chimp) 9 39.19

� Method of moments estimate is φ̂ = 0.432, so ν̂ = 1/φ̂ = 2.31.

� Use F tests to assess effects of Word and Chimp, for example obtaining

6.22/3

0.423
= 4.78

·∼ F3,27

if there is no difference between the chimps. What is the corresponding statistic for testing
differences between words?

� Residuals suggest that this model, or one with the inverse link, are both adequate, and both are
better than fitting a normal linear model to the log times.
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Summary

� Generalized linear models extend the classical linear model in two ways:

– the response distribution is (almost) exponential family, so includes binomial, Poisson, gamma
and other distributions in addition to the normal;

– the relation between the linear predictor η = xTβ and the mean µ is determined by a wide
range of possible link functions.

� Canonical link functions give particularly simple models and are widely used.

� Estimates of β are obtained by IWLS, which has a simple form, with no need for initial values.

� A simple estimate of the dispersion parameter φ is available using the method of moments.

� Models are compared using the analysis of deviance, which generalises the analysis of variance in
the classical linear model.

� Standard likelihood theory results are used for inference (standard errors, confidence intervals,
etc.)

� Standard diagnostics (residuals, . . . ) extend in a natural way to this setting.
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2.4 Proportion Data slide 132

Binary response

� Response Y has Bernoulli distribution with

P(Y = 1) = π, P(Y = 0) = 1− π, 0 < π < 1.

and E(Y ) = µ = π, var(Y ) = π(1− π).

� Linear link function π = η = xTβ can give π 6∈ [0, 1], so not usually a good idea.

� Y can be interpreted in terms of a hidden variable/tolerance distribution: let Z = xTγ + σε,
where ε ∼ F . Set Y = I(Z > 0), and note that

π = P(Y = 1) = P(xTγ + σε > 0) = P(ε > −xTγ/σ) = 1− F (−xTβ),

say. Note that β = γ/σ is estimable, but γ and σ are not.

� The corresponding link function is given by

η = xTβ = −F−1(1− π) = g(π),

so different choices of F yield different possible link functions.
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Link functions

Tolerance distributions and corresponding link functions for binary data.

Distribution F Link function

Logistic eu/(1 + eu) Logit η = log{π/(1 − π)}
Normal Φ(u) Probit η = Φ−1(π)
Log Weibull 1− exp(− exp(u)} Log-log η = − log{− log(π)}
Gumbel exp{− exp(−u)} Complementary log-log η = log{− log(1− π)}

� The logit and probit links are symmetric.

� Logit (canonical link) is usual choice, good for medical studies (later), with nice interpretation,
but the probit is very similar to it and may be preferred in some cases, for its relation to the
normal distribution.

� The log-log and complementary log-log links are asymmetric.
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Logistic regression

� Commonest choice of link function for proportion data is the logit, which gives

P(Y = 1) = π =
exp(xTβ)

1 + exp(xTβ)
, P(Y = 0) = 1− π =

1

1 + exp(xTβ)
,

leading to a linear model for the log odds of success,

log

{
P(Y = 1)

P(Y = 0)

}
= log

(
π

1− π

)
= xTβ, β ∈ R

p.

� The likelihood for β based on independent responses y1, . . . , yn with covariate vectors x1, . . . , xn
and corresponding probabilities π1, . . . , πn is

L(β) =

n∏

j=1

π
yj
j (1− πj)

1−yj = · · · =
exp

(∑n
j=1 yjx

T

j β
)

∏n
j=1

{
1 + exp

(
xT

j β
)} ,

which is a regular exponential family with s(y) = XTy and log likelihood

ℓ(β) = (XTy)Tβ −
n∑

j=1

log
{
1 + exp

(
xT

j β
)}
, β ∈ R

p,

known as the logistic regression model.
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Nodal involvement data

Data on nodal involvement: 53 patients with prostate cancer have nodal involvement (r), with five
binary covariates age, stage, etc.

m r age stage grade xray acid

6 5 0 1 1 1 1
6 1 0 0 0 0 1
4 0 1 1 1 0 0
4 2 1 1 0 0 1
4 0 0 0 0 0 0
3 2 0 1 1 0 1
3 1 1 1 0 0 0
3 0 1 0 0 0 1
3 0 1 0 0 0 0
2 0 1 0 0 1 0

2 1 0 1 0 0 1
2 1 0 0 1 0 0
1 1 1 1 1 1 1
...

...
...

...
...

...
1 1 0 0 1 0 1
1 0 0 0 0 1 1
1 0 0 0 0 1 0
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Deviances for nodal involvement models

Scaled deviances D for 32 logistic regression models for nodal involvement data. + denotes a term
included in the model.

age st gr xr ac df D age st gr xr ac df D

52 40.71 + + + 49 29.76
+ 51 39.32 + + + 49 23.67

+ 51 33.01 + + + 49 25.54
+ 51 35.13 + + + 49 27.50

+ 51 31.39 + + + 49 26.70
+ 51 33.17 + + + 49 24.92

+ + 50 30.90 + + + 49 23.98
+ + 50 34.54 + + + 49 23.62
+ + 50 30.48 + + + 49 19.64
+ + 50 32.67 + + + 49 21.28

+ + 50 31.00 + + + + 48 23.12
+ + 50 24.92 + + + + 48 23.38
+ + 50 26.37 + + + + 48 19.22

+ + 50 27.91 + + + + 48 21.27
+ + 50 26.72 + + + + 48 18.22

+ + 50 25.25 + + + + + 47 18.07
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Model selection

� We have 32 competing models, and would like to select the ‘best’, or a few ‘near-best’.

� In general we have 2p models, so automatic selection of some sort is helpful.

� Could use likelihood ratio tests (differences of deviances) to compare competing models, but this
involves many correlated tests, so may lead to spurious results.

� Usually minimise an information criterion, which accounts for the number of parameters in each
model, such as

AIC ≡ D + 2p, BIC ≡ D + p log n,

where D is the deviance.

� Recall their properties, with p fixed and as n→ ∞:

– AIC tends to overfit, i.e., it has a positive probability of choosing a model that is too complex,;

– BIC applies a stronger penalty, so if the true model is among those fitted, it will choose it with
probability one;

– BIC usually yields less complex models than AIC, but they may predict less well.

� There are many other information criteria, but these are most used in practice.
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Example: Nodal involvement

� Model with lowest AIC has stage, xray, acid:

xTβ̂ = −3.05 + 1.65Istage + 1.91Ixray + 1.64Iacid,

where Istage = 1 indicates that stage takes its higher level, etc.

� Interpretation of this model:

– for an individual with stage, xray and acid at their lowest levels, the fitted probability of nodal
involvement is e−3.05/(1 + e−3.05)

.
= 0.045 (though there are no such people in the data, so

this involves extrapolation);

– for someone with only Istage = 1, the odds of nodal involvement are

e−3.05+1.65 = e−1.4 .
= 0.25, a probability of 0.2;

– for someone with Istage = Ixray = Iacid = 1, the odds of nodal involvement are

e−3.05+1.65+1.91+1.64 .
= 8.6, a probability of 0.9;

� Problems with interpretation of residual deviance of 19.64: how many df? — can amalgamate
independent binary responses with same covariates.

� Likewise problems with residuals . . .

Regression Methods Autumn 2024 – slide 139

Nodal involvement residuals

Figure 4: Standardized deviance residuals for nodal involvement data, for ungrouped responses (left)
and grouped responses (right).
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Summary

� Proportion data are often modelled using the Bernoulli/binomial response distributions.

� Link functions (logit, probit, . . . ) have interpretations in terms of underlying continuous variables
that have been dichotomized.

� The canonical and most commonly-used link is the logit, and fitting using this yields logistic
regression, in which

– the canonical parameter is the log odds;

– classical data structures (e.g., the 2× 2 table) have nice interpretations.

� The deviance can be used to compare models (so can AIC, BIC, . . . ), but using its absolute value
to assess fit can be dangerous (exercise).

� Residuals for binary data are not very informative.
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2.5 Count Data slide 142

Types of count data

� y ∈ {0, 1, 2, . . .}, perhaps with upper bound m, depending on sampling scheme:

– counts, with no fixed total;

– m individuals, subdivided into various categories:

⊲ nominal response—unordered categories (gender, nationality, . . . )

⊲ ordinal response—ordered categories (pain level, spiciness of curry, . . . )

� Simplest models:

– single unbounded response, or Poisson approximation to binomial, takes Y ∼ Pois(µ);

– group of responses (Y1, . . . , Yd) with fixed total
∑
Yj = m has multinomial distribution,

probabilities (π1, . . . , πd) and denominator m.

� Previous examples:

– Doll and Hill data on smoking had response y Poisson with µ = Tλ(x;β);

– Jacamar data had ordinal (?) response N/S/E with total N+S+E fixed—multinomial with
d = 3
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Poisson and multinomial distributions

� Y ∼ Pois(µ) implies that

f(y;µ) =
µy

y!
e−µ, y = 0, 1, 2, . . . , µ > 0.

� Exponential family with natural parameter θ = log µ, GLM with canonical logarithmic link,
xTβ = η = log µ.

� If Y is number of events in Poisson process of rate λ observed for period of length T , then
µ = λT and we set η = xTβ + log T

– offset log T is fixed part of linear predictor η

� If Yr
ind∼ Pois(µr), r = 1, . . . , d, then the joint distribution of Y1, . . . , Yd given Y1 + · · · + Yd = m

is multinomial, with denominator m, and probabilities

π1 =
µ1∑d
r=1 µr

, . . . , πd =
µd∑d
r=1 µr

.

� If (Y1, . . . , Yd) ∼ Mult(m;π1, . . . , πd), then marginal and conditional distributions, e.g., of

(Y1 + Y2, Y3 + Y4 + Y5, Y6, . . . , Yd), (Y1, Y2, Y4) | (Y3, Y5, . . . , Yd),

are also multinomial.
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Log-linear and logistic regressions

� Special case: if d = 2, then

Y2 | Y1 + Y2 = m ∼ B

(
m,π =

µ2
µ1 + µ2

)

� If µ1 = exp(γ + xT

1β), µ2 = exp(γ + xT

2β), then

π =
exp(γ + xT

2β)

exp(γ + xT

1β) + exp(γ + xT

2β)
=

exp{(x2 − x1)
Tβ}

1 + exp{(x2 − x1)Tβ}
,

which corresponds to a logistic regression model for Y2 with denominator m and probability π.

� Can estimate β using log linear model or logistic model—but can’t estimate γ from logistic model.
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2.6 Poisson Regression slide 146

Premier League data

> soccer

month day year team1 team2 score1 score2

1 Aug 19 2000 Charlton ManchesterC 4 0

2 Aug 19 2000 Chelsea WestHam 4 2

3 Aug 19 2000 Coventry Middlesbr 1 3

4 Aug 19 2000 Derby Southampton 2 2

5 Aug 19 2000 Leeds Everton 2 0

6 Aug 19 2000 Leicester AstonVilla 0 0

7 Aug 19 2000 Liverpool Bradford 1 0

8 Aug 19 2000 Sunderland Arsenal 1 0

9 Aug 19 2000 Tottenham Ipswich 3 1

10 Aug 20 2000 ManchesterU Newcastle 2 0

11 Aug 21 2000 Arsenal Liverpool 2 0

12 Aug 22 2000 Bradford Chelsea 2 0

13 Aug 22 2000 Ipswich ManchesterU 1 1

14 Aug 22 2000 Middlesbr Tottenham 1 1

15 Aug 23 2000 Everton Charlton 3 0

16 Aug 23 2000 ManchesterC Sunderland 4 2

17 Aug 23 2000 Newcastle Derby 3 2

18 Aug 23 2000 Southampton Coventry 1 2

19 Aug 23 2000 WestHam Leicester 0 1

20 Aug 26 2000 Arsenal Charlton 5 3

...
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Premier League data

� 380 soccer matches in English Premier League in 2000–2001 season.

� Data: home score yhij and away score yaij when team i is at home to team j, for i, j,= 1, . . . , 20,
i 6= j.

� Treat these as Poisson counts with means

µhij = exp(∆ + αi − βj), µaij = exp(αj − βi)

where

– ∆ represents the home advantage;

– αi and βi represent the offensive and defensive strengths of team i.

� Two possibilities for fitting:

– Poisson GLM, with 39 parameters;

– binomial GLM, with 20 parameters.
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Premier League data: Analysis of deviance

Poisson model Binomial model
Terms df Deviance Terms df Deviance

reduction reduction

Home 1 33.58 Home 1 33.58
Defence 19 39.21 Team 19 79.63
Offence 19 58.85

Residual 720 801.08 Residual 332 410.65

� There’s a strong effect of playing at home, and lots of evidence of differences among the
teams—more in offence than defence.

� Both residual deviances are a little large, but since the counts are small, we don’t expect the
large-sample χ2 distribution to apply well to the residual deviance.

� Simulations from the fitted model suggest that the residual deviances are not unusually large, so
there’s no evidence of a lack of fit.
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Premier League data: Null deviance for defence effect

Defence effect deviance (in red) for the Poisson model is large(ish) relative to χ2
19 distribution, but the

asymptotics seem OK, based on simulations from a model without this effect (i.e., Home + Offence).
It seems we can trust asymptotic distributions for differences of deviances, even though the counts are
small.
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Premier League data: Residual deviance

Residual deviance of 801 (in red) for the Poisson model seems large(ish) relative to χ2
720 distribution,

but the asymptotics are suspect because most of the counts are small. Comparison of observed
deviance with χ2

720 distribution shows that 801 is in fact somewhat smaller than average for datasets
simulated from the fitted model.

Simulated likelihood ratio statistics
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Premier League data: Estimates

Overall (δ) Offensive (α) Defensive (β)

Manchester United 0.39 0.22 0.15
Liverpool 0.13 0.12 −0.08
Arsenal — 0.04 —
Chelsea −0.09 0.08 −0.22
Leeds −0.10 0.02 −0.17
Ipswich −0.16 −0.10 −0.13
Sunderland −0.33 −0.31 −0.10
Aston Villa −0.48 −0.31 −0.15
West Ham −0.53 −0.33 −0.30
Middlesborough −0.53 −0.35 −0.17
Charlton −0.55 −0.21 −0.43
Tottenham −0.58 −0.28 −0.38
Newcastle −0.59 −0.35 −0.30
Southampton −0.60 −0.45 −0.25
Everton −0.75 −0.32 −0.46
Leicester −0.77 −0.47 −0.31
Manchester City −0.90 −0.40 −0.56
Coventry −0.93 −0.53 −0.52
Derby −0.93 −0.51 −0.45
Bradford −1.29 −0.71 −0.62

SEs 0.29 0.20 0.20

Home advantage: ∆̂ = 0.37 (0.07), exp(∆̂) = 1.45.
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Premier League data: Assessment of fit

Diagnostic plots for fitted model: residuals against η̂ (top left); normal QQ-plot of residuals (top
right); Cook statistic Cj against leverage ratio hj/(1− hj) (lower left); Cook statistic Cj against case
number (lower right).
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2.7 Contingency Tables slide 154

Sampling schemes

� A contingency table contains individuals (sampling units) cross-classified by various categorical
variables.

– Example: the jacamar data cross-classify butterflies by

6 species × 8 colours × 3 fates

for a total of 144 categories, each with its number of butterflies 0, 1, . . . , 14.

� The sampling scheme underlying a table may fix certain totals. Suppose a pollster wants to find
out how people will vote. She might

– wait in the street for a morning, and get opinions from those people willing to talk to her;

– wait until she has the views of a fixed number, say m, of people;

– wait until she has the views of fixed numbers of men and women.

Example 25 Find the likelihoods for each of these sampling schemes, under (unrealistic!)
assumptions of independence of voters.
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Note to Example 25

� An R× C table arises by randomly sampling a population over a fixed period and then classifying
the resulting individuals.

� In the first scheme there are no constraints on the row and column totals, and a simple model is
that the count in the (r, c) cell, yrc, has a Poisson distribution with mean µrc. The resulting
likelihood is ∏

r,c

{
µyrcrc

yrc!
e−µrc

}
;

this is simply the Poisson likelihood for the counts in the RC groups.

� The pollster may set out with the intention of interviewing a fixed number m of individuals,
stopping only when

∑
rc yrc = m. In this case the data are multinomially distributed, with

likelihood
m!∏
r,c yrc!

∏

r,c

πyrcrc ,
∑

r,c

πrc = 1,

with πrc = µrc/
∑

s,t µst the probability of falling into the (r, c) cell.

� A third scheme is to interview fixed numbers of men and of women, thus fixing the row totals
mr =

∑
c yrc in advance. In effect this treats the row categories as subpopulations, and the

column categories as the response. This yields independent multinomial distributions for each
row, and product multinomial likelihood

∏

r

{
mr!∏
c yrc!

∏

c

πyrcrc

}
,
∑

c

π1c = · · · =
∑

c

πRc = 1,

in which πrc = µrc/
∑

t µrt.
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Contingency tables and Poisson response models

� Multinomial models can be fitted using Poisson errors, provided the appropriate baseline terms are
always included in the linear predictor.

� Write the data as two-way layout, with C columns and R rows with fixed totals (e.g., 6× 8 = 48
rows each with 3 columns for the jacamar data).

� Consider Poisson model with means µrc = exp(γr + xT

rcβ):

– the row parameters γ1, . . . γR are nuisance parameters, not of interest;

– we want inference for the parameter of interest, β.

� Corresponding multinomial model has fixed row totals mr and probabilities

πrc =
µrc∑C
d=1 µrd

=
exp(γr + xT

rcβ)∑C
d=1 exp(γr + xT

rdβ)
=

exp(xT

rcβ)∑C
d=1 exp(x

T

rdβ)
,

for r = 1, . . . , R, c = 1, . . . , C; i.e., one multinomial variable for each row.

� The resulting multinomial log likelihood is

ℓMult(β; y | m) ≡
R∑

r=1

C∑

c=1

yrc log πrc

=

R∑

r=1

{
C∑

c=1

yrcx
T

rcβ −mr log

(
C∑

d=1

ex
T
rdβ

)}
.
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Contingency tables and Poisson response models, II

Lemma 26 If parameters τr for the row margins are included in the above setup, then we can write

ℓPoiss(β, τ) = ℓPoiss(τ ;m) + ℓMult(β; y | m).

� Implications:

– the MLEs of β and τ based on the LHS are the same as those from separate maximisations of
the terms on the right:

⊲ β̂ equals the MLE for the multinomial model,

⊲ τ̂r = mr

– the observed and expected information matrices for β, τ are block diagonal.

– SEs based on the multinomial and Poisson models are equal (exercise).

� General conclusion: inferences on β are the same for multinomial and Poisson models,

provided the parameters associated to the margins fixed under the multinomial
model, i.e., the γr, are included in the Poisson fit.
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Note to Lemma 26

� The Poisson model has no conditioning, so with log µrc = γr + xT

rcβ the log likelihood is

ℓPoiss(β, γ) ≡
∑

r,c

(yrc log µrc − µrc) =

R∑

r=1

(
mrγr +

C∑

c=1

yrcx
T

rcβ − eγr
C∑

c=1

ex
T
rcβ

)
.

� Now we reparametrise in terms of the row totals τr =
∑

c µrc, noting that

τr = eγr
C∑

c=1

ex
T
rcβ, γr = log τr − log

{
C∑

c=1

exp(xT

rcβ)

}
,

so

ℓPoiss(β, τ) ≡
R∑

r=1

(mr log τr − τr) +

R∑

r=1

{
C∑

c=1

yrcx
T

rcβ −mr log

(
C∑

c=1

ex
T
rcβ

)}
,

= ℓPoiss(τ ;m) + ℓMult(β; y | m),

which is the log likelihood corresponding to

– independent Poisson row totals mr with means τr, and, independent of this,

– the multinomial log likelihood for the contingency table.
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Jacamar data

Response (N=not sampled, S = sampled and rejected, E = eaten) of a rufous-tailed jacamar to
individuals of seven species of palatable butterflies with artifically coloured wing undersides. Data
from Peng Chai, University of Texas.

Aphrissa Phoebis Dryas Pierella Consul Siproeta
boisduvalli argante iulia luna fabius stelenes†
N/S/E N/S/E N/S/E N/S/E N/S/E N/S/E

Unpainted 0/0/14 6/1/0 1/0/2 4/1/5 0/0/0 0/0/1
Brown 7/1/2 2/1/0 1/0/1 2/2/4 0/0/3 0/0/1
Yellow 7/2/1 4/0/2 5/0/1 2/0/5 0/0/1 0/0/3
Blue 6/0/0 0/0/0 0/0/1 4/0/3 0/0/1 0/1/1
Green 3/0/1 1/1/0 5/0/0 6/0/2 0/0/1 0/0/3
Red 4/0/0 0/0/0 6/0/0 4/0/2 0/0/1 3/0/1
Orange 4/2/0 6/0/0 4/1/1 7/0/1 0/0/2 1/1/1
Black 4/0/0 0/0/0 1/0/1 4/2/2 7/1/0 0/1/0

† includes Philaethria dido also.
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Jacamar data: Models

� Let factors F , S, C represent the 3 fates, the 6 species, and the 8 colours.

� The models C ∗ S, C ∗ S + F , and C ∗ S + C ∗ F mean we set

log µcsf = αcs, log µcsf = αcs + γf , log µcsf = αcs + γcf .

� The vector of probabilities corresponding to the model with terms C ∗ S is

(πcs1, πcs2, πcs3) =

(
µcs1∑3
f=1 µcsf

,
µcs2∑3
f=1 µcsf

,
µcs3∑3
f=1 µcsf

)
= (13 ,

1
3 ,

1
3 ),

and that corresponding to the model with terms C ∗ S + F is

(πcs1, πcs2, πcs3) =

(
µcs1∑3
f=1 µcsf

,
µcs2∑3
f=1 µcsf

,
µcs3∑3
f=1 µcsf

)

=
1

eγ1 + eγ2 + eγ3
(eγ1 , eγ2 , eγ3) .

� Exercise: similar computations for C ∗ S + C ∗ F and C ∗ S + C ∗ F + S ∗ F .
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Jacamar data: Analysis of deviance

Deviances for log-linear models fitted to jacamar data.

Terms df Deviance

C ∗ S 88 259.42
C ∗ S + F 86 173.86
C ∗ S + C ∗ F 72 139.62
C ∗ S + S ∗ F 76 148.23
C ∗ S + C ∗ F + S ∗ F 62 90.66
C ∗ S ∗ F 0 0

� The null model C ∗ S is not of interest.

� The first model it is sensible to fit is C ∗ S + F .

� The best model seems to be C ∗ S + C ∗ F + S ∗ F , corresponding to independent effects of
species and colour, though its deviance is high (but remember the two outlying cells!)
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2.8 Ordinal Responses slide 161

Pneumoconiosis data

Period of exposure x and prevalence of pneumoconiosis amongst coalminers.

Period of exposure (years)
5.8 15 21.5 27.5 33.5 39.5 46 51.5

Normal 98 51 34 35 32 23 12 4
Present 0 2 6 5 10 7 6 2
Severe 0 1 3 8 9 8 10 5

� Here
Normal < Present < Severe,

so these are ordinal responses with d = 3 categories and the total in each group (corresponding to
each period of exposure) fixed.

� We imagine that the assigned category stems from an underlying continuous variable, even if this
cannot be quantified very well.
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Models

� Assume we have n independent individuals whose responses I1, . . . , In fall into the set {1, . . . , L},
corresponding to L ordered categories, and that

γl = P(Ij ≤ l) = π1 + · · ·+ πl, l = 1, . . . , L, γL = 1,

� The corresponding likelihood is
∏n
j=1 πIj , where usually the contribution πIj ≡ πIj(ηj) for

individual j will depend on covariates xj through a linear predictor ηj = xT

j β.

� We often want the interpretation of the parameters not to change if we merge adjacent
categories, and we can do this using an underlying tolerance distribution, with

Ij = l ⇔ xT

j β + εj ∈ (ζl−1, ζl], ζ0 = −∞ < ζ1 < · · · < ζL−1 < ζL = ∞,

where the tolerance distribution F of εj is often taken to be logistic, giving the proportional
odds model, in which

πl(x
T

j β) = P(ζl−1 < xT

j β + ε ≤ ζl) = F (ζl − xT

j β)− F (ζl−1 − xT

j β), l = 1, . . . , L;

here ζ1, . . . , ζL−1 are aliased with an intercept β0 and are not usually of interest.

� Another standard tolerance distribution is F (u) = 1− exp{− exp(u)}.
� To fit, we just apply IWLS to the multinomial likelihood

∏n
j=1 πIj .
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Pneumoconiosis data

Pneumoconiosis data analysis, showing how the implied fitted logistic distributions depend on x. Left:
plots of empirical logistic transforms for comparing categories 1 with 2 + 3 and 1 + 2 with 3; the
nonlinearity suggests using log x as covariate. Right: fitted model, showing probabilities for the three
groups with an underlying logistic distribution.
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Comments on count data

� Log-linear models are mathematically elegant and useful defaults for count data, with close links
to logistic regression, based on the relation between the Poisson and multinomial distributions.

� Interpretation of log-linear models can be difficult, especially for contingency tables, because
marginal and conditional parameters cannot be disentangled.

� Other models exist that are less elegant mathematically, but are more interpretable statistically.

� Also possible to fit models for ordinal data, using multinomial models and tolerance distribution
interpretation used for binomial data.
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2.9 Overdispersion slide 166

Overdispersion

� Often find that discrete response data are more variable than might be expected from a simple
Poisson or binomial model, so we see

– residual deviances larger than expected

– residuals more variable than expected under the model

but otherwise no evidence of systematic lack of fit

� This is overdispersion, perhaps due to effect of unmeasured explanatory variables on the
responses.
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UK monthly AIDS reports 1983–1992

Diagnosis Reporting-delay interval (quarters): Total
period reports

to end
Year Quarter 0† 1 2 3 4 5 6 · · · ≥14 of 1992

...
...

...
...

...
...

...
...

...
...

...

1988 1 31 80 16 9 3 2 8 · · · 6 174
2 26 99 27 9 8 11 3 · · · 3 211
3 31 95 35 13 18 4 6 · · · 3 224
4 36 77 20 26 11 3 8 · · · 2 205

1989 1 32 92 32 10 12 19 12 · · · 2 224
2 15 92 14 27 22 21 12 · · · 1 219
3 34 104 29 31 18 8 6 · · · 253
4 38 101 34 18 9 15 6 · · · 233

1990 1 31 124 47 24 11 15 8 · · · 281
2 32 132 36 10 9 7 6 · · · 245
3 49 107 51 17 15 8 9 · · · 260
4 44 153 41 16 11 6 5 · · · 285

1991 1 41 137 29 33 7 11 6 · · · 271
2 56 124 39 14 12 7 10 · · · 263
3 53 175 35 17 13 11 2 306
4 63 135 24 23 12 1 258

1992 1 71 161 48 25 5 310
2 95 178 39 6 318
3 76 181 16 273
4 67 66 133
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AIDS data

� UK monthly reports of AIDS diagnoses 1983–1992, with reporting delay up to several years!

� Example of incomplete contingency table (very common in insurance)

� Chain-ladder model: number of reports in row j and column k is Poisson, with mean

µjk = exp(αj + βk).

� Analysis of deviance:

Model df Deviance reduction df Deviance

464 14184.3
Time (rows) 37 6114.8 427 8069.5
Delay (cols) 14 7353.0 413 716.5

� Residual deviance is obviously far too large for a Poisson model to be OK, but the model is also
too complex, since we expect smooth variation in the αj .

� Residuals on next page show no obvious problems, just generic overdispersion.
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AIDS data: Assessment of fit

Diagnostic plots for fitted model: residuals against η̂ (top left); normal QQ-plot of residuals (top
right); Cook statistic Cj against leverage ratio hj/(1− hj) (lower left); Cook statistic Cj against case
number (lower right).
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AIDS data

� Data (+) and predicted true numbers based on simple Poisson model (solid) and GAM (dots).

� The Poisson model and data agree up to where data start to be missing.
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Dealing with overdispersion

� Two basic approaches:

– parametric modelling

– quasi-likelihood estimation, based only on the variance function

Example 27 (Linear and quadratic variance functions) Suppose that, conditional on ε > 0,
Y ∼ Pois(µε), where E(ε) = 1 and var(ε) = ξ. Show that this can lead to either linear or quadratic
variance functions, but a lot of data may be needed to distinguish them.

Comparison of variance functions for overdispersed count data. The linear and quadratic variance
functions are VL(µ) = (1 + ξL)µ and VQ(µ) = µ(1 + ξQµ), with ξL = 0.5 and ξQ chosen so that
VL(15) = VQ(15).

µ 1 2 5 10 15 20 30 40 60
Linear 1.5 3.0 7.5 15.0 22.5 30 45 60 90
Quadratic 1.0 2.1 5.8 13.3 22.5 33 60 93 180
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Note to Example 27

Let ε have unit mean and variance ξ > 0, and to be concrete suppose that conditional on ε, Y has
the Poisson distribution with mean µε. Then

E(Y ) = Eε {E(Y | ε)} , var(Y ) = varε {E(Y | ε)}+ Eε {var(Y | ε)} ,

so the response has mean and variance

E(Y ) = Eε(µε) = µ, var(Y ) = varε(µε) + Eε(µε) = µ(1 + ξµ).

If on the other hand the variance of ε is ξ/µ, then var(Y ) = (1 + ξ)µ. In both cases the variance of
Y is greater than its value under the standard Poisson model, for which ξ = 0. In the first case the
variance function is quadratic, and in the second it is linear.
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Negative binomial model

Example 28 (Negative binomial) In Example 27, if ε is gamma with shape parameter 1/ν, show
that

f(y;µ, ν) =
Γ(y + ν)

Γ(ν)y!

ννµy

(ν + µ)ν+y
, y = 0, 1, . . . , µ, ν > 0,

and that quadratic and linear variance functions are obtained on setting ν = 1/ξ and ν = µ/ξ
respectively.
The log link function log µ = xTβ is most natural.
ξ is estimated by maximum likelihood or through Pearson’s statistic.

Example 29 (AIDS data)

� MLE ξ̂Q = 22.7 (5.5)

� Analysis of Deviance (with ξ̂Q fixed):

Model df Deviance reduction df Deviance

464 7998.3
Time (rows) 37 3582.5 427 4415.8
Delay (cols) 14 3892.2 413 523.6

� Still somewhat overdispersed?
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AIDS data: Deviance residuals for NB model

Clear improvement over previous plots, even if not perfect.
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Quasi-likelihood

� Recall two basic assumptions for the linear model:

– the responses are uncorrelated with means µj = xT

j β and equal variances σ2;

– in addition to this, the responses are normally distributed.

� To avoid parametric modelling, we generalise the second-order assumptions, to

E(Yj) = µj , var(Yj) = φjV (µj), g(µj) = ηj = xT

j β,

where the variance function V (·) and the link function are taken as known.

� We obtain estimates β̃ by solving the estimating equation

h(β;Y ) = XTu(β) =

n∑

j=1

xjuj(β) =

n∑

j=1

xj
Yj − µj

g′(µj)φjV (µj)
= 0.

� If the mean structure is correct, then E(Yj) = µj, so E{h(β;Y )} = 0, and under mild conditions
β̃ is consistent (but maybe not efficient) as n→ ∞.
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Quasi-likelihood II

Recall that the general variance of an estimator β̃ defined by an estimating equation h(β;Y )p×1 = 0p
has sandwich form

E

{
−∂h(β;Y )

∂βT

}−1

var {h(β;Y )}E
{
−∂h(β;Y )T

∂β

}−1

.

Lemma 30 If V (µ) is correctly specified, then var(β̃)
.
= (XTWX)−1, where W is diagonal with

(j, j) element {g′(µj)2φjV (µj)}−1.

� If φj = φaj, with known aj > 0 and unknown φ > 0, then we obtain

– β̃ by fitting the GLM with variance function V (µ) and link g(µ);

– standard errors by multiplying the standard errors for this fit by φ̂1/2, where

φ̂ =
1

n− p

n∑

j=1

(yj − µ̂j)
2

ajg′(µj)2V (µ̂j)
.
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Note to Lemma 30

� Note first that we can write

uj(β) ≡ uj(µj) =
Aj(µj)

Bj(µj)
,

where Aj(µj) = Yj − µj and Bj(µj) = g′(µj)φjV (µj). Only Aj is random and E{Aj(µj)} = 0.
Hence if we let prime denote derivative with respect to µj ,

∂uj(µj)

∂µj
=
A′
j(µj)

Bj(µj)
−
Aj(µj)B

′
j(µj)

B2
j (µj)

has expectation E{A′
j(µj)}/Bj(µj) = −1/Bj(µj).

� We require E{−∂h(β;Y )/∂βT} and var{h(β;Y )}. Now

∂uj(β)

∂βT
=
∂ηj
∂βT

∂µj
∂ηj

∂uj(β)

∂µj
= xT

j

1

g′(µj)
u′j(µj),

which gives

E

{
−∂h(β;Y )

∂βT

}
= −

n∑

j=1

xjE

{
∂uj(β)

∂βT

}
=

n∑

j=1

xjx
T

j

1

g′(µj)2φjV (µj)
= XTWX,

where W is the n× n diagonal matrix with jth element {g′(µj)2φjV (µj)}−1. Moreover if in
addition the variance function has been correctly specified, then var(Yj) = φjV (µj), and hence

var{h(β;Y )} = XTvar{u(β)}X =
n∑

j=1

xjx
T

j

var(Yj)

g′(µj)2φ2jV (µj)2
= XTWX.

Thus the sandwich equals (XTWX)−1.

� Had the variance function been wrongly specified, the variance matrix of β̃ would have been
(XTWX)−1(XTW ′X)(XTWX)−1, where W ′ is a diagonal matrix involving the true and
assumed variance functions. Only if the variance function has been chosen very badly will this
sandwich matrix differ greatly from (XTWX)−1, which therefore provides useful standard errors
unless a plot of absolute residuals against fitted means is markedly non-random. In that case the
choice of variance function should be reconsidered.
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Quasi-likelihood III

� Under an exponential family model, h(β;Y ) is the score statistic, so β̃ is the MLE and is efficient
(i.e., it has the smallest possible variance in large samples).

� If not, inference is valid provided g and V are correctly chosen, and β̃ is optimal among
estimators based on linear combinations of the Yj − µj , by extending the Gauss–Markov theorem.

� In fact we can define a quasi-likelihood Q and its score through

Q(β;Y ) =

n∑

j=1

∫ µj

Yj

Yj − u

φajV (u)
du, h(β;Y ) =

∂

∂β
Q(β;Y ),

and a (quasi-)deviance as D = −2φQ(β;Y ).

� To compare models A, B with numbers of parameters pB < pA and deviances DB > DA, we use
the fact that

(DB −DA)/(pA − pB)

φ̂A

·∼ FpA−pB,n−pA,

if the simpler model B is adequate. This is easy in R.
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AIDS example

> aids.ql <- glm(y~factor(time)+factor(delay),family=quasipoisson,data=aids.in)

> anova(aids.ql,test="F")

Analysis of Deviance Table

Model: quasipoisson, link: log

Response: y

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev F Pr(>F)

NULL 464 14184.3

factor(time) 37 6114.8 427 8069.5 92.638 < 2.2e-16 ***

factor(delay) 14 7353.0 413 716.5 294.402 < 2.2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
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Summary

� Overdispersion is widespread in count and proportion data.

� We deal with it either by

– parametric modelling, or

– quasi-likelihood (QL) estimation, which involves assumptions only on the mean-variance
relationship.

� QL estimators equal the ML ones, but SEs are inflated by φ̂1/2.

� (Quasi-)deviance can also be defined, and used for model comparison, with F tests replacing χ2

tests.
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3 Regularisation slide 180

3.1 Basic Notions slide 181

Tall and wide regressions

� So far we have supposed that we have a tall regression:

– the number of units n exceeds the number of variables p,

– the design matrix X has rank p.

� In many ‘modern’ settings we instead have a wide regression:

– n and p are comparable, p > n, maybe even p≫ n;

– in genomics, for example (typically) n = O(102, 103), p = O(105, 106);

– hence rank(X) = min(n, p) = n.

� Even tall X may be ‘almost singular’, making β ‘almost inestimable’.

� Solutions:

– subset selection (drop certain columns of X);

– seek different good explanations of response variation, not single model;

– regularisation (often with prediction in mind).

� Certain regularisation methods (e.g., lasso) also perform subset selection.
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Different good explanations

� With p > n, perhaps p≫ n, X is rank-deficient and many β may give Xβ = y.

� To find important variables we include intrinsic variables (gender, . . . ) in all models, and then

– choose some k (preferably ≤ 15) such that k < n and suppose that p < ka (let a = 3 for easy
visualisation);

– assign each variable to a cell of a hyper-cube with coordinates {1, . . . , k}a;
– fit a linear model containing each set of k variables corresponding to the aka−1 rows,

columns, . . . of the cube, so each variable appears in a distinct models;

– for each such model, retain the two variables that are most significant.

� Iterate the above procedure, retaining only the most significant variables at each stage, aiming for
a final set of 10–20 variables, for which a careful analysis is performed, perhaps leading to several
different good explanations of the response variation.

� Some cells of the hyper-cube may be empty, and important variables might be assigned to several
cells.

� The above design is a form of balanced incomplete block design (BIBD) (with ka treatments
and aka−1 blocks).

� See Cox and Battey (2017, PNAS)
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Collinearity

� Columns of X collinear if there exists a non-zero vp×1 such that Xv = 0, i.e., rank(X) < p, so

there is no unique β̂ minimising ‖y −Xβ‖2.
� Software deals with this by dropping columns of X, but it may be better to write Xβ = XCγ,

where XC is full rank and γ has a clear interpretation.

� If X is nearly collinear, its SVD Un×nDn×pV
T

p×p, with d1 ≥ · · · ≥ dp ≥ 0, gives

β̂ = (XTX)−1XTy = V DT

−U
Ty =

p∑

r=1

(uT

r y/dr)vr,

so β̂ is a linear combination of the vectors vr with coefficients uT

r y/dr. As var(U
Ty) = σ2In,

var(β̂) = σ2V DT

−D−V
T = σ2

p∑

r=1

d−2
r vrv

T

r ,

i.e., β̂ is unstable in the directions corresponding to the vr with small singular values dr.

� In numerical analysis, collinearity often measured using condition number (d1/dp)
1/2, but its

statistical meaning is unclear.
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Regularisation

� Stop β̂ from fluctuating too wildly in directions with small eigenvalues dr, by adding a
non-negative penalty pλ(β) and choosing β to minimise the penalised sum of squares

‖y −Xβ‖2 + pλ(β). (16)

� The strength of the penalty depends on a positive parameter λ that constrains β more as λ
increases.

� Often pλ(β) = λp(β), where, for example,

– p(β) = ‖β‖22 =
∑p

r=1 β
2
r gives ridge regression (aka Tikhonov regularisation);

– p(β) = ‖β‖1 =
∑p

r=1 |βr| gives the lasso (aka L1 regularisation);

– p(β) = (1− α)‖β‖22 + α‖β‖1 for 0 ≤ α ≤ 1 gives the elastic net;

– p(β) =
∑G

g=1 p
1/2
g ‖βg‖2, with βg being pg × 1 sub-vectors of β, gives the grouped lasso,

which penalises factors with parameters βg.

� It is useful to see regularisation through the lens of Bayesian inference, with the regularising term
equivalent to the prior density.
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Bound form

� Equivalently we can take the bound form of the minimisation problem, i.e.,

minimiseβ ‖y −Xβ‖22 subject to p(β) ≤ t,

for some t ≥ 0, where setting t = ∞ just gives the least squares estimates.

� Below: constraint balls for ridge (left), lasso (centre) and elastic-net (right) regularisation. The
sharp corners of the last two allow for variable selection as well as shrinkage.

β1

β3

β2

β1

β2

β3

β2

β1

β3
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Bayesian setting

� Treat all unknowns as random variables, and compute conditional distribution of unobserved
unknowns conditional on observed unknowns.

� Requires prior density on β, and if σ2 is known, then a simple combination of data model and
prior model is

y | β, σ2 ∼ N (Xβ, σ2In), β | σ2 ∼ Np(β∗, σ
2V∗), (17)

where the prior model is determined by β∗ and V∗.

� Full specification would require prior on σ2, but we don’t need this.

� Let ≡ mean we have dropped additive constants not involving the argument of a density.

� The log multivariate normal density is

log f(x | µ,Ω) = −m
2
log 2π − 1

2
log |Ω| − 1

2
(x− µ)TΩ−1(x− µ)

≡ xTΩ−1µ− 1

2
xTΩ−1x

≡ Q(x) = xTa− 1

2
xTBx,

say, and as expQ(x) is proportional to a unique probability density function,

E(X) = µ = B−1a, var(X) = Ω = B−1, where B is the precision matrix.
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Bayesian linear model I

� The model (6) gives

log f(β | y, σ2) = log

{
f(y | β, σ2)f(β | σ2)

f(y | σ2)

}

≡ log f(y | β, σ2) + log f(β | σ2)

≡ −(y −Xβ)T(y −Xβ)

2σ2
− (β − β∗)

TV −1
∗ (β − β∗)

2σ2

∝ ‖y −Xβ‖22 + (β − β∗)
TV −1

∗ (β − β∗).

� Comparison with (5) shows that pλ(β) represents prior beliefs about the likely values of β: before
seeing the data, the most plausible value is β∗, with precision V −1

∗ .

� Dropping more constants,

log f(β | y, σ2) ≡ 1

σ2
{
βTXTy − βT(XTX)β/2 + βTV −1

∗ β∗ − βTV −1
∗ β/2

}

=
1

2σ2
{
2βT(XTy + V −1

∗ β∗)− βT(XTX + V −1
∗ )β

}
, (18)

which is Q(x) with x, a and B replaced by β, (XTy + V −1
∗ β∗)/σ

2 and (XTX + V −1
∗ )/σ2.

� Hence f(β | y, σ2) is multivariate normal with mean vector and variance matrix

E(β | y, σ2) = (XTX + V −1
∗ )−1(XTy + V −1

∗ β∗), var(β | y, σ2) = σ2(XTX + V −1
∗ )−1.
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Bayesian linear model II

� The maximum a posteriori (MAP) estimator of β is E(β | y, σ2), and the MAP estimator of
Aq×pβ is AE(β | y, σ2), which has a posterior normal density.

� When XTX is invertible,

β̃ = E(β | y, σ2) = (XTX + V −1
∗ )−1(XTXβ̂ + V −1

∗ β∗)

is an average of β̂ and β∗, weighted by XTX and V −1
∗ .

� The posterior precision matrix

var(β | y, σ2)−1 = XTX/σ2 + V −1
∗ /σ2

adds the Fisher information and the prior precision matrix, V −1
∗ /σ2.

� High precision corresponds to small variance, and conversely:

– letting V −1
∗ → 0 yields an improper prior density; and

– for large V −1
∗ the posterior precision is essentially determined by the prior precision.

Thus the prior density regularises β̂ by including β∗ and V∗.

Regression Methods Autumn 2024 – slide 189

104



Improper prior density

� We only need V∗ to add information in directions corresponding to small singular values of X, so
we might use an improper prior in which V∗ is singular:

f(β | σ2) = 1

(2π)p/2|V∗|1/2+

exp
{
−(β − β∗)

TV −
∗ (β − β∗)/(2σ

2)
}
, (19)

where V∗ has spectral decomposition ED∗E
T,

– |V∗|+ denotes the product of the non-zero elements of D∗, and

– V −
∗ =

∑
r:d∗r>0 ere

T

r /d∗r is a generalized inverse of V∗.

� Below we write V −
∗ even when V∗ is invertible.

� (8) is improper because it is not integrable in the directions of the columns of E for which the
corresponding d∗r equal zero, but we need only that the posterior density of β be proper, i.e., that
the posterior precision matrix

var(β | y, σ2)−1 = XTX/σ2 + V −
∗ /σ

2

is invertible.
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Empirical Bayes

� Use the data to estimate the prior: construct estimators using Bayesian arguments, but assess
their properties using classical criteria (bias, MSE, . . . )

� The estimator β̃ = E(β | y, σ2) has mean and variance

E(β̃ | β) = (XTX + V −
∗ )−1(XTXβ + V −

∗ β∗)

= β + (XTX + V −
∗ )−1V −

∗ (β∗ − β),

var(β̃ | β) = σ2(XTX + V −
∗ )−1XTX(XTX + V −

∗ )−1. (20)

� Hence β̃

– is biased unless β∗ = β,

– has smaller variance than β̂,

so maybe there is a bias-variance tradeoff when estimating Aβ.

� If we write µ = E(β̃ | β), then the MSE is

E
(
‖Aβ̃ −Aβ‖2 | β

)
= E{(β̃ − β)TATA(β̃ − β) | β}

= E
[
tr
{
A(β̃ − β)(β̃ − β)TAT

}
| β
]

= tr
[
E
{
A(β̃ − µ+ µ− β)(β̃ − µ+ µ− β)TAT | β

}]
.
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Empirical Bayes II

� The expectation above is

A
{
var(β̃ | β) + (XTX + V −

∗ )−1V −
∗ (β − β∗)(β − β∗)

TV −
∗ (XTX + V −

∗ )−1
}
AT,

giving the MSE when estimating a fixed β.

� Taking expectations over the prior model for β gives

E
(
‖Aβ̃ −Aβ‖2

)
= σ2tr

{
A(XTX + V −

∗ )−1AT
}
, (21)

which is larger than Avar(β̃ | β)AT and does not depend on β∗.

� This computation uses only the mean and variance, so holds under second-order assumptions.

� From now on we set β∗ = 0, unless we state otherwise.
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Equivalent degrees of freedom

� If we set β∗ = 0, then the fitted values are

ỹ = Xβ̃ = X(XTX + V −
∗ )−1XTy = H∗y,

say.

� We define the equivalent degrees of freedom of the fit as

edf = tr(H∗) = tr{X(XTX + V −
∗ )−1XT} = p− tr{(XTX + V −

∗ )−1V −
∗ },

� This is lower than p unless V −
∗ = 0, so regularisation reduces the degrees of freedom by an

amount that depends on V∗.

� The penalised estimate is a linear function of the unpenalised one (if it exists), as we can write

β̃ = (XTX + V −
∗ )−1XTXβ̂ = P∗β̂,

say. As
edf = tr(H∗) = tr(P∗),

this gives an alternative formula useful in complex models.
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How much penalisation?

� Often V −
∗ depends on some λ > 0 that must be chosen, as well as σ2, which is usually estimated

by a (penalised) residual sum of squares.

� To estimate λ, we compare yj with its predicted value ŷ−λ,j = xT

j β̂λ,−j, where β̂λ,−j is

β̂λ = (XTX + V −
∗ )−1XTy

computed with the jth rows xj and yj of X and y omitted.

� Using Lemma 14, the leave-one-out cross-validation sum of squares is then

CVλ =

n∑

j=1

(yj − ŷ−λ,j)
2 = ‖y − ŷ−λ ‖2 =

n∑

j=1

(yj − ŷλ,j)
2

(1− hλ,jj)2
,

where ŷλ,j is the jth element of the complete-data fitted value Hλy and hλ,jj is the jth diagonal
element of Hλ = X(XTX + V −

∗ )−1XT for the overall fit.

� More often we use the generalized cross-validation criterion

GCVλ =
n∑

j=1

(yj − ŷλ,j)
2

{1 − tr(Hλ)/n}2
.

� Whichever criterion is used, it is typically minimised numerically over a grid of values of λ.
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REML

� Cross-validation makes only second-order assumptions.

� Under normality, the marginal density of y is N{Xβ∗, σ2(In +XV∗X
T)}, so we could estimate

β∗, σ
2 and λ by maximising the corresponding likelihood.

� If n and p are large, this results in biased estimates of λ and σ2, so we prefer to eliminate β∗,
resulting in a log restricted likelihood whose form is given below, with W−1

λ = In +XV∗X
T.

Lemma 31 In a model in which y ∼ N (Xβ, σ2W−1
λ ), where Wλ depends on a parameter λ, a log

restricted likelihood for σ2 and λ is

ℓREML(σ
2, λ) ≡ 1

2
log(|Wλ|/|XTWλX|) − n− p

2
log σ2 − 1

2σ2
(y − ŷλ)

TWλ(y − ŷλ),

where β̂λ = (XTWλX)−1XTWλy and ŷλ = Xβ̂λ. For fixed λ the restricted maximum likelihood
estimator of σ2 is therefore

σ̂2λ =
1

n− p
(y − ŷλ)

TWλ(y − ŷλ),

and the resulting profile log restricted likelihood for λ is

ℓp(λ) ≡
1

2
log(|Wλ|/|XTWλX|)− (n− p)

2
log σ̂2λ.
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Note on Lemma 31

� Suppose that f(y;α, β) depends on two parameters, that interest is focused on α, and that for
fixed α there is a minimal sufficient statistic sα for β. Then f(y;α, β) = f(y | sα;α)f(sα;α, β),
and since the first density on the right is a proper conditional density not depending on β, we can
use it for inference on α, in the form

log f(y | sα;α) = log f(y;α, β) − log f(sα;α, β).

As the left-hand side of this expression does not depend on β, we may be able to simplify the
right-hand side by an astute choice of β.

� In the normal model we take α = (σ2, λ). If α is fixed, then sα = β̂α = (XTWλX)−1XTWλy is
sufficient for β; its distribution is Np{β, σ2(XTWλX)−1}. Hence

ℓREML(σ
2, λ) = log f(y | β̂λ;σ2, λ) = log f(y;σ2, λ, β)− log f(β̂λ;σ

2, λ, β)

which equals

−n
2
log σ2 + 1

2 log |Wλ| −
1

2σ2
(y −Xβ)TWλ(y −Xβ)

+
p

2
log σ2 − 1

2 log |XTWλX|+ 1

2σ2
(β̂λ − β)TXTWλX(β̂λ − β),

or equivalently, on setting β = 0 and ŷλ = Xβ̂λ,

1
2 log(|Wλ|/|XTWλX|)− (n− p)

2
log σ2 − 1

2σ2
(yTWλy − ŷT

λX
TWλŷλ) .

� The last term reduces to the given form because ŷT

λWλ(y − ŷλ) = 0, so the term in brackets in
the last displayed equation is the residual sum of squares (y − ŷλ)

TWλ(y − ŷλ).

� The restricted maximum likelihood estimator σ̂2λ and the profile log restricted likelihood for λ are
obtained by maximising ℓREML(σ

2, λ), for fixed λ and then dropping constant terms from
ℓREML(σ̂

2
λ, λ).
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Numerical example from Wood (2011, JRSSB)

The usual methods (AIC, GCV, . . . ) for choosing λ are available, but we focus on likelihood methods;
see below.
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Fig. 1. Example comparison of GCV, AICc and REML criteria: (a) some .x,y/-data modelled as yi D f .xi /C

"i , "i independent and identically distributed N.0,σ2/ where smooth function f was represented by using
a rank 20 thin plate regression spline (Wood, 2003); (b)–(d) various smoothness selection criteria plotted
against logarithmic smoothing parameters, for 10 replicates of the data (each generated from the same
‘truth’) (note how shallow the GCV and AICc minima are relative to the sampling variability, resulting in rather
variable optimal λ-values (which are shown as a rug plot), and a propensity to undersmooth; in contrast the
REML optima are much better defined, relative to the sampling variability, resulting in a smaller range of
λ-estimates); (e)–(h) are equivalent to (a)–(d), but for data with no signal, so that the appropriate smoothing
parameter should tend to 1 (note GCV’s and AICc’s occasional multiple minima and undersmoothing in
this case, compared with the excellent behaviour of REML; ML (which is not shown) has a similar shape to
REML)

Regression Methods Autumn 2024 – slide 196

3.2 Simple Applications slide 197

Ridge regression

� Used for prediction when X is close to singular.

� If the first column of X is 1n, we set β∗ = 0 and V −
∗ = λS = λdiag(0, Ip−1), giving

β̂λ = (XT + λS)−1XTy, ŷλ = Xβ̂λ = X(XT + λS)−1XTy = Hλy,

and effective degrees of freedom

edfλ = tr(Hλ) = tr{(XTX + λS)−1XTX} =

p∑

r=1

1

1 + λδr
,

where δp ≥ · · · ≥ δ2 > δ1 = 0 are the eigenvalues of (XTX)−1/2S(XTX)−1/2.

� As λ increases from zero to infinity, edfλ decreases from p = rank(X) to 1. The two are
equivalent, but edfλ is more easily interpreted, because it is not related to the scale of X.

� The inverse exists even if XTX is singular, but if it is invertible then

β̂λ = (XTX + λS)−1(XTX + λS − λS)(XTX)−1XTy = β̂ − λ(XTX + λS)−1Sβ̂,

so as λ→ ∞ all the elements of β̂λ tend to zero, other than the first. This corresponds to
reducing the prior variance to zero, thereby giving the data themselves less and less influence on
the elements of β̂λ other than the first, and thus stabilises the estimator.
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Example: Cement data

> cement

x1 x2 x3 x4 y

1 7 26 6 60 78.5

2 1 29 15 52 74.3

3 11 56 8 20 104.3

4 11 31 8 47 87.6

5 7 52 6 33 95.9

6 11 55 9 22 109.2

7 3 71 17 6 102.7

8 1 31 22 44 72.5

9 2 54 18 22 93.1

10 21 47 4 26 115.9

11 1 40 23 34 83.8

12 11 66 9 12 113.3

13 10 68 8 12 109.4
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Example: Cement data

Full model Reduced model
Parameter Estimate Standard error Estimate Standard error

β0 62.41 70.07 71.64 14.14
β1 1.55 0.74 1.45 0.12
β2 0.51 0.72 0.42 0.19
β3 0.10 0.75
β4 –0.14 0.71 –0.24 0.17

� The next slide shows results for ridge fits for these models.

� Looks like 3 df is optimal for prediction.

� Software often preprocesses X and y by either

– centering both, by subtracting column means, or

– centering y and centering and scaling X, so the column means are zero and the column
variances are unity.

� The singular values for the centred X matrix are 78.8, 28.5, 12.2, 1.7, and those for the centred
and scaled X matrix are 5.18, 4.35, 1.50, 0.14, so it matters which is used.

� The singular values for the (centred) reduced matrix are 78.8, 19.8 and 9.15.

� The shrinkage due to increasing λ occurs more slowly for the reduced model.
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Example: Cement data/Ridge analysis

Top left: CV (black) and GCV (red) as functions of degrees of freedom dfλ. Top right: dependence of
dfλ on λ. Bottom left: β̂λ as a function of λ, with all four covariates. Bottom right: β̂λ as a function
of λ, with x1, x2, and x4 only.
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Comments

� The literature on ridge regression is very large and very dispersed, with many variants and many
connections to ML techniques.

� Be careful with software: any pre-processing of X is not always described.
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Semiparametric regression

� Normal linear model has two main aspects:

– systematic variation, E(y) = µ, and µ = Xβ with parameters β;

– stochastic variation, y ∼ Nn(µ, σ
2In).

� Can relax the stochastic assumption using other distributions or second-order assumptions, but
still have parametric model for the systematic part.

� Often want to relax systematic part for more flexible models, for

– exploratory data analysis — ‘will a linear model be adequate?’

– confirmatory data analysis — ‘I’ve fitted a linear model, is it adequate?’

– general modelling — ‘the data are too complex to expect a simple parametric model to work,
so what can I do?’

– semiparametric modelling — ‘I will use a parametric model for the effects of interest, but can
I model nuisance effects more flexibly?’

� Most basic tool is the scatterplot smoother.
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Example: Motorcycle data

Measurements of head acceleration (g) at time after impact (ms) in a simulated motorcycle accident,
used to test crash helmets:
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Scatterplot smoothing

� Have data (x1, y1), . . . , (xn, yn), with x− ≤ x1 < · · · < xn ≤ x+ (ahem) and we wish to estimate
E(y) = µ(x), for x ∈ X = [x−, x+].

� Suppose that µ ∈ M, a function space spanned by n linearly independent basis functions that can
be identified by evaluation at x1, . . . , xn, and let µj = µ(xj).

� Can choose a basis {b1(x), . . . , bn(x)} for M such that µ(x) =
∑n

j=1 µjbj(x) interpolates
(x1, µ1), . . . , (xn, µn).

� Suppose that M contains the linear functions on X and that the second derivatives of the bj(x)
are not all zero, so functions in M may also be nonlinear in x.

� To estimate µ we minimise a penalised sum of squares,

n∑

j=1

{yj − µ(xj)}2 + λ

∫

X
{µ′′(x)}2 dx, (22)

where the roughness penalty imposes smoothness: if λ→ 0, then µ(xj) → yj and µ̂
interpolates, but when λ→ ∞ even tiny wiggles in µ will give a huge penalty, making µ̂ linear.

� The penalty does not affect linear functions, so M = L⊕P, where L and P are the
two-dimensional vector space of linear functions on X and an (n− 2)-dimensional vector space of
nonlinear functions on X , and

⊕
denotes addition of vector spaces.
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Scatterplot smoothing II

� The roughness term is

∫

X
{µ′′(x)}2 dx =

∫

X





n∑

j=1

µjb
′′
j (x)





2

dx =

n∑

i,j=1

µiµj

∫

X
b′′i (x)b

′′
j (x) dx = µTSµ,

say, where µT = (µ1, . . . , µn).

� Sn×n has (i, j) element
∫
X b

′′
i (x)b

′′
j (x) dx and is symmetric and positive semi-definite of rank

n− 2, because linear functions are unpenalised, so S1n = S(x1, . . . , xn)
T = 0.

� The penalised sum of squares

(y − µ)T(y − µ) + λµTSµ ≡ −2µTy + µT(In + λS)µ,

is minimised by µ̂λ = (In + λS)−1y.

� As λ increases from zero, the fitted value µ̂λ shrinks from y towards the straight-line regression fit
to y, which is unpenalised.

� The equivalent degrees of freedom are edfλ = tr(Hλ) =
∑n

j=1(1 + λδj)
−1, where

δ1 ≥ · · · ≥ δ3 > δ2 = δ1 = 0 are the eigenvalues of S. As λ increases edfλ decreases
monotonically from edf0 = n towards edf∞ = 2.
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Scatterplot smoothing III

� In principle we might take any basis functions, but in practice we usually take local polynomials
known as splines that have good approximation properties.

� There are many forms of splines, which

– are often cubic polynomials with finite support between values of x known as knots,
x∗1, . . . , x

∗
K , and then S is tri-diagonal,

– sometimes form a natural cubic spline, which has K = n and certain optimality properties,

– are discussed in more detail later.

� If there is no penalisation (λ = 0) then we have a standard linear model, and spline basis
functions are called regression splines.

� Under second-order assumptions we choose λ by minimising CV(λ) or GCV(λ).

� Under normal-theory assumptions we can use REML to estimate σ2 and λ.

� Obvious generalisation allows weight matrix W = diag(w1, . . . , wn).

� If the x1, . . . , xn are not unique, write E(y) = Nn×n′µn′×1 in terms of the means µ at the n′

unique elements of x, and minimise

(y −Nµ)TW (y −Nµ) + λµTSµ.

where Sn′×n′ arises as before from the roughness penalty on µ(x).
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Linear, quadratic and cubic B-splines
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Example: Motorcycle data

Scatterplot smooths based on natural cubic splines with edf equal to 5 (red), 10 (blue), 20 (green),
and chosen by CV (cyan, edf = 12.8) and GCV (pink, edf = 12.26):
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Example: Motorcycle data

Scatterplot smooths based on natural cubic splines with weights 16 when x ≤ 12 and 1 for x > 12,
and edf chosen by CV (red, edf = 14.7) and GCV (blue, edf = 13.7):
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Choosing K and λ

� Above we took K = n basis functions, but for statistical purposes we seek a summary of the
data, so we hope that edf ≪ n, so we hope that K < n, maybe even K ≪ n.

� Theory suggests that as n→ ∞ we need K = O(n1/5) or even O(n1/9) to get near-optimal
estimation of µ(x), when µ lies in reasonable function classes;

� In practice we take K (more than) large enough to give enough flexibility (increasing it if results
are suspect, K = 9 by default in mgcv), and allow λ to determine the smoothness of the curve;

� Typically the knots x∗k are placed at equally-spaced quantiles of x.
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Example: Motorcycle data
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� Left: linear spline fits with λ = 0 and K = 10 (black), 20 (red), 40 (blue), and optimal GCV
choice of λ with K = 40 (green)

� Right: GCV(λ) as a function of dfλ for K = 40.
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Comments

� We discuss inference (beyond ‘point’ estimation) and adaptive estimation of weights later . . .

� Here we are producing point estimates; later we discuss the construction of confidence sets.

� An alternative local averaging approach uses locally weighted fits, such as the Nadaraya–Watson
estimator

µ̂(x) =

∑n
j=1K{(x− xj)/h}yj∑n
j=1K{(x− xj)/h}

,

where

– the kernel function K is something like the Gaussian density, and

– the bandwidth h plays a role similar to edf.

This is also a linear smoother, and in fact the spline smoothers have representations in terms of
equivalent kernels.

� Local averaging can be extended to local likelihood fitting of more complex models.
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3.3 Lasso slide 214

Lq penalties

� The quadratic penalty ‖β‖2 generalises to other Lq penalties

‖β‖q =
p∑

r=1

|βr|q,

shown below for p = 2 and (working inwards) q = 100, 10, 3, 2, 1.5, 1, 0.5, 0.2;
‖β‖0 = #{βr 6= 0} counts the number of non-zero parameters.
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(Some picture credits here and later: Simon Wood)
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Basic geometry

� If D(β) is a sum of squares or negative log likelihood, then

β̃λ = argminβ {D(β) + λ‖β‖q} ,

– satisfies ‖β̃λ‖q = t for some t, and

– minimises D(β) on that contour, i.e.,

β̃λ = argminβD(β) such that ‖β̃λ‖q = t,

because otherwise we could reduce D(β) while leaving the penalty unchanged, i.e., β̃λ would
not be optimal.

� The sets ‖β̃λ‖q = t

– have cusps (and thus can set βr = 0) when q ≤ 1,

– are non-convex (and thus may give non-unique solutions) when q < 1,

so there is a unique solution if the contours of D(β) and ‖β‖q are convex, and both a unique
solution and the possibility of choosing variables (sparsity) by setting βr = 0 when q = 1.
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Basic geometry II

Penalised solutions (red dots) for q = 2, 1, 0.45, with contours of D(β) in grey and solution contour
for ‖β‖q in red.
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As λ→ ∞ the constraint tightens and the red contours shrink around the origin, and as λ→ 0 the
constraint relaxes and the β̃λ tends to the unconstrained estimate.
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Lasso

� The lasso (least absolute shrinkage and selection operator) objective function can be written
as

L = 1
2‖y −Xβ‖2 + λ‖β‖1,

so suppose we have minimised this for some λ0, giving active set A = {r : β̃r 6= 0} and

L = 1
2(y −XAβ̃A)

T(y −XAβ̃A) + λ
∑

r∈A

|β̃r|,

and now we aim to decrease λ (i.e., to relax the constraint).

� Now d|x|/dx = sign(x), so when

dL

dβ̃A
= XT

A(XAβ̃A − y) + λ sign(β̃A) = 0,

we have
β̃A = (XT

AXA)
−1XT

Ay − λ(XT

AXA)
−1sign(β̃A) = b− λa,

say, i.e., β̃A is linear in λ until A changes.

� A changes on deleting a column Xr from XA or on adding one from its complement XAc .

� sign(β̃A) only changes when (say) β̃r passes through zero, but r leaves A when β̃r = 0.
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Lasso algorithm

� A variable in A is deleted if a component of β̃A = b− λa hits zero as λ decreases from λ0, which
occurs at λ− = maxλ<λ0 br/ar.

� If Xr is the rth column of X, then r will enter A if adding Xrβr decreases L, i.e., if

dL

dβr
= XT

r (Xβ − y) + λsign(βr)

{
< 0, βr > 0,

> 0, βr < 0,

so βr remains inactive if |XT

r (y −Xβ)| ≤ λ.

� Thus as λ decreases, A changes when for some r in the complement Ac of A we have

XT

r (y −XAβ̃A) = ±λ,

or, setting β̃A = b− λa,

XT

Ac(y −XAb) + λ(XT

AcXAa± 1) = 0 =⇒ c+ λ(d± 1) = 0,

say: the next variable is added when λ = λ+ = maxλ<λ0{−cr/(dr ± 1)}.
� Hence if s = sign(β), the algorithm decreases λ from

– the highest λ at which the a first variable is active, and defines the A and s, then

– finds the next λ at which A changes, stores it and the corresponding β̃, updating A and s.
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Practical matters and thresholding

� Usually

– λ is chosen by dividing the data into training and testing subsets and minimising some
measure of prediction error for the test subset,

– y is centered and X has no column of ones, and

– the columns of X are standardized to have zero mean and unit variance — what this means in
terms of interpreting the components of β is then unclear!

� We can think of penalised estimators as using different sorts of thresholding functions, where β̂
is replaced by β̃ = gλ(β̂) and (conceptually)

– for the lasso there is soft thresholding,

gλ(u) =

{
0, |u| < λ,

sign(u)(|u| − λ), otherwise,

– for variable selection there is hard thresholding,

gλ(u) =

{
0, |u| < λ,

u, otherwise,

– for ridge regression there is shrinkage, g(u) = u/(1 + λ).
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Threshold functions
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Soft thresholding

Top panels: the sum g(β) of the L1 penalty and the least squares function (both in grey) is the black
line, which has a cusp at β = 0. If the left- and right-hand derivatives of the sum are equal at zero,
then the minimiser (at the red vertical line) is non-zero, but not otherwise. Bottom panels: the
derivative g′(β) = 0 when β = β̃.
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Example: cement data

� Estimated coefficients for lasso fit against L1 norm and λ:
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Comments

� Least angle regression (LAR) is similar to the lasso, and can compute the lasso solution path
for all λ in O(n3) operations (faster than ridge, O(np2), when p≫ n).

� Theory: one can ask about the properties of β̃λ in suitable settings (e.g., n, p→ ∞ with
p/n→ c > 0). Then under certain conditions one can show that lasso variable is consistent (i.e.,
the probability that the variables with βr 6= 0 are selected tends to 1), but that the β̃λ themselves
are inconsistent (because soft thresholding implies that |β̃λ,r| is systematically smaller than |βr|).

� Many (many!) variants and related procedures exist to overcome such problems.

� Computation: lasso and elastic net penalisations available in R package glmnet and extend to
generalized linear models and more general regressions (later).

� For any regression model we can define the degrees of freedom as

σ−2
n∑

j=1

cov(yj , ŷj) = tr{cov(y, ŷ)}/σ2;

this reduces to previous definitions but can be computed in more situations.

� When D(β) is a general loss function (e.g., a negative log likelihood for a GLM), the exact
algorithm above is replaced by a coordinate descent algorithm that updates each β̃r in turn,
with the other components fixed. This too is very efficient.
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3.4 Splines slide 225

Basis functions

� We seek to estimate a function µ(x) based on data (x1, y1), . . . , (xn, yn).

� There are n parameters µ1 = µ(x1), . . . , µn = µ(xn) (plus noise, . . . ), so we assume that µ(x)
belongs to a suitable class of functions, defined for x ∈ X .

� Simple linear model is
µn×1 = Bn×pβp×1, rank(B) = p ≤ n,

with the columns of B evaluations at x1, . . . , xn of basis functions.

� The basis functions may be

– global (e.g., polynomials, trigonometric/Fourier functions),

– local (e.g., splines),

– multiscale (e.g., wavelets).

� We choose the basis for

– suitability for the problem at hand (e.g., suitably smooth), and

– computational reasons—want fast, preferably O(n), handling of n× n matrices.

� Focus on spline functions, on which there is a huge literature.
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Aside: Polynomial regression

� Classical approach is to fit a polynomial of degree p− 1, i.e.,

µ(xj) = β0 + β1xj + · · ·+ βp−1x
p−1
j ,

and choose β0, . . . , βp−1 to minimise the sum of squares

n∑

j=1

{yj − µ(xj)}2 =
n∑

j=1

{
yj − (β0 + β1xj + · · ·+ βp−1x

p−1
j )

}2
,

giving β̂p×1 = (BTB)−1BTy, where (j, i) element of n× p matrix B is xi−1
j .

� Comments:

– easily copes with missing values/unequally spaced observations;

– use orthogonal polynomials to avoid numerical problems if n, k large;

– sensitivity to observations at extremities of series often leads to poor fit;

– usually doesn’t work well because infinite differentiability everywhere is generally unnecessarily
restrictive.
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Piecewise linear basis

� Place knots of a univariate x at x∗1 < · · · < x∗K , and define tent functions

b1(x) =

{
(x∗2 − x)/(x∗2 − x∗1), x∗1 ≤ x ≤ x∗2,

0, otherwise,

bk(x) =

{
(x− x∗k−1)/(x

∗
k − x∗k−1), x∗k−1 < x ≤ x∗k,

(x∗k+1 − x)/(x∗k+1 − x∗k), x∗k < x ≤ x∗k+1,
k = 2, . . . ,K − 1,

bK(x) =

{
(x− x∗K−1)/(x

∗
K − x∗K−1), x∗K−1 ≤ x ≤ x∗K ,

0, otherwise :

these are non-zero only in (x∗k−1, x
∗
k+1) (compact support) and take value 1 at x∗k.

� An exact linear interpolant of data y1, . . . , yK at the knots is the function

µ(x) =

K∑

k=1

bk(x)yk = B(x)Ty,

which by construction

– passes through the points (x∗k, yk) and

– is linear between the knots.
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Piecewise linear basis II
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� Left: piecewise linear basis functions bk(x) and data (x∗k, yk).

� Right: functions bk(x)yk and linear interpolant (bold).

Regression Methods Autumn 2024 – slide 229

123



Statistical use

� Aim for summary of the n observations, so interpolation not useful.

� Could use K < n knots, but fit tends to depend heavily on their locations, so better to use
high(ish) K and impose structure by penalising roughness of µ(x):

β̂λ = argminβ

{
‖y −Bβ‖2 + λ

K−1∑

k=2

{
µ(x∗k−1)− 2µ(x∗k) + µ(x∗k+1)

}2
}
.

� The second term sums squared numerical second derivatives at the internal knots, and λ imposes
the degree of penalisation:

– λ = 0 (no penalty) gives the interpolant,

– λ→ ∞ forces the second derivatives to be zero, so gives a straight-line fit.

� On setting βk = µ(x∗k) and writing




β1 − 2β2 + β3
β2 − 2β3 + β4
β3 − 2β4 + β5

...


 =




1 −2 1 0 0 0 · · ·
0 1 −2 1 0 0 · · ·
0 0 1 −2 1 0 · · ·
...

...
...

...
...

...
. . .







β1
β2
β3
...


 = D(K−2)×KβK×1,

the penalty is
∑K−1

k=2 (βk−1 − 2βk + βk+1)
2 = (Dβ)TDβ = βTDTDβ = βTSβ, say.
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Penalized fit

� The penalty matrix S is of side K ×K but of rank K − 2, because

S1K = Sx∗K×1 = 0K :

the null space of S consists of all straight lines β01K + β1x
∗, which are unpenalised.

� Hence (recalling ridge regression),

β̂λ = argminβ
{
‖y −Bβ‖2 + λβTSβ

}
= (BTB + λS)−1BTy

giving

fitted values ŷ = Bβ̂λ = B(BTB + λS)−1BTy = Hλy,

equivalent degrees of freedom dfλ = tr(Hλ) =

K∑

k=1

1

1 + ηkλ
,

where

– η1 ≤ · · · ≤ ηK ∈ [0, 1] are the eigenvalues of (BTB)−1/2S(BTB)−1/2,

– η1 = η2 = 0, corresponding to the null space of S, so

– dfλ is monotone decreasing in λ, with

(λ = 0) K ≥ dfλ ≥ 2 (λ→ ∞).
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Higher-order splines

� The pth degree spline basis with knots x∗1 < · · · < x∗K is

1, x, . . . , xp, (x− x∗1)
p
+, . . . , (x− x∗K)p+,

where u+ = max(u, 0) is the positive part function.

� The resulting basis matrix B is highly collinear and gives an implausible statistical model.

� B-spline bases span the same linear space, but have better numerical properties. They are
defined by adding boundary knots x∗0 and x∗K+1 and setting up an augmented knot sequence

τ1 ≤ · · · ≤ τM ≤ x∗0 ≤ τM+1 = x∗1 ≤ · · · ≤ τM+K = x∗K ≤ x∗K+1 ≤ τK+1+M ≤ · · · ≤ τK+2M ;

typically the τk outside [x∗0, x
∗
K+1] are set to the boundary knot values. Then

Bk,1(x) = I(τk ≤ x < τk+1), k = 1, . . . ,K + 2M − 1,

Bk,m(x) =
x− τk

τk+m−1 − τk
Bk,m−1(x) +

τk+m − x

τk+m − τk+1
Bk+1,m−1(x), k = 1, . . . ,K + 2M −m,

where we set Bk,1 ≡ 0 if τk = τk+1 (avoiding division by zero).

� Cubic splines (p = 3, M = 4) give visually smooth functions.

� K = 10 on the next slide, with M = 2 (linear), M = 3 (quadratic) and M = 4 (cubic), and the
τk set to equal the boundary knots.
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Linear, quadratic and cubic B-splines
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Natural cubic spline

� Suppose the xj are distinct (no loss of generality) and

a < x1 < · · · < xn < b, X = [a, b] ⊂ R.

� A natural cubic spline adds the constraint that the function is linear outside [x1, xn], and thus
avoids high variance due to quadratic and higher terms outside this interval.

� A natural cubic spline

– has K = n knots, at x1 < · · · < xn,

– is a cubic polynomial on each interval between knots,

– is continuous, with continuous first and second derivatives at each knot, and

– is linear on [a, x1] and [xn, b], with zero second and third derivatives at x1 and xn,

– has
2 + 4(n− 1) + 2 parameters − 3n linear constraints = n

degrees of freedom (df), which can be split into

⊲ 2 df for a linear fit, plus

⊲ n− 2 df for the second derivatives µ′′(x2), . . . , µ
′′(xn−1).
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Natural cubic spline
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� A natural cubic spline may be constructed by integrating a linear second derivative function µ′′(x)
which is determined by µ′′(x2), . . . , µ

′′(xK−1) and because µ′′(x) ≡ 0 for x 6∈ (x1, xK).

� On integrating twice we gain two constants: µ(x) = β0 + β1x+
∫ x
0

∫ x′
0 µ′′(u) dudx′.

� Above x1 = 1, . . . , x10 = 10, so the spline is determined by µ′′(2), . . . , µ′′(9) and the line.
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Optimality of natural cubic splines

� Let S2(X ) denote the set of functions µ differentiable on X = [a, b] with absolutely continuous
first derivative µ′: i.e., there exists an integrable function µ′′ such that∫ x
a µ

′′(u)du = µ′(x)− µ′(a) for x ∈ X .

� Clearly any µ with two continuous derivatives on X lies in S2(X ).

Theorem 32 Suppose n ≥ 2, that a < x1 < · · · < xn < b, and that µ is the natural cubic spline
interpolating y1, . . . , yn at x1, . . . , xn. If µ̃ ∈ S2(X ) also interpolates the yj, then

∫

X
µ̃′′2 ≥

∫

X
µ′′2,

with equality iff µ̃ ≡ µ.

� Thus µ minimises the roughness penalty λ
∫
X µ

′′2 in a larger class of functions than that to
which it belongs, making it a natural choice as an interpolant, because minimising

n∑

j=1

{yj − µ̃(xj)}2 + λ

∫

X
µ̃′′(x)2 dx

for µ̃ ∈ S2(X ) will automatically result in a natural cubic spline µ: if µ̃(xj) = µ(xj), then the
penalty is reduced by using µ.
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Note to Theorem 32

Let ν = µ̃− µ ∈ S2(X ), and note that ν(xj) = 0 for each j, since µ(xj) = µ̃(xj) = yj. The natural
boundary conditions imply that µ′′(a) = µ′′(b) = 0, so integration by parts yields

0 =
[
µ′′(x)ν ′(x)

]b
a
=

∫

X
(µ′′ν ′)′ =

∫

X
µ′′ν ′′ +

∫

X
µ′′′ν ′,

and hence the facts that µ′′′ is piecewise constant and that ν(xj) = 0 yields

∫

X
µ′′ν ′′ = −

∫

X
µ′′′ν ′ = −

n−1∑

j=1

µ′′′(x+j )

∫ xj+1

xj

ν ′ = −
n−1∑

j=1

µ′′′(x+j ){ν(xj+1)− ν(xj)} = 0.

Hence
∫

X
µ̃′′2 =

∫

X
(µ′′ + ν ′′)2 =

∫

X
µ′′2 + 2

∫

X
µ′′ν ′′ +

∫

X
ν ′′2 =

∫

X
µ′′2 +

∫

X
ν ′′2 ≥

∫

X
µ′′2,

wth equality iff ν ′′(x) ≡ 0. This occurs iff ν(x) is linear, but since ν(xj) = 0 at at least two points,
ν(x) = 0 for all x ∈ X .
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More splines

� Sometimes cyclic effects (e.g., seasonality, diurnal variation) must be modelled smoothly, so (e.g.)
December joins smoothly onto January. Then the penalty and spline basis must be modified
accordingly, to give a cyclic (cubic) spline.

� P-splines are a version of B-splines (usually with equally-spaced knots) in which a difference
penalty is applied to the parameters to control the wiggliness of µ, e.g.,

K−1∑

k=1

wk(βk+1 − βk)
2 = βTDTWDβ, with D =



−1 1 0 0 · · ·
0 −1 1 0 · · ·
· · · · · · ·


 ,

and W = diag(w1, . . . , wK−1). These are easy to set up and flexible, but messy if the knots are
not equi-spaced, and the penalty is less readily interpreted.

� For an adaptive spline we can let wk ≡ wk(x) vary with x, for example setting
w(x) = B(x)λL×1 and thus having DTWD =

∑
l λlD

Tdiag{Bl(x)}D, where Bl(x) is the lth
column of B(x), then estimating the vector λ.

� Other possibilities include (Wood, 2017, Chapter 5)

– shape-constrained splines to impose, e.g., monotonicity on the fit;

– thin-plate, Duchon and tensor product splines used in spatial problems; and

– soap film splines used when smoothing over complex domains.
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Motorcycle data: adaptive fit

Standard (left) and adaptive (right) spline fits, the latter with K = 40 and L = 5:

10 20 30 40 50

−
1

0
0

−
5

0
0

5
0

Time after impact (ms)

H
e

a
d

 a
c
c
e

le
ra

ti
o

n
 (

g
)

10 20 30 40 50

−
1

0
0

−
5

0
0

5
0

Time after impact (ms)

H
e

a
d

 a
c
c
e

le
ra

ti
o

n
 (

g
)

Regression Methods Autumn 2024 – slide 238

128



3.5 General Framework slide 239

Generalisations

� We’ve discussed estimation of a single function µ(x), but in applications we may have

– covariates to be treated parametrically,

– several smooth functions,

– non-normal response variable,

– random effects (later).

� To include ordinary covariates and allow for weights, we write

y | b ∼ (Bθ, σ2W ), Bθ = Xβ + Zb,

where B = (X,Z) is n× d, θ = (βT, bT)T is d× 1, d = p+ q and

– the n× p matrix X represents the ordinary covariates, plus any unpenalised columns for
smooth components,

– the p× 1 parameter vector β is unpenalized,

– the n× q matrix Z represents the bases for any smooth functions,

– the q × 1 vector b is penalized,

– the n× n diagonal matrix W = diag(w1, . . . , wn) contains positive weights,

and everything ‘goes through as before’.
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Additivity and identifiability

� Consider the additive model
E(y) = µ1(x) + µ2(z),

where µ1, µ2 belong to suitable classes of smooth functions; if

x ≡ time, z ≡ space,

then µ1 is defined on X1 ⊂ R and µ2 is defined on X2 ⊂ R
2.

� There is an identifiability problem, since we could map

µ1(x) 7→ µ1(x) + a, µ2(z) 7→ µ2(z)− a, a ∈ R,

and the fitted values would not change, so we must constrain µ1 and µ2.

� As before, we use bases for µ1 and µ2, writing

E(y) = Zb =
(
Z1(x) Z2(z)

)(b1
b2

)
,

where we penalise the q1 elements of b1 and the q2 elements of b2.
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Ensuring identifiability

� The identifiability problem is solved by centering the fitted smooth, i.e., enforcing

1T

nZn×qbq×1 = 0

for each smooth term.

� In general we can use a QR decomposition. If Ca×qbq×1 = 0a×1, with a < q, write

CT

q×a = Qq×qRq×a =
(
Q1 Q2

)(R1

0

)
,

where Q is orthogonal,

– Q1 has dimension q × a,

– Q2 has dimension q × (q − a), and

– R1 has dimension a× a and is upper triangular.

Then if we set bq×1 = Q2b
′
(q−a)×1, we have

Cb = RTQTb =
(
RT

1 0
)(QT

1

QT

2

)
Q2b

′ =
(
RT

1 0
)( 0

Iq−m

)
b′ = 0.

� Thus the constraint is satisfied if we replace Zn×q by (ZQ2)n×(q−1); this reduces b to dimension
(q − 1)× 1.
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Penalty formulation

� Minimise

(y −Bθ)TW (y −Bθ) + θTSλθ = (y −Xβ − Zb)TW (y −Xβ − Zb) + θTSλθ

where Sλ is a sum of symmetric positive semi-definite d× d matrices Sm, such that

θTSλθ = θT

(
M∑

m=1

λmSm

)
θ =

M∑

m=1

λmb
T

mS
∗
mbm, λm ≥ 0,

where S∗
m is the non-zero diagonal block of Sm and b has sub-vectors b1, . . . , bM .

� With M = 2, β, b1 and b2 are vectors of respective lengths p, q1 and q2, and S
∗
1 and S∗

2 are
square matrices of sides q1 and q2, so

θ =



β
b1
b2


 , Sλ = λ1S1 + λ2S2 = λ1



0 0 0
0 S∗

1 0
0 0 0


+ λ2



0 0 0
0 0 0
0 0 S∗

2


 ,

with S1 and S2 partitioned conformably with θ.

� Let S∗
λ denote the q × q corner of Sλ corresponding to b; here S∗

λ = diag(λ1S
∗
1 , λ2S

∗
2).

� Note that |Sλ|+ = |S∗
λ|+.
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Estimation

� For fixed λ, the minimiser and fitted values for

(y −Bθ)TW (y −Bθ) + θTSλθ

are
θ̂λ = (BTWB + Sλ)

−1BTWy, ŷλ = Bθ̂λ = B(BTWB + Sλ)
−1BTWy = Hλy.

� If the unpenalized least squares estimator θ̂ = (BTWB)−1BTWy exists, then

θ̂λ = (BTWB + Sλ)
−1BTWBθ̂ = θ̂ − (BTWB + Sλ)

−1Sλθ̂ = Pλθ̂,

and if ŷ is the unpenalised fitted value, then

ŷλ = ŷ −B(BTWB + Sλ)
−1Sλθ̂.

� Now we must decide

– how many degrees of freedom for each smooth?

– how to select the smoothing parameters?
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Amount of smoothing

� We write
θ̂λ = Pλθ̂,

say, where Pλ shows how penalisation shrinks θ̂ towards θ̂∞ = (β̂T, 0T)T.

� If λ ≈ 0, then Pλ ≈ Ip+q and the degrees of freedom of the two fits are both ≈ p+ q, but as
λ→ ∞, Pλ tends to the projection matrix onto the column space of Xn×p.

� On slide 193 with just one smooth term we defined

edfλ = tr(Hλ) = tr(Pλ) =

p+q∑

r=1

Pλ,rr ∈ (p, p + q),

which gives the usual definition for a linear model.

� If θT = (βT, bT1 , . . . , b
T

M ), we define the effective degrees of freedom edfλm associated to the
mth smooth as being the sum of those Pλ,rr that correspond to the elements of bm in θ.

� To choose the vector λ we use either

– CV(λ) or GCV(λ) (second-order assumptions),

– REML (normal-theory assumptions).

� Must optimise over (log) λ, e.g., by grid search (CV/GCV) or other methods (REML).
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Inference

� So far we have discussed only ‘point estimation’ of a smooth function µ(x), but in applications
we also want

– pointwise confidence intervals for smooth functions,

– overall confidence bands for (say) {µ(x) : x ∈ S}, where S is some subset of X , and

– tests of hypotheses such as ‘is the spline part needed?’ and ‘is the curve monotonic?’

� Under the normal model we have the Bayesian interpretation from slide 191,

θ | y, σ2, λ ∼ Nd

(
θ̂λ, Vλ

)
, Vλ = σ2(BTWB + Sλ)

−1,

from which we can simulate to find bounds for any function A(θ).

� If A(θ) = Am×dθ, then
Aθ | y, σ2, λ ∼ Nm(Aθ̂λ, AVλA

T),

and generalisation of (10) gives that its mean square error is

MSE = E
(
‖Aθ̂λ −Aθ‖2

)
= tr(AVλA

T),

which takes into account both estimation error and prior uncertainty about θ.

Regression Methods Autumn 2024 – slide 246

Average coverage probabilities

� Bayesian credible intervals have good frequentist properties, averaged over the domain of x.

� Let the random index variable J choose the m rows aT

j of A with equal probabilities, and aim to
choose constants d and cj such that the average coverage probability

ACP = P
{
|aT

J θ̂λ − aT

Jθ| ≤ dcJ

}
= 1− α;

i.e., ACP has a desired value averaged over y, θ and J .

� The random variable

aT

J(θ̂λ − θ)/cJ = aT

J{θ̂λ − E(θ̂λ)}/cJ + aT

J{E(θ̂λ)− θ}/cJ = S + T,

say, has a mixture of normal distributions, where

– S is approximately normal and E(S) = 0,

– T is random (because of J) with E(T ) ≈ 0, but var(T ) ≪ var(S).

� We now choose C = diag(c1, . . . , cm) = diag(AVλA
T)1/2, so that

var(S + T ) ≈ m−1E
{
‖C−1A(θ̂λ − θ)‖2

}
= m−1tr

(
C−1AVλA

TC−1
)
= 1,

and then setting d = z1−α/2 gives the required value for ACP.

� This ignores estimation error for σ2 and λ.
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Example: Average coverage probability

(Wood, 2017)
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Example: Motorcycle data

Standard (left) and adaptive (right) spline fits, the latter with K = 40 and L = 5, and 95% pointwise
confidence intervals:
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Example: Spring barley data

Plot yield at harvest for 75 varieties of spring barley sown in 3 blocks each of 75 plots:

Location x Block 1 Block 2 Block 3
Variety Yield y Variety Yield y Variety Yield y

1 57 9.29 49 7.99 63 11.77
2 39 8.16 18 9.56 38 12.05
3 3 8.97 8 9.02 14 12.25
4 48 8.33 69 8.91 71 10.96
5 75 8.66 29 9.17 22 9.94
6 21 9.05 59 9.49 46 9.27
7 66 9.01 19 9.73 6 11.05
8 12 9.40 39 9.38 30 11.40
9 30 10.16 67 8.80 16 10.78
10 32 10.30 57 9.72 24 10.30
11 59 10.73 37 10.24 40 11.27
12 50 9.69 26 10.85 64 11.13
13 5 11.49 16 9.67 8 10.55
14 23 10.73 6 10.17 56 12.82
15 14 10.71 47 11.46 32 10.95
16 68 10.21 36 10.05 48 10.92
17 41 10.52 64 11.47 54 10.77
18 1 11.09 63 10.63 37 11.08
...

...
...

...
...

...
...
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Example: Spring barley data

0 20 40 60

8
10

12
14

16
18

20
22

Location x

Y
ie

ld
 y

Yield as a function of location for the three blocks, with yields for blocks 2 and 3 offset by the
addition of 4 and of 7 respectively. Value 37 in block 3 is missing.
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Spring barley data and polynomial fits
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Yield as a function of location for the three blocks, with yields for blocks 2 and 3 offset by the
addition of 4 and of 7 respectively, with fitted polynomials of degrees 20, 10 and 50.
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Example: Spring barley data

� We fit a model with parametric variety effects and smooth effects for the fertility patterns in the
blocks,

yn×1 ∼ (Xn×75β75×1 + Z1b1 + Z2b2 + Z3b3, σ
2In),

where

– n = 224, as one of the responses is missing,

– X is a matrix of indicators (0/1) of which variety is in which plot in each block,

– β are the variety effects, with the model parametrized without an overall mean,

– Zm of dimension n× (pm + qm) corresponds to the basis functions for the smooth in block m,
and

– bm are of dimensions (pm + qm)× 1, for m = 1, 2, 3, corresponding to the smooth effects, and

– pm + qm = 9 by default (after centering) when using gam in R package mgcv.

� Taking pm = 2 would correspond to null smooth β0 + β1x for each block (i.e., linear fertility
pattern), but the identifiability constraints impose β0 = 0. Hence in fact pm = 1 for a linear
baseline smooth and the degrees of freedom for the smooth terms lie in [1, 9] (see slide 255).
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Example: Spring barley data

library(SMPracticals)

data(barley)

library(mgcv)

# ML fit of variety as fixed effect, with GCV estimation of lambdas,

# with splines for fertility gradients within each block

fit.gcv <- gam(y~Variety-1+s(Location,by=Block),data=barley)

# fit of variety as fixed effect, with REML estimation of lambdas,

# with splines for fertility gradients within each block

fit <- gam(y~Variety-1+s(Location,by=Block),method="REML",data=barley)

# REML fit with variety as a random effect and splines for fertilities

fit.re <- gam(y~s(Variety,bs="re")+s(Location,by=Block),method="REML",

data=barley)
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Example: Spring barley data

� Using GCV the smooths have dfλ = 8.3, 6.8, 6.3, with σ̂ = 0.65 and AIC = 513.1, the residual
degrees of freedom is 224 − 75− 8.3− 6.8− 6.3 ≈ 130.6, with SEs around 0.4 for the estimated
variety effects (0.54 for variety 27).

� Using REML the smooths have dfλ = 7.2, 3, 6.1, with σ̂ = 0.66 and AIC = 518.3, the residual
degrees of freedom is 132.7, with SEs around 0.4 for the estimated variety effects (0.53 for variety
27).

� The estimated smoothing parameters are λ̂1 = 0.0029, λ̂2 = 0.18 and λ̂3 = 0.0078.

� The effective degrees of freedom for the smooth terms, with the totals:

Block Pλ,rr Total

1 1.00 1.07 0.90 0.7 0.65 0.17 0.38 1.31 1 7.18
2 0.61 0.21 0.12 −0.2 0.03 −0.26 0.01 1.49 1 3.00
3 0.99 1.04 0.76 0.4 0.41 −0.18 0.18 1.47 1 6.07

� The Pλ,rr need not be positive, though their total for each smooth is positive.

� In applications it would be wise to check whether increasing qm would lead to very different fits.
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Example: Spring barley data
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Left: data (offset by adding 4 and 8 to blocks 2 and 3).
Right: estimated fertility patterns (with estimated df 7.2, 3, 6.1) and 95% unconditional pointwise
confidence intervals, fitted using REML. The intervals are wider for blocks 1 and 3.
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Example: Spring barley data
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Left: data (offset by adding 4 and 8 to blocks 2 and 3).
Center: Estimated variety effects (also offset)
Right: residuals (also offset, and showing serial autocorrelation?)
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Example: Spring barley data

0 20 40 60

8
10

12
14

16
18

20
22

Location x

Y
ie

ld
 y

0 20 40 60

8
10

12
14

16
18

20
22

Location x

Y
ie

ld
 y

0 20 40 60

8
10

12
14

16
18

20
22

Location x

Y
ie

ld
 y

Left: data (offset by adding 4 and 8 to blocks 2 and 3).
Center: estimated fertility patterns (REML), also offset.
Right: residuals.
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Example: Spring barley data

� Should the varieties be treated as randomly selected from a population of varieties?

� If so, we use the same basis matrix X as in the previous model, but add a penalty matrix λβSβ
and minimise the penalised sum of squares

(y −Bθ)T(y −Bθ) + θTSλθ,

where
Sλ = λβSβ + λ1S1 + λ2S2 + λ3S3,

where Sβ = diag(I75, 0).

� The effective degrees of freedom are then 44.8 for β and 7.5, 3.9 and 6.4 for the splines.

� The optimal smoothing parameters are λ̂β = 1.76, λ̂1 = 0.0027, λ̂2 = 0.073 and λ̂3 = 0.0070.

� The fixed-effects model has 75 degrees of freedom for β, so this is substantial shrinkage; the
estimated standard deviation drops from 0.65 to 0.39.

� The estimates under the random-effects model have standard errors around 0.31 (0.36 for variety
27), compared to 0.41 (0.54 for variety 27) for the fixed-effects model.

� The next slide compares the estimates.
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Example: Spring barley data

Comparison of estimated variety effects under fixed-effects and random-effects models:
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Comments

� Penalised estimation extends the basic smoothers to include

– parametric terms in models,

– several smooth terms,

– spatial and more complex smoothing,

– ‘random effect’ parameters,

and extends to generalized additive models in a natural way.

� The baseline variance σ2 and smoothing parameter(s) λ are estimated using cross-validation
under second-order assumptions or REML under normality.

� The empirical Bayes formulation allows inference on parameters and smooth functions in a unified
way — usually ignoring the uncertainty for σ2 and λ is not too critical.

� In practice n and d may be very big, so direct matrix inversion is computationally painful, and
then indirect methods (e.g., based on the Woodbury formula) are needed to compute θ̂λ and Vλ.

Regression Methods Autumn 2024 – slide 261

139



3.6 Components of Variance slide 262

Background and motivation

� All the models so far have involved just one level of randomness, corresponding to ‘measurement
error’ on individual responses.

� Complex layering of randomness can arise in applications, and then conclusions may depend on
how it is dealt with.

� Two conceptually different set-ups (which may give the same models):

– observational/experimental setup generates several layers of randomness;

– we find it useful to treat the parameters of some model as drawn from a distribution.

The first concerns logical properties of the data, whereas the second is a modelling assumption.
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Example: Blood pressure

� Blood pressure data: P = 25 patients each made V = 16 visits to a clinic, and on each occasion
their systolic and diastolic blood pressures were measured twice.

� Consider just the diastolic pressure. We expect there to be variation

– between patients,

– between visits within patients, and

– between measurements within visits,

which we could model as

ypvm = µ+ bp + epv + εpvm, p = 1, . . . , P, v = 1, . . . , V,m = 1, . . . ,M,

where

– µ is the population mean diastolic blood pressure (DBP),

– bp is the difference between the patient and population mean DBP,

– epv is the difference between this and the mean DBP on the vth visit, and

– εpvm is the difference between the mean DBP for the pth patient at the vth visit and the mth
measurement on that visit,

and
bp

iid∼ N (0, σ2b ) ⊥⊥ epv
iid∼ N (0, σ2e) ⊥⊥ εpvm

iid∼ N (0, σ2).
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Example: Blood pressure

patno patient visno dbp1 dbp2 sbp1 sbp2

1307 1 7 95 85 150 130

1307 1 8 85 85 140 140

1307 1 9 90 90 150 150

1307 1 10 80 80 135 135

1307 1 11 80 80 130 125

1307 1 12 85 85 150 155

.

.

1307 1 19 80 80 130 130

1307 1 20 80 80 140 140

1307 1 21 90 85 145 140

1307 1 22 75 75 130 130

1418 2 7 104 106 160 148

1418 2 8 98 104 158 162

.

.

9202 25 21 91 90 142 139

9202 25 22 80 78 162 160
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Fixed and random effects

Chimpanzee Word
1 2 3 4 5 6 7 8 9 10

1 178 60 177 36 225 345 40 2 287 14
2 78 14 80 15 10 115 10 12 129 80
3 99 18 20 25 15 54 25 10 476 55
4 297 20 195 18 24 420 40 15 372 190

� Times (min) for four chimpanzees to learn each of ten words.

� A possible model for log time is

ycw | αc, βw ind∼ N (µ+ αc + βw, σ
2), c = 1, . . . , C = 4, w = 1, . . . ,W = 10.

� The αc and/or the βw would be considered as constant fixed effects if we were interested in the
relative linguistic abilities of these particular chimps and/or if we planned further tests with these
particular words.

� Either (or both) of the αc and βw might be considered to be random effects if they were
thought to be sampled from a larger population whose variation is of interest.
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Two distinctions

� We distinguish fixed and random effects (above).

� We distinguish nested and crossed effects:

– in the blood pressure data, replicate measurements at each visit are nested within visit,
because there is no logical connection between yp,v1,1 and yp,v2,1 (we could permute the final
index m within each patient/visit combination without changing the data structure). Likewise
if we ignore any possible time effects between visits, we could consider that visits are nested
within patients;

– in the chimp data, the effects are crossed, because permuting chimps or words would entail
permuting entire rows or columns of the data table: there is a logical connection between yc1w
and yc2w, and between ycw1

and ycw2
;

� In R syntax, with patient and visit number declared as factors, for nested effects we write

y ~ patient/visno

read as ‘separate effects for visit number within the levels of patient’ and for crossed effects with
chimp and word declared as factors we write

y ~ chimp + word
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Nested model ANOVA

� For the nested model

ypvm = µ+ bp + epv + εpvm, p = 1, . . . , P, v = 1, . . . , V,m = 1, . . . ,M,

and with a dot and bar denoting averaging over that index, we write

ypvm − y··· = ypvm − ypv· + ypv· − yp·· + yp·· − y···,

and note that

ypvm − ypv· = εpvm − εpv·,

ypv· − yp·· = epv + εpv· − (ep· + εp··),

yp·· − y··· = bp + ep· + εp·· − (b· + e·· + ε···),

so the overall sum of squares is∑

p,v,m

(ypvm − y···)
2 =

∑

p,v,m

(ypvm − ypv·)
2 +

∑

p,v,m

(ypv· − yp··)
2 +

∑

p,v,m

(yp·· − y···)
2

=
∑

p,v,m

(ypvm − ypv·)
2 +M

∑

p,v

(ypv· − yp··)
2 + VM

∑

p

(yp·· − y···)
2,

where these terms are independent sums of squares for variables that are

N (0, σ2), N (0, σ2e + σ2/M), N{0, σ2b + σ2e/V + σ2/(VM)}.
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Nested model ANOVA II

� Hence∑

p,v,m

(ypvm − ypv·)
2 ∼ σ2χ2

PV (M−1),

∑

p,v,m

(ypv· − yp··)
2 ∼ M(σ2e + σ2/M)χ2

P (V −1)
D
= (Mσ2e + σ2)χ2

P (V−1),

∑

p,v,m

(yp·· − y···)
2 ∼ VM

(
σ2b +

σ2e
V + σ2

VM

)
χ2
P−1

D
= (VMσ2b +Mσ2e + σ2)χ2

P−1,

and we can estimate the components of variance σ2, σ2e and σ2b from the ANOVA table.

� The interpretation of the ANOVA depends on whether we regard δ2b =
∑

p(bp − b·)
2 and

δ2e =
∑

p,v(epv − ep·)
2 as random or fixed:

Term df Sum of squares E(Mean square) when terms below random
ε ε, e ε, e, b

Between patients P − 1
∑

(yp·· − y···)
2 VMδ2b +Mδ2e VMδ2b +Mσ2e VMσ2b +Mσ2e

+σ2 +σ2 +σ2

Between visits P (V − 1)
∑

(ypv· − yp··)
2 Mδ2e + σ2 Mσ2e + σ2 Mσ2e + σ2

within patients
Between measures PV (M − 1)

∑
(ypvm − ypv·)

2 σ2 σ2 σ2

within visits
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Nested and crossed ANOVA

� Nested analysis of the blood pressure data:

summary( aov(dbp ~ patient/visno, data=blood.dia) )

Df Sum Sq Mean Sq F value Pr(>F)

patient 24 23059 960.8 124.29 <2e-16 ***

patient:visno 375 39082 104.2 13.48 <2e-16 ***

Residuals 400 3092 7.7

� Likewise, crossed analysis of the chimpanzee data:

summary( aov(log(y)~chimp+word,data=chimps) )

Df Sum Sq Mean Sq F value Pr(>F)

chimp 3 5.33 1.778 2.719 0.0642 .

word 9 45.69 5.077 7.765 1.5e-05 ***

Residuals 27 17.65 0.654

There are C − 1 degrees of freedom for chimps, W − 1 for words, and (C − 1)(W − 1) for the
residual.

� In both cases, we can use the ANOVA table to estimate the variance components and then
perform synthesis of variance: e.g., how large would W need to be to distinguish the learning
abilities of two chimps with probability 0.95?
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Example: Blood pressure

� Solving the equations

σ2 = 7.7, Mσ2e + σ2 = 104.2, V Mσ2b +Mσ2e + σ2 = 960.8,

gives (in units of millimeters of mercury, mmHg)

σ̂ = 2.8, σ̂e = 6.9, σ̂b = 5.2,

so the largest variation is between different visits within patients, while that between
measurements on a single visit is smallest.

� Different comparisons require appropriate baseline variances:

– if we are interested in how patient p’s response varies from visit to visit, we use

ypv1· − ypv2· = µ+ bp + epv1 + εpv1· − (µ + bp + epv2 + εpv2·) ∼ N (0, 2σ2e + 2σ2/M),

as a basis for a test of a significant difference, whereas to compare average blood pressures for
two different patients we use

yp1·· − yp2·· = bp1 + ep1· + εp1·· − (bp2 + ep2· + εp2··) ∼ N{0, 2σ2b + 2σ2e/V + 2σ2/(VM)}.

� Split-unit designs are set up to make the most important comparisons within units (here
patients) and less important ones between units, and the ANOVA reflects this.
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General form

� We could have written the nested model above as

y = 1nµ+Xbb+Xee+ ε,

with design matrices Xb and Xe for the patient and visit-within-patient effects.

� Then if

– b and e are treated as fixed (ordinary parameters),

y ∼ Nn(1nµ+Xbb+Xee, σ
2In),

– b is treated as fixed but e ∼ NPV (0, σ
2
eIPV ), then

y ∼ Nn(1nµ+Xbb, σ
2
eXeX

T

e + σ2In),

– and if b ∼ NP (0, σ
2
b IP ) independent of e ∼ NPV (0, σ

2
eIPV ), then

y ∼ Nn(1nµ, σ
2
bXbX

T

b + σ2eXeX
T

e + σ2In).

� Hence random e or b give patterned covariance matrices depending on their variances.
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Summary

� Components of variance ANOVA is easily performed directly for balanced data.

� Standard ANOVA tables have different interpretations, depending on which components of
variance are taken to be random or fixed.

� Extensions are needed to deal with more complex settings, with unbalanced data, or with
non-linear or non-normal errors — hence mixed models, i.e., models with both random and fixed
parts, arising in many different settings (and with different names):

– components of variance (as above),

– classical experimental design (split-plot designs, . . . ),

– repeated measures,

– longitudinal models,

– multi-level models,

– hierarchical models.

� Can subsume linear versions into the linear mixed model, which can be extended to nonlinear
models, GLMs, . . .
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3.7 Linear Mixed Model slide 274

Linear mixed model

� The linear mixed model may be written as

yn×1 = Xn×pβp×1 + Zn×qbq×1 + εn×1, b ∼ Nq(0,Ωb), ε ∼ Nn(0,Ω),

where

– β represents the fixed effects,

– b represents the random effects, and

– usually Ω = σ2In.

� This has the same structure as when smoothing, with the columns of Z giving the structure of
the random effects.

� Equivalently,
y | b ∼ Nn(Xβ + Zb,Ω), b ∼ Nq(0,Ωb),

which gives marginal response distribution

y ∼ Nn(Xβ,ZΩbZ
T +Ω), ZΩbZ

T +Ω = σ2∆−1(ψ),

say, with ψ the vector of distinct variance ratios appearing in ∆−1 (e.g., σ2b/σ
2, . . .).

� Although Ω is often diagonal, ZΩbZ
T is not, so inverting ZΩbZ

T +Ω involves O(n3) flops in
general, and we should avoid working with ∆.
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Maximum likelihood estimation

� Let b̃ denote the MLE of b for fixed β (and ψ). Then

f(y;β, σ2, ψ) =

∫
f(y | b;β, σ2, ψ)f(b;σ2, ψ) db

= f(y, b̃;β, σ2, ψ)× (2π)q/2

|ZTΩ−1Z +Ω−1
b |1/2

∝ f(y | b̃;β, σ2, ψ)f(b̃ | σ2, ψ)
|ZTΩ−1Z +Ω−1

b |1/2
,

so (apart from additive constants) −2 log f(y;β, σ2, ψ) equals

(y −Xβ − Zb̃)TΩ−1(y −Xβ − Zb̃) + b̃TΩ−1
b b̃+ log{|Ω||Ωb||ZTΩ−1Z +Ω−1

b |}.

� The first two (quadratic) terms here depend on β and b, so given ψ and σ2 we can find β̂ψ and

b̃(β̂, ψ) explicitly, and thus obtain ℓp(ψ).

� By noting that

f(b | y;β, σ2, ψ) = f(y | b;β, σ2, ψ)f(b;σ2, ψ)/f(y;β, σ2, ψ)

and taking logs, we obtain

b | y ∼ Nq

{
b̃, (ZTΩ−1Z +Ω−1

b )−1
}
, b̃ =

(
ZTΩ−1Z +Ω−1

b

)−1
ZTΩ−1 (y −Xβ) .
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Note on maximum likelihood estimation

� Suppressing the parameters β, σ2 and ψ for now, we write the log integrand in

f(y) =

∫
f(y, b) db =

∫
f(y | b)f(b) db

in the form
log f(y, b) = log f(y, b̃)− 1

2(b− b̃)TH(b̃)(b− b̃),

where the linear term of the Taylor series equals zero, because it is evaluated at the maximising
value b̃, and the given Taylor series is exact because the log likelihood is quadratic.

� On ignoring terms not involving b we have

−2 log f(y, b) = −2 log f(y | b)− 2 log f(b) ≡ (y −Xβ − Zb)TΩ−1(y −Xβ − Zb) + bTΩ−1
b b,

so
H(b) ≡ H = ZTΩ−1Z +Ω−1

b

does not depend on b, and thus

f(y) = f(y, b̃)

∫
exp

{
−1

2(b− b̃)TH(b− b̃)
}

db

= f(y, b̃)× (2π)q/2|H|−1/2 = f(y, b̃)× (2π)q/2

|ZTΩ−1Z +Ω−1
b |1/2

,

as announced; the integral equals the normalising constant for a Nq(b̃, H
−1) density.

Regression Methods Autumn 2024 – note 1 of slide 276

146



Inference on β

� Since
y ∼ Nn(Xβ,ZΩbZ

T +Ω),

weighted least squares gives

β̂ = {XT(ZΩbZ
T +Ω)−1X}−1XT(ZΩbZ

T +Ω)−1y,

with
β̂ ∼ Np

[
β, {XT(ZΩbZ

T +Ω)−1X}−1
]
,

where in general we need O(n3) flops to invert the n× n matrix ZΩbZ
T +Ω.

� For cheaper calculation of var(β̂), we use the inversion formulae and obtain

(
var(β̂)p×p ·

· ·

)
=

(
XTΩ−1X XTΩ−1Z

ZTΩ−1X ZTΩ−1Z +Ω−1
b

)−1

d×d

,

where d = p+ q, which involves only O{nd2} flops, as Ω is usually diagonal.

� Note that var(b | y) = (ZTΩ−1Z +Ω−1
b )−1 can be obtained as a by-product.

� In practice these formulae are evaluated at the MLEs σ̂2 and ψ̂ and used to compute confidence
intervals etc. for elements of β.
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Inference on random effects

� Conventional terminology: we estimate parameters β and predict random variables b.

� To find the best predictor b̃(y) of b we minimise

Eb,y

[{
b̃(y)− b

}
T
{
b̃(y)− b

}]
,

which gives b̃(y) = E(b | y), with (Woodbury formula):

E(b | y) =
(
ZTΩ−1Z +Ω−1

b

)−1
ZTΩ−1 (y −Xβ) ,

var(b | y) =
(
ZTΩ−1Z +Ω−1

b

)−1
.

� Replace parameters β, σ2, ψ by estimates to get best linear unbiased predictor (BLUP) b̃ and
its estimated variance.

� Residuals

y −Xβ̂ = Zb̃+ y −Xβ̂ − Zb̃

= Zb̃+

{
In − Z

(
ZTΩ̂−1Z + Ω̂−1

b

)−1
ZTΩ̂−1

}(
y −Xβ̂

)
,

split into two parts, with Zb̃ attributable to random effects, and the second the usual residual
y −Xβ̂ shrunk towards zero; this estimates ε.
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Note on conditional mean and variance

� First we write
b̃(y)− b = b̃(y)− E(b | y) + E(b | y)− b,

expand {b̃(y)− b}T{b̃(y)− b} and take expectation over b conditional on y to get

E
[
{b̃(y)− b}T{b̃(y)− b} | y

]
=
{
b̃(y)− E(b | y)

}
T
{
b̃(y)− E(b | y)

}
+ var(b | y),

which is minimised when b̃(y) = E(b | y). Any other choice will give a larger expectation when we
take Ey, so this is optimal.

� To obtain E(b | y), we note that

(
y
b

)
∼ Nn+q

{(
Xβ
0

)
,

(
Ω+ ZΩbZ

T ZΩb
ΩbZ

T Ωb

)}
,

so using standard formulae for conditional normal distributions, we have

E(b | y) = ΩbZ
T (Ω + ZΩbZ

T)−1 (y −Xβ),

var(b | y) = Ωb − ΩbZ
T (Ω + ZΩbZ

T)
−1
ZΩb.

� The Woodbury formula applied to the conditional variance gives

var(b | y) =
(
ZTΩ−1Z +Ω−1

b

)−1

as required.

� For the conditional mean we apply the Woodbury formula to (Ω + ZΩbZ
T)−1 and get

E(b | y) = ΩbZ
T

{
Ω−1 − Ω−1Z

(
Ω−1
b + ZTΩ−1Z

)−1
ZTΩ−1

}
(y −Xβ)

= Ωb

{
Iq − ZTΩ−1Z

(
Ω−1
b + ZTΩ−1Z

)−1
}
ZTΩ−1(y −Xβ)

= Ωb

{
Ω−1
b

(
Ω−1
b + ZTΩ−1Z

)−1
}
ZTΩ−1(y −Xβ),

as required, where we wrote the term in braces in the second line as
I −B(A+B)−1 = A(A+B)−1, with A = Ω−1

b and B = ZTΩ−1Z.
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Example: Rat growth

Weights (units unknown) of 30 young rats over a five-week period

Week Week
1 2 3 4 5 1 2 3 4 5

1 151 199 246 283 320 16 160 207 248 288 324
2 145 199 249 293 354 17 142 187 234 280 316
3 147 214 263 312 328 18 156 203 243 283 317
4 155 200 237 272 297 19 157 212 259 307 336
5 135 188 230 280 323 20 152 203 246 286 321
6 159 210 252 298 331 21 154 205 253 298 334
7 141 189 231 275 305 22 139 190 225 267 302
8 159 201 248 297 338 23 146 191 229 272 302
9 177 236 285 340 376 24 157 211 250 285 323
10 134 182 220 260 296 25 132 185 237 286 331
11 160 208 261 313 352 26 160 207 257 303 345
12 143 188 220 273 314 27 169 216 261 295 333
13 154 200 244 289 325 28 157 205 248 289 316
14 171 221 270 326 358 29 137 180 219 258 291
15 163 216 242 281 312 30 153 200 244 286 324
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Example: Rat growth
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Example: Rat growth

Example 33 (Rat growth data)

� Write
yjt = β0 + bj0 + (β1 + bj1)xjt + εjt, t = 1, . . . 5, j = 1, . . . , 30,

where the random variables (bj0, bj1) have a joint normal distribution with mean vector zero and

unknown variance matrix and the εjt
iid∼ N (0, σ2). In matrix terms,



yj1
...
yj5


 =



1 xj1
...

...
1 xj5



(
β0
β1

)
+



1 xj1
...

...
1 xj5



(
bj0
bj1

)
+



εj1
...
εj5


 , j = 1, . . . , 30;

the overall model with n = 150 is obtained by stacking these expressions.

� We set (xj1, . . . , xj5) = (0, . . . , 4), so that β0 is the mean weight in week 1.

� p = 2 parameters; q = 60 since two random variables per rat.
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Example: Rat growth

> rat.growth

rat week y

1 1 0 151

2 1 1 199

3 1 2 246

4 1 3 283

5 1 4 320

6 2 0 145

...

> fit.reml <- lme(fixed= y~week, random=~week|rat, data=rat.growth)

> summary(fit.reml)

Linear mixed-effects model fit by REML

Data: rat.growth

AIC BIC logLik

1096.58 1114.563 -542.2899

Random effects:

Formula: ~week | rat

Structure: General positive-definite, Log-Cholesky parametrization

StdDev Corr

(Intercept) 10.932986 (Intr)

week 3.534747 0.184

Residual 5.817426

Fixed effects: y ~ week

Value Std.Error DF t-value p-value

(Intercept) 156.05333 2.1589786 119 72.28109 0

week 43.26667 0.7275228 119 59.47122 0

Correlation:

(Intr)

week 0.007
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Example: Rat growth

Results from fit of mixed model to rat growth data, using REML. Values in parentheses are for ML fit.
In each case σ̂2 = 5.822.

Parameter Fixed Random
Estimate Standard error Variance Correlation

Intercept 156.05 2.16 (2.13) 10.932 (10.712)
Slope 43.27 0.73 (0.72) 3.532 (3.462) 0.18 (0.19)

� REML estimates of Ωb slightly larger than ML estimates, but effect is small since p = 2.

� Estimated mean weight in week 1 is 156, but SD of individual rats around this is 11.

� Correlation between slope and intercept is small but positive: initially heavier rats tend to gain
weight faster.

� Variation around individual slopes is given by σ̂, smaller than for the intercept variance.

� Shrinkage of intercept estimates, shown on next page, is small in this case.

� Residuals look acceptably normal.
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Example: Rat growth

Residuals and random effects
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Comments

� Testing for non-zero variance components involves tests on the boundary of the parameter space,
which have nasty asymptotic properties: if ψ = 0, then a likelihood ratio statistic for testing
ψ = 0 satisfies W

·∼ 1
2χ

2
0 +

1
2χ

2
1 as n→ ∞, meaning that

P0(W = 0) = 1
2 , P0(W > w) = 1

2P(χ
2
1 > w), w > 0.

Unfortunately,

– P0(W = 0) can be very different from 1
2 even in large samples, and

– in more complex problems, the limiting distribution can be much more complex.

� Sometimes clearer to write a mixed model in multi-level model form

y = Xβ + ZLbL + · · ·+ Z0b0,

where the ql × 1 vectors bl are all mutually independent with means zero and variance matrices
Ωl, so Y ∼ Nn(Xβ,

∑L
l=0 ZlΩlZ

T

l ), where Z0 = In, b0 = ε and Ω0 = σ2In.

� The same basic approaches apply in nonlinear mixed models and generalized linear mixed
models (GLMMs), but integrals appear everywhere and have to be approximated numerically,
leading to nastier computations.
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3.8 Generalized Additive Models slide 286

Generalized additive model

� Now we write
E(y) = µ, g(µ) = η = Bθ = Xβ + Zb,

where

– y follows a GLM (or more general) distribution,

– g(·) is a link function,

– the rest is as before . . .

giving a generalized additive model (GAM).

� For a general treatment, suppose we have a penalized log likelihood,

ℓλ(θ) = ℓ(θ)− 1
2θ

TSλθ =

n∑

j=1

ℓj{ηj(θ)} − 1
2θ

TSλθ,

where θd×1 (with d = p+ q) contains βp×1 and bq×1, the latter penalized using a symmetric
positive semidefinite d× d matrix Sλ, and the underlying observations y1, . . . , yn giving likelihood
contributions ℓ1, . . . , ℓn are assumed to be independent.

� Now we apply the argument leading to the IWLS algorithm to ℓλ, leading to the penalized
iterative weighted least squares (PIWLS) algorithm.
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PIWLS

� For fixed λ, we apply (ridge regression) iterative weighted least squares with update step

θ̂λ = (BTWB + Sλ)
−1BTWz,

where Sλ is the penalty matrix, and

Bn×d = ∂η/∂θT, (design matrix)

Wn×n = diag(w1, . . . , wn), wj = {E(−∂2ℓj/∂η2j )}, (weights)

un×1 = ∂ℓ/∂η, (score vector),

zn×1 = Bθ +W−1u, (adjusted dependent variable).

It is easier (but less stable) to use the (random) −∂2ℓj/∂η2j in place of E(−∂2ℓj/∂η2j ).
� Thus to obtain (penalized) MLEs θ̂λ we use the PIWLS algorithm:

� fix λ and take an initial θ̂λ. Repeat

– compute η,B,W, u, z;

– compute new θ̂λ = (BTWB + Sλ)
−1BTWz;

until changes in ℓλ(θ̂λ) (or θ̂λ, or both) are lower than some tolerance.

� We may add a line search: if ℓλ(θ̂λ,new) < ℓλ(θ̂λ,old), halve the step length and try again.
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Note: Derivation of PIWLS algorithm

� To find the estimate θ̂λ starting from a trial value θ, we make a Taylor series expansion in the
score equation

0 =
∂ℓλ(θ̂λ)

∂θ

.
=
∂ℓλ(θ)

∂θ
+
∂2ℓλ(θ)

∂θ∂θT
(θ̂λ − θ),

where

∂ℓλ(θ)

∂θ
= BTu(θ)− Sλθ,

∂2ℓλ(θ)

∂θr∂θs
=

n∑

j=1

∂ηj(θ)

∂θr

∂2ℓj(θ)

∂η2j

∂ηj(θ)

∂θs
+

n∑

j=1

∂2ηj(θ)

∂θr∂θs
uj(θ) + Sλ,r,s,

where B ≡ B(θ) = ∂η/∂θT. If we use the approximation

−∂
2ℓλ(θ)

∂θ∂θT

.
= BTWB + Sλ, W = diag

{
−E

(
∂2ℓj/∂η

2
j

)}
,

where the diagonal matrix of second derivatives is replaced by its expectation, then

0
.
= BTu(θ)− Sλθ − (BTWB + Sλ)(θ̂λ − θ)

= BTu(θ) +BTWBθ − (BTWB + Sλ)θ̂λ.

If BTWB + Sλ is invertible, this gives

θ̂λ
.
= (BTWB + Sλ)

−1BT(u+WBθ) = (BTWB + Sλ)
−1BTWz,

where z = Bθ +W−1u, as required.
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Relation with least squares

� With fixed λ, the penalized MLE

θ̂λ = (BTWB + Sλ)
−1BTWz

results from fixing θ, and then iteratively solving the minimization problem

min
θ

∥∥∥∥∥

(
W 1/2z

0

)

(n+d)×1

−
(
W 1/2B
Qλ

)

(n+d)×d

θd×1

∥∥∥∥∥

2

,

where Qλ is a matrix square root of Sλ, i.e., Q
T

λQλ = Sλ.

� The corresponding smoothing matrix is taken to be

Hλ = B(BTWB + Sλ)
−1BTW,

and the effective degrees of freedom for a smooth component are defined as the sum of the
corresponding diagonal elements of

Pλ = (BTWB + Sλ)
−1BTWB,

with both Hλ and Pλ evaluated at the final step of the iteration.
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Approaches to iteration

� Having chosen how to choose λ for fixed θ, there are two main algorithms:

– performance iteration — repeat { fix λ, update θ with one step of PIWLS, update λ } to
convergence;

– outer iteration — repeat { fix λ, iterate PIWLS to convergence, update λ } to convergence.

� Performance iteration

– can be faster,

– but since the objective function for θ changes at each step, it may not converge—especially in
the context of concurvity (collinearity for curves . . . ), when two or more smooth functions
are (almost) confounded.

� Outer iteration

– is computationally more burdensome,

– but will converge to a (local) optimum.
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Choice of λ

� The choice of λ can be based on the marginal density of y,

f(y;β, λ) =

∫
f(y | b;β)f(b;λ) db,

which has no closed form in general (but is Gaussian if both f s are Gaussian).

� Various ways to approximate the integral:

– quadrature (doesn’t work well when dim(b) is high);

– simulation (e.g., importance sampling, same problems as quadrature);

– Laplace approximation;

– use the EM algorithm to avoid approximating the integral.

� We focus on Laplace approximation.
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Laplace approximation

Lemma 34 Let h(u) be a smooth convex function defined for u ∈ R
d, with a minimum at u = ũ,

where ∂h(ũ)/∂u = 0 and the matrix of partial derivatives h2 ≡ ∂2h(ũ)/∂u∂uT is positive definite,
and let

In =

∫

Rd

e−nh(u) du.

Then In = Ĩn
{
1 +O(n−1)

}
, and its Laplace approximation is

Ĩn =
(2π)d/2

|nh2|1/2
e−nh(ũ).

� For marginal density approximation we let θ = (βT

p×1, b
T

q×1)
T ∼ Nd(0, S

−
λ ), and write

f(y;β, λ) =

∫
f(y; θ)f(θ;λ) dθ =

|Sλ|1/2+

(2π)d/2

∫
exp {ℓλ(θ)} dθ,

where β is unpenalised, |Sλ|+ is the product of the non-negative eigenvalues of Sλ, and

ℓλ(θ) = ℓ(θ)− 1
2θ

TSλθ = O(n);

the assumptions of Lemma 34 should be satisfied by h(u) ≡ −n−1ℓλ(θ).
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Note on Lemma 34

� Close to ũ a Taylor series expansion gives

h(u)
.
= h(ũ) + h′(ũ)T(u− ũ) + 1

2(u− ũ)Th′′(ũ)(u− ũ) = h(ũ) + 1
2 (u− ũ)Th2(u− ũ)

so if we set z = (nh2)
1/2(u− ũ) then u = ũ+ (nh2)

1/2z, du/dz = (nh2)
−1/2, and arguing

heuristically (ignoring the third and higher terms),

In
.
= e−nh(ũ)

∫
e−n(u−ũ)

Th2(u−ũ)/2 du

= e−nh(ũ)
∫ ∞

−∞
e−z

2/2du

dz
dz

=

(
(2πd

|nh2|

)1/2

e−nh(ũ),

because the d-dimensional normal density has unit integral.

� A more detailed accounting is needed to get the error term. Take the scalar case (d = 1) for
simplicity. We start by writing

nh(u)
.
= nh(ũ) + 1

2nh2(u− ũ)2 + 1
6nh3(u− ũ)3 + 1

24nh4(u− ũ)4 + · · ·

= nh(ũ) + 1
2z

2 + 1
6

h3/h
3/2
2

n1/2
z3 + 1

24

h4/h
2
2

n
z4 +O(n−3/2)

= nh(ũ) + 1
2z

2 +
A

n1/2
z3 +

B

n
z4 +O(n−3/2)

say. Hence

e−nh(u) = e−nh(ũ)−
1
2 z

2

{
1− A

n1/2
z3 − B

n
z4 + 1

2

(
− A

n1/2
z3 − B

n
z4
)2

+O(n−3/2)

}

= e−nh(ũ)−
1
2 z

2

{
1− A

n1/2
z3 − B

n
z4 + 1

2

A2

n
z6 +O(n−3/2)

}
.

� As the odd moments of the normal density are zero, integration with respect to z leaves only the
n−1 term and the next remaining term is O(n−2). The fourth and sixth moments of the standard
normal distribution are respectively 3 and 15, and

15A2/2− 3B = 15(h3/h
3/2
2 /6)2/2− 3{h4/(24h2)} =

15h23
72h32

− h4
8h22

=
5h23
24h32

− h4
8h22

,

as required. The same argument works for m > 1, but it is more of a bloodbath.
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Comments on Laplace approximations

� The O(1/n) error is relative, so the approximation is often surprisingly accurate;

� since the odd moments of the normal density are all zero, the expansion has only terms whose
orders are even powers of n−1/2, i.e., n−1, n−2, . . .;

� Ĩn involves only h and the hessian matrix h2 at ũ, so is easily found, numerically if necessary;

� the series is asymptotic, so the partial sums may not converge, and including additional terms
may not be useful;

� as most of the normal probability lies within ±3 standard deviations of the mean, the limits of the
integral are almost irrelevant provided they are far enough away from ũ;

� if

In =

∫ ∞

−∞
e−nh(u) du, Jn =

∫ ∞

−∞
e−nh

∗(u) du,

where h∗(u) = h(u) +O(n−1), then

(In/Jn)÷ (Ĩn/J̃n) = 1 +O(n−2),

so two Laplace approximations can be better than one.
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Approximate REML

� Laplace approximation gives the approximate restricted log likelihood

ℓp(λ) ≡ 1
2 log |Sλ|+ − 1

2 log |BTWBT + Sλ|+ ℓ(θ̂λ)− 1
2 θ̂

T

λSλθ̂λ +Op(n
−1),

where Op(n
−1) is a (random) term of order n−1 and

θ̂λ = (BTWB + Sλ)
−1BTWz

results from iterating PIWLS to convergence for fixed λ and satisfies ∂ℓλ(θ̂λ)/∂θ = 0.

� The expression for θ̂λ contains

B ≡ B(θ̂λ), W ≡W (θ̂λ), z = B(θ̂λ)θ̂λ +W−1(θ̂λ)u(θ̂λ),

which involve the first two derivatives of the log likelihood contributions ℓj.

� Newton–Raphson maximization of ℓp(λ) requires its first two derivatives, so we need

∂θ̂λ
∂λ

,
∂2θ̂λ
∂λ∂λT

,

which will involve the third and fourth derivatives of the ℓj . . . could be painful.

� A version of this is implemented in mgcv.
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UK monthly AIDS reports 1983–1992

Diagnosis Reporting-delay interval (quarters): Total
period reports

to end
Year Quarter 0† 1 2 3 4 5 6 · · · ≥14 of 1992

...
...

...
...

...
...

...
...

...
...

...

1988 1 31 80 16 9 3 2 8 · · · 6 174
2 26 99 27 9 8 11 3 · · · 3 211
3 31 95 35 13 18 4 6 · · · 3 224
4 36 77 20 26 11 3 8 · · · 2 205

1989 1 32 92 32 10 12 19 12 · · · 2 224
2 15 92 14 27 22 21 12 · · · 1 219
3 34 104 29 31 18 8 6 · · · 253
4 38 101 34 18 9 15 6 · · · 233

1990 1 31 124 47 24 11 15 8 · · · 281
2 32 132 36 10 9 7 6 · · · 245
3 49 107 51 17 15 8 9 · · · 260
4 44 153 41 16 11 6 5 · · · 285

1991 1 41 137 29 33 7 11 6 · · · 271
2 56 124 39 14 12 7 10 · · · 263
3 53 175 35 17 13 11 2 306
4 63 135 24 23 12 1 258

1992 1 71 161 48 25 5 310
2 95 178 39 6 318
3 76 181 16 273
4 67 66 133
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AIDS data

� Chain-ladder model: number of reports in row j and column k is Poisson, with mean

µjk = exp(αj + βk),

but

– why should there be different parameters αj and βk for every row and column?

– Wouldn’t smooth variation be more plausible?

� Better models (maybe?):

µjk = exp{s(j) + βk}, µjk = exp{s(j) + s(k)},

where the time effect s(j) and the delay effect s(k) vary smoothly.

� Should also account for the overdispersion . . .
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Example: AIDS data

library(mgcv); library(boot)

data(aids)

aids.in <- aids[c(1:570)[as.logical(1-aids$dud)],] # these are elements in the two-way table

aids.glm <- glm(y~factor(time)+factor(delay),family=quasipoisson,data=aids.in)

aids.gam1 <- mgcv::gam(y~s(time,k=20)+factor(delay)-1,family=quasipoisson,data=aids.in)

plot(aids.gam1,page=1)

> anova(aids.gam1)

Formula:

y ~ s(time, k = 20) + factor(delay)

Parametric Terms:

df F p-value

factor(delay) 14 261.6 <2e-16

Approximate significance of smooth terms: # Ref.df can be ignored

edf Ref.df F p-value

s(time) 4.891 6.129 189.1 <2e-16

aids.gam2 <- mgcv::gam(y~s(time,k=20)+s(delay,k=15),family=quasipoisson,data=aids.in)

> anova(aids.gam2)

Formula:

y ~ s(time, k = 20) + s(delay, k = 15)

Approximate significance of smooth terms:

edf Ref.df F p-value

s(time) 4.896 6.134 189.0 <2e-16

s(delay) 11.453 12.754 285.5 <2e-16

The fits are very similar, but aids.gam2 has slightly lower AIC of 792.0 compared to 792.1 — these
are so similar that the choice should be based on interpretability rather than on AIC.
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Example: AIDS data
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Example: AIDS data
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function V (µ) = µ (red dashes). The last two estimates have 95% pointwise confidence intervals
(dots) based on the fit (treating the smoothing parameters as fixed). To make these I had to compute
the fitted means for the missing lower right triangle of the data table.
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Closing

� The basic ideas of regression, dependence of a response on explanatory variables, extend far
beyond the linear model, to

– non-linear dependence on explanatory variables;

– general response distributions (Poisson, binomial, . . . );

– random effects models—some parameters treated as random, and others as fixed;

– smooth curve fitting by basis function methods in (generalized) additive models.

� Unifying themes are:

– (semi-)parametric modelling using basis functions;

– maximum likelihood inference;

– estimation using iterative weighted least squares algorithms;

– penalized fitting to allow for random effects/basis functions;

– analysis of deviance;

– residuals and other diagnostics.
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