Linear Regression Models

Regression models are used to describe how one or perhaps a few response
variables depend on other explanatory variables. The idea of regression is at
the core of much statistical modelling, because the question ‘what happens
to y when x varies?’ is central to many investigations. It is often required to
predict or control future responses by changing the other variables, or to gain
an understanding of the relation between them. There is usually a single re-
sponse, treated as random. Often there are many explanatory variables, which
are treated as non-stochastic. The simplest models involve linear dependence
and are described in this chapter, while Chapter 9 deals with more struc-
tured situations in which the explanatory variables have been chosen by the
experimenter according to a design. Chapter 10 describes some of the many
extensions of regression to nonlinear dependence. Throughout we simplify our
previous notation by using y to represent both the response variable and the
value it takes; no confusion should arise thereby.

8.1 Introduction

If we denote the response by y and the explanatory variables by x, our concern
is how changes in = affect y. In Section 5.1, for example, the key question was
how the annual maximum sea level in Venice depended on the passage of time.
We fitted the straight-line regression model

y]:60+61xj+5]7 j:17"'7n7

where we took y; to be the jth annual maximum sea level and x; to be the
year in which this occurred. The parameters Gy and (31 represent a baseline
maximum sea level and the annual rate at which sea level increases, while
€; is a random variable that represents the difference between the underlying
level, By + 1z, and the value observed, y;.
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An immediate generalization is to increase the number of explanatory vari-
ables, setting

yj =P+ + Bprjp &5 =2 B+ ¢,

where 2 = (z;1,...,2;,) is a 1 X p vector of explanatory variables associated
with the jth response, § is a p x 1 vector of unknown parameters and ¢;
is an unobserved error accounting for the discrepancy between the observed
response y; and z7 8. In matrix notation,

y=XB+e, (8.1)

where y is the n x 1 vector whose jth element is y;, X is an n X p matrix
7, and € is the n x 1 vector whose jth element is €;. The
data on which the investigation is to be based are y and X, and the aim is to
disentangle systematic changes in y due to variation in X from the haphazard
scatter added by the errors €. Model (8.1) is known as a linear regression

model with design matriz X.

whose jth row is x

Example 8.1 (Straight-line regression) For the straight-line regression
model, (8.1) becomes

Y1 1 x g1
Y2 1 )
. - . . < ﬂo ) + . I
: Do b1 :
Yn 1y, €n
so X is an n X 2 matrix and 8 a 2 X 1 vector of parameters. [

Example 8.2 (Polynomial regression) Suppose that the response is a
polynomial function of a single covariate,

y; = Bo+ Brzj + -+ Bporal '+ g5

For example, we might wish to fit a quadratic or cubic trend in the Venice
sea level data, in which case we would have p = 3 or p = 4 respectively. Then

2 p—1

hn L@ 2y - 1y Bo €1
2 p—1
Y2 I @y xp - 1y B €2
= . +1 .1,
2 -1
Yn 1 Tn Ty l‘ﬁ ﬁp—l En
where X has dimension n X p. ]

A key point is that (8.1) is linear in the parameters 3. Polynomial regression
can be written in form (8.1) because of its linearity, not in z, but in .
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Case x1 T2 X3 T4 Yy
1 7 26 6 60 78.5
2 1 29 15 52 74.3
3 11 56 8 20 104.3
4 11 31 8 47 87.6
5 7 52 6 33 95.9
6 11 55 9 22 109.2
7 3 71 17 6 102.7
8 1 31 22 44 72.5
9 2 54 18 22 93.1
10 21 47 4 26 1159
11 1 40 23 34 83.8
12 11 66 9 12 113.3
13 10 68 8 12 109.4

Example 8.3 (Cement data) Table 8.1 contains data on the relationship
between the heat evolved in the setting of cement and its chemical compo-
sition. Data on heat evolved, y, for each of n = 13 independent samples
are available, and for each sample the percentage weight in clinkers of four
chemicals, 1, 3CCLO.AZQO3, Zo, 30&05102, T3, 4CaO.A1203.F6203, and T4,
2C'a0.5104, is recorded.

Figure 8.1 shows that although the response y depends on each of the
covariates x1, ..., x4, the degrees and directions of the dependences differ.

In this case we might fit the model

y; = Bo + Brx1j + Boxej + Ba3xz; + Batas + €5,

where Figure 8.1 suggests that 31 and (3, are positive, and that #3 and (4 are
negative. The design matrix has dimension 13 x 5, and is

1 7 26 6 60
1 1 29 15 532

1 10 68 8 12
the vectors y and ¢ have dimension 13 x 1 and 8 has dimension 5 x 1. ]
In the examples above the explanatory variables consist of numerical quan-

tities, sometimes called covariates. Dummy variables that represent whether
or not an effect is applied can also appear in the design matrix.

Example 8.4 (Cycling data) Norman Miller of the University of Wis-
consin wanted to see how seat height, tyre pressure and the use of a dynamo
affected the time taken to ride his bicycle up a hill. He decided to collect data

Table 8.1 Cement
data (Woods et al.,
1932): y is heat
evolved in calories
per gram of cement,
and z1, 2, 3, and
x4 are percentage
weight of clinkers,
with x1,
?)C'(ILOUAlg()g7 X2,
3(:'(10.57;027 T3,
4(:'0,0.14[203.F162Og,7
and z4, 2Ca0.Si05.



Figure 8.1 Plots of
cement data. The
variables are heat
evolved in calories
per gram, vy,
percentage weight in
clinkers of z1,
3C(lO.Al203, T2,
3C¢IO.S’£OQ, T3,
4Ca0.Al203.Fex03,
and x4, 2Ca0.Si05.
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at each combination of two seat heights, 26 and 30 inches from the centre of
the crank, two tyre pressures, 40 and 55 pounds per square inch (psi) and
with the dynamo on and off, giving eight combinations in all. The times were
expected to be quite variable, and in order to get more accurate results he
decided to make two timings for each combination. He wrote each of the eight
combinations on two pieces of card, and then drew the sixteen from a box in
a random order. He planned to make four widely separated runs up the hill
on each of four days, first adjusting his bicycle to the setups on the successive
pieces of card, but bad weather forced him to cancel the last run on the first
day; he made five on the third day to make up for this. Table 8.2 gives timings
obtained with his wristwatch.

The lower part of Table 8.2 shows how average time depends on experi-
mental setup. There is a large reduction in the average time when the seat
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Setup Day Run Seat height Dynamo Tyre pressure Time
(inches) (psi) (secs)
1 3 2 — - - 51
2 4 1 - - - 54
3 2 2 + - - 41
4 2 3 + - - 43
5 3 3 - + - 54
6 2 1 - + - 60
7 3 1 + + - 44
8 4 3 + + - 43
9 1 1 — - + 50
10 4 4 - - + 48
11 3 5 + - + 39
12 4 2 + - + 39
13 3 4 — + + 53
14 1 3 - + + 51
15 1 2 + + + 41
16 2 4 + + + 44
Seat height Dynamo Tyre pressure
(inches from centre of crank) (psi)
- 26 Off 40
+ 30 On 55
Dynamo Tyre pressure low Tyre pressure high
Seat low  Seat high Seat low  Seat high
Off 52.5 42.0 49.0 39.0
On 57.0 43.5 52.0 42.5
Dynamo Tyre pressure Seat
Off On Low  High Low  High
45.63  48.75 48.75  45.63 52.63 41.75

is raised and smaller reductions when the tyre pressure is increased and the

dynamo is off.

The quantities that are varied in this experiment — seat height, tyre pres-

Table 8.2 Data
and experimental
setup for bicycle
experiment (Box

et al., 1978,

pp. 368-372). The
lower part of the
table shows the
average times for
each of the eight
combinations of
settings of seat
height, tyre pressure,
and dynamo, and the
average times for the
eight observations at
each setting,
considered
separately.
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sure, and the state of the dynamo — are known as factors. Each takes two
possible values, known as levels. Here there are two types of factors: quan-
titative and qualitative. The two levels of seat height and tyre pressure are
quantitative — other values might have been chosen, and more than two levels
could have been used — but the dynamo factor has only two possible levels
and is qualitative.

An experiment like this, in which data are collected at each combination
of a number of factors, is known as a factorial experiment. Such designs and
their variants are widely used; see Section 9.2.4. In this case an experimental
setup with three factors each having two levels is applied twice: the design
consists of two replicates of a 23 factorial experiment.

One linear model for the data in Table 8.2 is that at the lower seat height,
with the dynamo off, and the lower tyre pressure, the mean time is u, and
the three factors act separately, changing the mean time by a1, as, and ag
respectively. This corresponds to the linear regression model

Y1 1000 -
Y2 1 0 0 O E2
Y3 1 1 0 O £3
Ya 1100 ey
Ys 1 01 0 €5
Y6 1 01 0 E6
Y7 1 110 " €7
ys o 1 1 1 0 aq £8
Yo o 1 0 0 1 (65) + &9
Y10 1 0 0 1 ag €10
Y11 1101 €11
Y12 1101 €12
Y13 1 0 1 1 €13
Y14 1011 €14
Y15 1111 €15
Y16 1 1 1 1 €16

Table 8.2 suggests that p = 52.5, that a3 < 0, ae > 0, and a3 < 0. The
baseline time is u, which corresponds to the mean time at the lower level of
all three factors, and the overall average time is 7 = u+ %al + %042 + %ag +g,
where Z is the average of the unobserved errors.

A different formulation of the model would take the overall mean time as
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the baseline, leading to

n 1 -1 -1 -1 £1
Yo 1 -1 -1 -1 €9
s 1 1 -1 -1 £3
Ya 1 1 -1 -1 £4
s 1 -1 1 -1 €5
n 1 -1 1 -1 €6
Y7 11 1 -1 Bo €7
ye 1 11 1 B1 4| e (8.2)
Yo 1 -1 -1 1 B2 €9
Y10 1 -1 -1 1 B3 €10
Y11 1 1 -1 1 €11
Y12 1 1 -1 1 €12
Y13 1 -1 1 1 €13
Y14 1 -1 1 1 €14
Y15 1 1 1 1 €15
Y16 1 1 1 1 €16

In (8.2) the effect of increasing seat height from 26 to 30 inches is 20, the
effect of switching the dynamo on is 2(3;, and the effect of increasing tyre
pressure is 233. As each column of the design matrix apart from the first has
sum zero, the overall average time in this parametrization is Gy + . Although
the parameter [y is related to the overall mean, it does not correspond to
a combination of factors that can be applied to the bicycle — how can the
dynamo be half on? Despite this, we shall see below that (8.2) is convenient
for some purposes. ]

Often it is better to apply a linear model to transformed data than to the
original observations.

Example 8.5 (Multiplicative model) Suppose that the data consist of
times to failure that depend on positive covariates x; and x5 according to

Yy =0z 237,
where 7 is a positive random variable. Then
logy =log~o + 71 log x1 + Y2 log 22 + logn,

which is linear in log 7y, 71, and ~2. The variance of the transformed response
log y does not depend on its mean, whereas y has variance proportional to the
square of its mean, so in addition to achieving linearity, the transformation
equalizes the variances. [
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Exercises 8.1

1 Which of the following can be written as linear regression models, (i) as they
are, (ii) when a single parameter is held fixed, (iii) after transformation? For
those that can be so written, give the response variable and the form of the
design matrix.

(a) y = Bo + Bi/x + B2/2* + &
(b) y=Po/(1+ Brz) +&;

(c) y=1/(Bo + Pz +€);

(d) y = Bo + 1z + &

(e) y = Bo + Prx(? + Baas’ + ¢

2 Data are available on the weights of two groups of three rats at the beginning
of a fortnight, x, and at its end, y. During the fortnight, one group was fed
normally and the other group was fed a growth inhibitor. Consider a linear
model for the weights,

Yjg = Qg + BeTjg + €59, J=1,...,3, g=12

(a) Write down the design matrix for the model above.

(b) The model is to be reparametrized in such a way that it can be specialized
to (i) two parallel lines for the two groups, (ii) two lines with the same intercept,
(iii) one common line for both groups, just by setting parameters to zero. Give
one design matrix which can be made to correspond to (i), (ii), and (iii), just
by dropping columns.

8.2 Normal Linear Model
8.2.1 Estimation

Suppose that the errors ¢; in (8.1) are independent normal random variables,
with means zero and variances o2. Then the responses y; are independent
normal random variables with means z7 3 and variances 02, and (8.1) is the
normal linear model. The likelihood for 3 and o2 is

n

1 1
L(B,0%) = H Wexp{ﬁ(yj x]Tﬂ)Q}’

Jj=1

and the log likelihood is
1 n
2y _1 2 2
U(B,0%) = 1 { nlogo® + ﬁ;(yj —27p)
i=

Whatever the value of o2, the log likelihood is maximized with respect to
0B at the value that minimizes the sum of squares

n

SS(B) =Y (y; —a}B) = (y— XB)"(y — XB). (8.3)

j=1

We obtain the maximum likelihood estimate of 8 by solving simultaneously
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the equations

9SS(B3)
9B,

=2 2 (y; —Bx;) =0, r=1,...,p.
j=1

In matrix form these amount to the normal equations
X"(y—-XpB)=0, (8.4)

which imply that the estimate satisfies (X*X)8 = X"y. Provided the p x p
matrix XX is of full rank it is invertible, and the least squares estimator of

B is
B=(X"X)"1X"y.
The maximum likelihood estimator of o2 may be obtained from the profile
likelihood for o2,

@w%nywa%%&mg¥+§ayx®wyxm}, (8.5)

and it follows by differentiation that the maximum likelihood estimator of o2
is

n

FZ=n"ty—XB)"(y—XB =n""Y (y; — B>

j=1

We shall see below that 62 is biased and that an unbiased estimator of o2 is

1 ~ 1 = ~
> ;- B
Jj=1

S? = (y— XB)™(y — XP) =

n—mp n—p*

Example 8.6 (Straight-line regression) We write the straight-line re-
gression model (5.3) in matrix form as

Y1 1 21— €1
Y2 1 xo—7 €9
I <%> + |
: : : Y1 :
Yn 1 Tp — T En

The least squares estimates are

=(2) = (sorm &0 (2,)
n=1 0 .
( 0 Z(w%—)) <Z(xgz-yjf)yj>

y
Z(I]‘—E)yj .
S (@, —%)?



Sometimes e; is
called a raw
residual.
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If all the x; are equal, X" X is not invertible, and %; is undetermined: any
value is possible.
The unbiased estimator of o2 is

LR o S ) G ka1 ’
n_22{yj Yy (J )Z(xk_f)g} .

Jj=1

Example 8.7 (Surveying a triangle) Suppose that we want to estimate
the angles o, (8, and ~ (radians) of a triangle ABC based on a single inde-
pendent measurement of the angle at each corner. Although there are three
angles, their sum is the constant o+ 8+~ = 7, and so just two of them vary
independently. In terms of a and (3, we have ya = a+¢e4, yp = 8+ ¢€p, and
yo =m —a — B+ ec, and this gives the linear model

YA 1 0 o €A
YB =1 0 1 <ﬁ>+ €B
Yo — 1 -1 1 EC
Hence
(CE) _ l( 2 1) <7r+yAyc) _ l(w+2yAyByC>
B) 3\-1 2 )\7m+yp—yc) *\7+2yp—ya—yc
It is straightforward to show that s? = (ya + yp + yc — 7)?/3. =

The sum of squares SS(/3) plays a central role. Its minimum value,

SS(B) = (y; — =3B = (y — XB)"(y — XP),

Jj=1

is called the residual sum of squares because it is the residual squared discrep-
ancy between the observations, y, and the fitted values, § = X B The vector
7 is the linear combination of the columns of X that best accounts for the
variation in y, in the sense of minimizing the squared distance between them.
Note that

7=XB=X(X"X)"'X"y = Hy,

say, where the hat matriz H = X (X"X)~1X™ “puts hats” on y. Evidently H
is a projection matrix; see Section 8.2.2.
The unobservable error ¢; = y; — 27 is estimated by the jth residual

e =Y —Yj =Y; — ijﬁ In vector terms,
e=y-XB=y—Hy=(I,—H)y,

where I, is the n x n identity matrix.
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Table 8.3 Data
from bicycle

experiment, together

Setup Seat Dynamo Tyre Time i e r r/ h  wi€h fitted values y,
height pressure y raw residuals e,
standardized
residuals, r, deletion
1 1 1 1 51 5262 1625 099 —0.99 025 Q%uals
2 -1 -1 -1 54 52.62 1.375 -0.84 0.83  0.25 18W@6ages h and
3 1 -1 -1 41 41.75 —0.750 -0.46 -0.44 0.25 @©@uZ distances C.
4 1 -1 -1 43 41.75 1.250 0.76 0.75 0.25 0.05
5 -1 1 -1 54 55.75 -1.750 -1.06 -1.07 0.25 0.09
6 -1 1 -1 60 55.75 4.250 2.59 3.72  0.25 0.56
7 1 1 -1 44 44.87 -0.875 -0.53 -0.52 0.25 0.02
8 1 1 -1 43 44.87 -1.875 -1.14 -1.16 0.25 0.11
9 -1 -1 1 50 49.50 0.500 0.30 0.29 0.25 0.01
10 -1 -1 1 48 49.50 -1.500 -0.91 -0.91 0.25 0.07
11 1 -1 1 39 38.62 0.375 0.23 0.22 0.25 0.00
12 1 -1 1 39 38.62 0.375 0.23 0.22 0.25 0.00
13 -1 1 1 53 52.62 0.375 0.23 0.22 0.25 0.00
14 -1 1 1 51 52.62 -1.625 -0.99 -0.99 0.25 0.08
15 1 1 1 41 41.75 -0.750 -0.46 -0.44 0.25 0.02
16 1 1 1 44 41.75 2.250 1.37 1.43 0.25 0.16
Example 8.8 (Cycling data) For model (8.2) we find that

(X"X)' = L1,

so the least squares estimates (XTX)~' X7y are

Y1 — Y2+ Y3 + Y4 —Ys — Y6 + Y7 +¥s8 — Y9 —vi0 + Y11 + Y12 — ¥13 — Y14 + Y15 + Y16
—Y1 — Y2 — Y3 — Y4 + Y5 + Y6 + Y7 +¥s8 — Y9 —¥10 — Y11 — Y12 T Y13 + Y14 + Y15 + V16

Y1 +y2 +¥y3 +va+ys +ve +ty7 +ys +yg +vio +v11 +vi2 +¥13 +vi4 + Y15 + Y16
1
16

—Y1 — Y2 — Y3 — Y4 — Y5 — Y6 — Y7 — Y8 +y9 +vio +v11 +vi12 +¥13 +vi4 +v15 + V16

)-(

Thus the overall average time is 47.19 seconds, putting the seat at height 30
inches rather than 26 inches changes the time by an average of 2 x (—5.437) =
—10.87 seconds, putting the dynamo on rather than off changes the time by
an average of 2 x 1.563 = 3.13 seconds, and increasing the tyre pressure from
40 to 55 psi changes the time by —3.13 seconds. The largest effect is due to
increasing the seat height. The model suggests that the fastest time is obtained

with no dynamo, a high seat and tyres at 55 psi.

The residual sum of squares for this model is 43.25 seconds squared, the
overall sum of squares is Zy? = 36221 seconds squared, and therefore the
sum of squares explained by the model is 36221 — 43.25 = 36177.75 seconds
squared; this is the amount of variation removed when X (3 is fitted.

The fitted values are §y = Xﬁ, giving 71 = Bo — Bl — BQ — 33 = 52.625,
e1 = y1 — Y1 = bl — 52.625 = —1.625, and so forth. Table 8.3 gives the data,
fitted values, residuals and quantities discussed in Examples 8.22 and 8.27.

47.19
—5.437

1.563
—1.563

) |



Figure 8.2 The
geometry of least
squares estimation.
The space spanned
by all three axes
represents the
n-dimensional
observation space in
which y lies. The
horizontal plane
through O represents
the p-dimensional
space in which the
linear combination
X lies, and
estimation by least
squares amounts to
minimizing the
squared distance
(y—XB)T(y— XB).
In the figure the
value of X3 that
gives the minimum
lies vertically below
y, which corresponds
to orthogonal
projection of y into
the p-dimensional
subspace spanned by
the columns of X;
the fitted value

y = Hy is the point
closest to y in that
subspace, and the
projection matrix is
H =
X(XTXx)"1XT. The
vector of residuals
e=y—yis
orthogonal to the
fitted value Z The
linex =2=0
represents the space
spanned by the
columns of the
reduced model
matrix X1, with
corresponding fitted
value 51. The
thhggonality ij\/\h
y—yi,and y —y
implies that when
the data are normal
the corresponding
sums of squares are
independent.
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0 >
8.2.2 Geometrical interpretation

Figure 8.2 shows the geometry of least squares. The n-dimensional vector
space inhabited by the observation vector y is represented by the space spanned
by all three axes, and the p-dimensional subspace in which X lies is repre-
sented by the horizontal plane through the origin. The least squares estimate
E minimizes (y — X3)"(y — X3), which is the squared distance between X
and y. We see that (y — X3)"(y — X3) is minimized when the vector y — X 3
is orthogonal to the horizontal plane spanned by the columns of X, so that
for any column z of X we have z"(y — X() = 0. Equivalently the normal
equations X" (y — X ) = 0 hold, and provided X" X is invertible we obtain
B = (X"X)"'XTy. The fitted value j = X3 = X(X"X) ' XTy = Hy is the
orthogonal projection of y onto the plane spanned by the columns of X, and
the matrix representing that projection is H. Notice that ¥ is unique whether
or not X" X is invertible.

Figure 8.2 shows that the vector of residuals, e = y — y = (I,, — H)y, and
the vector of fitted values, § = Hy, are orthogonal. To see this algebraically,
note that

ye=y'H' (I, -H)y=y"(H—-H)y =0, (8.6)

because H* = H and HH = H, that is, the projection matrix H is symmetric
and idempotent (Exercise 8.2.5). The close link between orthogonality and
independence for normally distributed vectors means that (8.6) has important
consequences, as we shall see in Section 8.3. For now, notice that (8.6) implies
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that

Yy=W-u+1)"W-y+y) =(+y"(e+y) =ee+y"y, (8.7)
as is clear from Figure 8.2 by Pythagoras’ theorem. That is, the overall sum
of squares of the data, Zy? = y"y, equals the sum of the residual sum of

squares, SS(3) = > (y; — ¥;)? = €Te, and the sum of squares for the fitted

model, > 77 = 777
Such decompositions are central to analysis of variance, discussed below.

8.2.3 Likelihood quantities

Chapter 4 shows how the observed and expected information matrices play
a central role in likelihood inference, by providing approximate variances for
maximum likelihood estimates. To obtain these matrices for the normal linear
model, note that the log likelihood has second derivatives

0% 1 ¢ 9%t 1 ¢ v
08,08. _ﬁj;xﬁxjs’ 9B, 002 F;W(%’ - z;8),
9% 1 2 s
8(0—2)2 = 7% 7F+F;(yﬂi'ﬁ]ﬁ) ) Ta5:17"'ap'

Thus elements of the expected information matrix are

920 1< 920 920 n
E(- - = e, B(-—=2"_)=0, E!- -
( aﬁraﬁs) o2 ;xﬂ i < 857_802) 0 { 5(02)2} 202
or in matrix form

1(5702):<a—2XTX ) 0_4)7 1(6702)_1:<a2(XTX)—1 0 )

0 sno 0 20 /n

Provided that X has rank p, the matrices I(3,02) and J(3,52) are positive
definite (Exercise 8.2.7).

Under mild regularity conditions on the design matrix and the errors, the
general theory of likelihood estimation implies that the asymptotic distribu-
tion of 3 and o2 is normal with means 3 and o2, and covariance matrix given
by I(3,02)"!, the block diagonal structure of which implies that 3 and 52
are asymptotically independent. We shall see in the next section that stronger
results are true: when the errors are normal the estimates B have an exact
normal distribution and are independent of 52 for every value of n, while 52
has a distribution proportional to Xi_p provided that n > p.

The quantities 3 and SS (3) are minimal sufficient statistics for 5 and ¢
(Problem 8.7).
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Example 8.9 (Two-sample model) Suppose that we have two groups
of normal data, the first with mean [y,

y0j2ﬁ0+50j7 j:17"'7n07
and the second with mean 3y + (1,
yi; =B+ p1+ey, j=1,...,n1,

where the ¢,; are independent with means zero and variances o2. The matrix
form of this model is

Yo1 1 0 €01
Yoo | _ |1 O (ﬁo > 4 | Eomo
Y11 11 B1 €11
Yin, L1 €1ny

The estimator of 8 is 8 = (XTX)~1XTy, that is,
= -1 _ _
(éo) _ <n0+n1 n1> <n0y0.+n1y1,>
b1 ni ni n1Y;.
_ ( ngt —ng! ) (noyo. + m@l.)
R T n17y;.

(R
U1 —To. )’

where 7y, = nal > yo; and 7. = nflzylj are the group averages. One
can verify directly that the elements of 0(X"X)™! give the variances and
covariance of the least squares estimators.

In this example the fitted values are 30 = 7. for the first group and 30 + 31 =
7,. for the second group, and the unbiased estimator of o2 is

no

1 _ o1 _
= ————— N (o — T )P+ Y (v — T )?
j=1

n0+n172 .
J=1

A minimal sufficient statistic for (8o, 81, 0?) is (Yy., 7., $%)- n

Example 8.10 (Maize data) The discussion in Example 1.1 suggests
that a model of matched pairs better describes the experimental setup for the
maize data than the two-sample model of Example 8.9. We parametrize the
matched pair model so that the jth pair of observations is

yij =0; —Bo+ewy, y2=0+0o+ezy, j=1....m,

where we assume that the €;; are independent normal random variables with
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means zero and variances o2. We have m = 15. The average difference between
the heights of the crossed and self-fertilized plants in a pair is 23y, and the
mean height of the pair is 3;. The matrix form of this model is

Y11 -1 1 0 --- 0 €11
Y21 1 10 --- 0 Bo €21
Y12 -1 01 --- 0 B1 €12
Y22 [ =] 1 0 1 0 Po | 4+ | €22 |,
Yim -1 0 0 --- 1 Bm €1im
Yom 1 00 --- 1 om

so (3 has dimension (m+1) x 1 and X" X = diag(2m, 2, ...,2) has dimension
(m+1)x (m+1).

We see that
Bo = (Y21 —y11 Y22 — Y12 + - + Y2m — Y1m)/(2m),
ﬂ] = %(ylj +y2j)7 ]:17ama

and that the estimators are independent. The unbiased estimator of o2 is

1
S 2m—(m+1)

Z {(ylj - Bj + )% + (y25 — Ej - 30)2} ;

Jj=1

52

which can be written as {2(m — 1)} 1Y (d; — d)?, where d; = y2; — y1; is the
difference between the heights of the crossed and self-fertilized plants in the
jth pair, and d = m=1 " d; is their average. Note that 3y equals %E. [
Likelihood ratio statistic

The likelihood ratio statistic is a standard tool for comparing nested models.
In the context of the normal linear model, let

fr
fa

where X is an nx ¢ matrix, Xo is an nx (p—¢) matrix, ¢ < p, and 1 and [, are

y=XB+e=(X1 X2)< )+€X151+X252+5,

vectors of parameters of lengths ¢ and p—g. Suppose that we wish to compare
this with the simpler model in which g5 = 0, so the mean of y depends only
on Xj. Under the more general model the maximum likelihood estimators of
B and o2 are B and 52 = n~1SS(B), where SS(8) = (y — XB8)"(y — X 3), and
it follows from (8.5) that the maximized log likelihood is

lp(0%) = -3 {nlogSS(B) +n— nlogn} ,

where £, (0?) = maxg £(3, 0?) is the profile log likelihood for 0. When (5 = 0,
the maximum likelihood estimator of o2 is

o8 = nilss(ﬁl) =n "ty — X1§1)T(y - X1§1)>
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where Bl is the estimator of 1 when (B = 0. Hence the likelihood ratio

statistic for comparison of the models is
2{6:,6%) ~ 6,@3)} = nlog{SS(B)/SS(B)}
SS(B1) — SS(B -
nbg1+p_q{ (B - 55B)} 10~
n-p 55(8)/(n —p)

nlog (1 n uF) : (8.8)
n—p

say. Here F' > 0, with equality only if the two sums of squares are equal. This
event can occur only if the columns of X5 are linearly dependent on those of
X;. If not, the results of Section 4.5.2 imply that the likelihood ratio statistic
has an approximate x? distribution, but as it is a monotonic function of F,
large values of (8.8) correspond to large values of F'. We shall see in Section 8.5
that the exact distribution of F' is known and can be used to compare nested
models, with no need for approximations.

It is instructive to express F' explicitly in terms of the least squares estima-
tors. As (8.8) is a likelihood ratio statistic for testing o = 0, it is invariant
to 1-1 reparametrizations that leave (s fixed, and we write E(y) as

X161+ Xofo = XiB1+Hi XoB+ (I — H1) X252
= X1 {B1+ (XTX1) ' XT X0} + Zaf3s
= X1>\+Z21/}>

say, where H; = X1(X{X;) !XT is the projection matrix for X;, Z» =
(I — Hy) X5 is the matrix of residuals from regression of the columns of Xs on
those of X1, and the new parameters are A and ¥ = (3. Note that

X7 Zy = XT{I - X1 (XTX1)'X{} X5 =0,

and that H; is idempotent. In this new parametrization the parameter esti-
mates are

N\ (XTXy XTZ\TU[(XTY . ((XTX1)T'XTy
o) T\ zsx. z3Z3 23 )V T\ (Z322) 23y )

while if ¢ = B2 = 0, the least squares estimate of A remains A Consequently

-~

SS(B) = (y— X1\~ Za)"(y — X1\ — Zo0))
(y— XaN)"(y — X1X) — 20723 (y — XoX\) + 0" 25 Zot)
SS(B\l) - ’&J\TZ;ZQ’(Z?

since
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= U"(Z322)(2322) " 23y
= Y (Z3Z2).

Thus the F statistic in (8.8) may be written as

n—pBEXE(I — Hy)X2Ps

F= -
P—q SS(B)

and this is large if Bg differs greatly from zero.
If B3 is scalar, then p — ¢ = 1, the matrix Z3 Zy = X3 (I — Hi) Xy = v, is
scalar, and F' = T2, where

Ba — Ba
(vpp52)1/2

with s2 = §S(B)/(n — p) and B, = 0. Thus F is a monotonic function of T2.
We shall see in Section 8.3.2 that T has a t,,_, distribution.

T= (8.9)

8.2.4 Weighted least squares

Suppose that a normal linear model applies but that the responses have un-

2 is unknown but the

equal variances. If the variance of y; is 02 /wj, where o
w; are known positive quantities giving the relative precisions of the y;, the

log likelihood can be written as
1
9,07 = ~4 {nlogo? + -y = X9W - X5)}.

where W = diag{wy, ..., w,} is known as the matrix of weights. Let W1/2 =
diag{wiﬂ, e ,w,ll/Q}, and set 4/ = W'/2y and X' = W'/2X. Then the sum of
squares may be written as (y' — X’8)"(y" — X'f). As this has the same form
as (8.3), the estimates of 3 and o2 are

B=(X"X)'X"y = (X"WX) ' X" Wy, (8.10)
and
s2 = (n—p) ™I - X(XTX)IXTYy
= (n—p) WH{W -WX(X"WX) ' X"W}y. (8.11)

These are the weighted least squares estimates. This device of replacing y
and X with W'/2y and W'/2X allows methods for unweighted least squares
models to be applied when there are weights (Exercise 8.2.9).

Example 8.11 (Grouped data) Suppose that each y; is an average of a
random sample of m; normal observations, each with mean x;f 3 and variance
02, and that the samples are independent of each other. Then y; has mean
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zj 3 and variance 0?/m;, and the y; are independent. The estimates of 3 and
o? are given by (8.10) and (8.11) with weights w; = m;. ]

Weighted least squares can be extended to situations where the errors are
correlated but the relative correlations are known, that is, var(y) = o?W =1,
where W is known but not necessarily diagonal. This is sometimes called
generalized least squares. The corresponding least squares estimates of 5 and
o? are given by (8.10) and (8.11).

Weighted least squares turns out to be of central importance in fitting
nonlinear models, and is used extensively in Chapter 10.

Exercises 8.2

1 Write down the linear model corresponding to a simple random sample y1, . . .
from the N(p,0?) distribution, and find the design matrix. Verify that

yYn

i=(X"X)"X"y =7, $=88B)/(n-p=mn-1)"Y -7

2 Verify the formula for s? given in Example 8.7, and show directly that its
distribution is o%x73.

3 The angles of the triangle ABC are measured with A and B each measured twice
and C three times. All the measurements are independent and unbiased with
common variance 2. Find the least squares estimates of the angles A and B
based on the seven measurements and calculate the variance of these estimates.

4  In Example 8.10, show that the unbiased estimator of o is {2(m—1)}"" > (d; —
2.

5  Show that if the nxp design matrix X has rank p, the matrix H = X(XTX)7'XT
is symmetric and idempotent, that is, H* = H and H*> = H, and that tr(H) =
p. Show that I, — H is symmetric and idempotent also. By considering H>a,
where a is an eigenvector of H, show that the eigenvalues of H equal zero or
one. Prove also that H has rank p.
Give the elements of H for Examples 8.9 and 8.10.

6 In a linear model in which n — oo in such a way that 3 £, 0B, show that

€; N €;. Generalize this to any finite subset of the residuals e. Is this true for
the entire vector e? .
Letyj =Po+ b1z +ejwithaey = =y =0and zp41 ==z, =1.Is 8
consistent if n — oo and k = 1?7 If k = m, for some fixed m? If kK = n/2? Which
of the €, can be estimated consistently in each case?

7  Show that in a normal linear model in which X has rank p, the matrices I(, 02)
and J(B,5?) are positive definite.

8 (a) Consider the two design matrices for Example 8.4; call them X; and Xa.
Find the 4 x 4 matrix A for which X; = X3 A, and verify that it is invertible
by finding its inverse.

(b) Consider the linear models y = X 15+¢ and y = Xoy+¢, where X7 = X2 A,
v = AB, and A is an invertible matrix. Show that the hat matrices, fitted values,
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residuals, and sums of squares are the same for both models, and explain this
in terms of the geometry of least squares.

9 (a) Consider a normal linear model y = X3 + & where var(¢) = ¢?W ™!, and
W is a known positive definite symmetric matrix. Show that a inverse square
root matrix W'/? exists, and re-express the least squares problem in terms of
y1 = W2y, X1 = WY2X, and &1 = W'/%¢. Show that var(e) = 0*I,. Hence
find the least squares estimates, hat matrix, and residual sum of squares for the
weighted regression in terms of y, X, and W, and give the distributions of the
least squares estimates of 3 and the residual sum of squares.

(b) Suppose that W depends on an unknown scalar parameter, p. Find the
profile log likelihood for p, £,(p) = maxg ,2 £(5, o2, p), and outline how to use
a least squares package to give a confidence interval for p.

8.3 Normal Distribution Theory

8.3.1 Distributions of B and s?

The derivation of the least squares estimators in the previous section rests on
the assumption that the errors satisfy the second-order assumptions

E(g;) =0, var(ej) =02, cov(ej,er) =0, j#k, (8.12)

and in addition are normal variables. As they are uncorrelated, their normality
implies they are independent. On setting €™ = (e1,...,€,), we have

E(e) =0, cov(e,e) =E(ee™) = oI,

where I, is the n x n identity matrix. The least squares estimator equals
= (X"X)' X"y = (X"X) "X (X G +¢) = B+ (X"X) 71X e,
which is a linear combination of normal variables, and therefore its distribution
is normal. Its mean vector and covariance matrix are
E(B) = B+ (X"X) 'X"E(e),
var(B) = cov{B+ (X"X)"'X"e, B+ (X"X) ' X"e}
= (X"X) ' XTcov(e,e) X(XTX)!,

~

SO

E(B) =8, var(f) =o*(X"X)". (8.13)
Therefore B is normally distributed with mean and covariance matrix given
by (8.13). We shall see below that the residual sum of squares has a chi-

squared distribution, independent of 3 . Thus the key distributional results for
the normal linear model are

B~ N, {B,0*(X"X)"'} independent of SS(B) ~ X (8.14)
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To show that the least squares estimator and residual sum of squares are
independent, note that the residuals can be written as

e={I,—Hy=U,—H)(XB+¢)=(I,— H)e,

because HX = X (XTX) 'XTX = X. Therefore the vector e = (I,, — H)e
is a linear combination of normal random variables and is itself normally
distributed, with mean and variance matrix

E(e) = E{(I. - H)e} =0,
(8.15)
var(e) = var{(Il, — H)e} = (I, — H)var(e)(I, — H)™ = o*(I,, — H).

The covariance between (3 and e is

~

cov(B,e) = cov{f+ (X"X) ' X"¢, (I, — H)e}
= (X"X)'X"cov(e,e)(I, — H)"
= (X"X)"'X"6’I,(I, — H)" = 0.

As both e and B are normally distributed and their covariance matrix is zero,
they are independent, which implies that 8 and the residual sum of squares

~

SS(B) = e"e are independent.
The key to the distribution of SS(f3) is the decomposition

efe = (y—Xé)T(inﬁ) ~ ~
= (y—XB+XB-XP)"(y—XB+XB-XP)
{e+X(B-p} {e+x(B-p],

which leads to
e'efo? =€"e/o? + (B—B)"X"X(B - B)/o?, (8.16)

because e X = y*(I,,—H)X = 0. The left-hand side of (8.16) is a sum of the n
independent chi-squared variables £5 /02, so its distribution is x7; its moment-
generating function is (1 — 2t)~"/2, t < 3. It follows from applying (3.23) to
the normal distribution of 3 in (8.14) that (3 — 8)T XX (3 — 8)/02 ~ X
On taking moment-generating functions of both sides of (8.16) we therefore
obtain

(1-2t)""2 =E {exp(te"e/o?)} x (1 —2t)7P/%, t< i,
because e and 3 are independent. Therefore e"e/o? has moment-generating
function (1 —2¢)~("=7)/2 showing that its distribution is x2_,. We need only
recall that SS(B) = eTe to establish the remaining result in (8.14): under the
normal linear model, we have SS(B)/O’2 ~ X p
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As the distribution of SS( B) is o2x2_ p» its mean is E{SS(3)} = (n—p)o?
and its variance is var{SS( )} 2(n — p)o*. Thus

= Z i) =—pssw>

is an unbiased estimator of 02, whereas 52 = $5(3)/n is biased.

8.3.2 Confidence and prediction intervals

Confidence intervals for components of 5 are based on the distributions of 3
and S2. Under the normal linear model the rth element of 3 satisfies

BT ~ N(ﬁT7 UQUTT)7
where v, is the rth diagonal element of (XTX)™!, and E is independent of

52, whose distribution is (n — p)~'o®x7_,. Therefore
— 6r - ﬁr

=Py
VS%u, P

which makes the connection with (8.9). A (1 — 2a) confidence interval for f3,

is B, + sviftn_p(a). When o2 is known, we replace s by o and t,_,(a) by  t.(a) is the a

the normal quantile z,. ggfgig;hc tv
Similar reasoning gives confidence intervals for linear functions of 3. The

maximum likelihood estimator of the linear function ¥ 3 is xiﬁ, which has

a normal distribution with mean x7 8 and variance

V&T(l’iﬁ) = xivar(ﬁ)x+ = o2 (XTX)!
As S? is independent of B, confidence regions for 2% 3 can be based on

etB -2t B
{S%a1 (XTX)"1ay}

12 tn—p-

If o2 is known, the observed s is replaced in the confidence interval by ¢ and
quantiles of the ¢ distribution are replaced by those of the normal. Notice that
the variance of a fitted value y; = ijﬂ is o2 ] T(XTX)'z;, and this equals
o?h;;, where hj; is the jth diagonal element of the hat matrix H.

A confidence interval for a function of parameters is different from a predic-
tion interval for a new observation, y; = x7 3+¢4. The presence of e would
introduce uncertainty about y4 even if § was known, and a prediction interval
must take this into account. If €, is normal with mean zero and variance o2,

independent of the data from which B is estimated, we have

E(Ii§+€+) = l'};_ﬂ,
Var(xf_ﬁ—i— er) = V&T(.’IJ};B) +var(ey) = o {2 (X" X)Tzy + 1}
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When ¢? is unknown, therefore, a prediction interval for y, can be based on

Y+ — xiB
[52 {1+ 27 (X7X) 1z, }]

1/2 ~ tnfpa

with the appropriate changes if o2 is known.

Example 8.12 (Cycling data) The covariance matrix for the parameter
estimates in Example 8.8 is ‘{'—2[4. As the residual sum of squares is SS(E) =
43.25, n = 16 and p = 4, an estimate of o2 is s2 = 43.25/12 = 3.604 on
12 degrees of freedom, and each estimate 3, has standard error (s2/16)1/2 =
0.475.

A 0.95 confidence interval for the true value of 3 is 31 + 5t12(0.025) /4, and
this is —5.437 £ 0.475 x 2.18 = (—6.47, —4.40) seconds, clear evidence that
the time is shorter when the seat is higher. The change due to the effect of
tyre pressure is 233 seconds, for which the standard error is 2 x s/4 = 0.95
seconds.

A 0.95 prediction interval for a further timing y; made with all three fac-
tors set at their higher levels would be 41.75 & (1 4+ #)/2st15(0.025), which
is (39.49,46.01). The variability introduced by e forms the bulk of the vari-
ability of y, whose variance is five times that of the fitted value. [

Example 8.13 (Maize data) Consider the two-sample model applied to
the data in Table 1.1. If we assume that the heights of the cross-fertilized
plants form a random sample with means Gy + (1, and that the heights of
the self-fertilized plants form a random sample with height Gy, and that both
have variance o2, the results of Example 8.9 establish that the estimates are

Bo =To. = 140.6, B =7, — ¥ = 161.53 — 140.6 = 20.93,

that the unbiased estimate of o2 is s2 = 553.19, and that the estimated
variance of 3 is s2(ng ' +ny ') = 73.78. As s? has 28 degrees of freedom, a
0.95 confidence interval for (3; has limits

Br £ s(nyt +ny 1) 255(0.025) = 20.93 4 73.78'/% x 2.048 = 3.34, 38.52.

This does not contain zero, and is evidence that the crossed plants are signif-
icantly taller than self-fertilized plants.

For the matched pairs model of Example 8.10, there are m = 15 pairs, with
Bo = 10.48 and s? = 712.36, on 2m — (m+1) = 14 degrees of freedom. A 0.95
confidence interval for 3y based on this model has limits

Bo + {s2/(2m)}"/?t14(0.025) = 10.48 + (712.36/30)"/2 x 2.154 = 0.00, 20.96.

The corresponding interval for the height increase for crossed plants is an
interval for 20y, that is, (0.00,41.91). This is wider than the interval for the
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two-sample model, and just contains the value zero, giving evidence that there
may be no increase due to cross-fertilization. The increase in interval width has
two causes. First, the estimate of 0 for the matched pairs model equals 712.36,
which is larger than the value 553.19 for the two-sample model. Second, there
are only 14 degrees of freedom for the matched pairs estimate of variance, and
[t14(0.025)| > |t25(0.025)|, which slightly inflates the matched pairs confidence
interval relative to the interval from the matched analysis. [

Exercises 8.3

1 The following table gives the parameter estimates, standard errors and correla-
tions, when the model y = By + Bix1 + 22 + B3x3 + € is fitted to the cement
data of Example 8.3. The residual sum of squares is 48.11.

Estimate SE Correlations of Estimates
(Intercept) 48.19 3.913 (Intercept) x1 x2
x1 1.70 0.205 x1 -0.736
x2 0.66 0.044 x2 -0.416 -0.203
x3 0.25 0.185 x3 -0.828 0.822 -0.089

On the assumption that this normal linear model applies, compute 0.95 con-
fidence intervals for (o, $1, B2, and (s, and test the hypothesis that 83 = 0.
Compute a 0.90 confidence interval for B2 — (5.

2 Let 8 be a least squares estimator, and suppose that e ~ N(0, o?) independent
of 3. Verify that var(z}8) = ¢?zL(X"X) ‘x4 and that var(zlf + ;) =
{1 4+ 25 (X" X) ‘24 }. Assuming that a normal linear model is suitable for
the cycling data, calculate a 0.90 confidence interval for the mean time to cycle
up the hill when the three factors are at their lowest levels. Obtain also a 0.90
prediction interval for a future observation made with that setup.

8.4 Least Squares and Robustness

In Section 8.2.1 we established that 3 = (X"X)~!XTy is the maximum likeli-
hood estimator of the regression parameter 8 under the assumption of normal
responses. The model is a linear exponential family with complete minimal
sufficient statistic (ﬁ, S?), and it follows that these are the unique minimum
variance unbiased estimators of (3,02). It is natural to ask to what optimal-
ity properties hold more generally. We shall see below that 5 has minimum
variance among all estimators linear in the responses y, under assumptions
on the mean and variance structure of y alone. Thus the least squares estima-
tor retains optimality properties even without full distributional assumptions.
This has important generalizations, as we shall see in Section 10.6.

Suppose that the second-order assumptions (8.12) hold, but that the er-
rors are not necessarily normal. Thus, although uncorrelated, they may be
dependent. Then E(y) = X3 and var(y) = 02I,. Let /3 denote any unbiased



The n X n hat matrix
H=Xx(XT"x)"'xT
is symmetric and
idempotent and
hence so is I,, — H.

Johann Carl
Friedrich Gauss
(1777-1855) was
born and educated in
Brunswick. He
studied in Gottingen
and obtained a
doctorate from the
University of
Helmstedt. His first
book, published at
the age of 24,
contained the largest
advance in geometry
since the Greeks. He
became director of
the Gottingen
observatory and
invented least
squares estimation
for the combination
of astronomical
observations, though
his statistical work
was not published
until much later. He
also wrote treatises
on theoretical
astronomy,
surveying, terrestial
magnetism, infinite
series, integration,
number theory, and
differential geometry.

8.4 - Least Squares and Robustness 417

estimator of 8 that is linear in y. Then a p X n matrix A exists such that

B = Ay, and unbiasedness implies that E(8) = AX = 3 for any parameter
vector (; this entails AX = I),.

~ -~

var(f) — var(f) = Ac’I,AT —o*(X"X)7!
= o’ {AA" - AX(X"X)'X"A"}
= o?A(l, — H)A"
= %A, - H)(I, — H)TA"

Now

and this p X p matrix is positive semidefinite. Thus B has smallest variance
in finite samples among all linear unbiased estimators of 3, provided that
the second-order assumptions hold. This result, the Gauss—Markov theorem,
gives further support for using B if a linear estimator of 3 is sought, though
of course nonlinear estimators may have smaller variance.

Example 8.14 (Student ¢ density) Suppose that y = X3 + o¢, where
the ¢; are independent and have the Student ¢ density (3.11) with v degrees
of freedom. Now var(e;) is finite and equals v/(v — 2) provided v > 2, and
then the least squares estimator has variance matrix o?v/(v —2) x (XTX)~L.

How much efficiency is lost by using least squares rather than maximum
likelihood estimation for 37 To see this we must compute the expected infor-
mation matrix, which gives the inverse variance of the maximum likelihood
estimator. The log likelihood assuming v and o2 known is

v+1
2

(B) = ——5=> log{1+(y; —j8)?/(vo™)},

and differentiation with respect to § gives

o08) v+l y; — .

93 vo? 1+ (y; — 27B)/(vo?) "
C0H(B) vt l s 1-(y —27p)?/(vo?) g
9005~ ok A (14 (g — 282 /wor)}

Now E{(1+&?/v)"} = (v+2r—=2)---v/{(v+2r —1)--- (v + 1)}, so the
expected information for 8 is 0=2(v +1)/(v+3) x XTX. Thus the maximum
likelihood estimator is a nonlinear function of y with large-sample variance
matrix o?(v+3)/(v+1) x (XT X)L Tt follows that the least squares estimator
has asymptotic relative efficiency (v — 2)(v + 3)/{v(v + 1)}, independent of
the design matrix, 8, or 02. As v — oo, the efficiency tends to one; for v = 5,
10, and 20 it equals 0.8, 0.95, and 0.99. Maximum likelihood estimation of G
barely improves on least squares for a wide range of v, because the ¢ density
is close to normal unless v is small. ]
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M-estimation

The least squares estimators have strong optimality properties, but because
they are linear in y, they are sensitive to outliers. When data are too extensive
to be carefully inspected or when bad data are present, robust or resistant
estimators are more appropriate. One approach to constructing them is to
replace the sum of squares with a function > p{(y; — 2j3)/c} that down-
weights extreme values of (y; — 3)/0. The resulting estimators are called
M-estimators because they are maximum-likelihood-like: the function p takes
the place of a negative log likelihood. They may also be defined as the solutions
of the p x 1 estimating equation (Section 7.2)

oY wip'{(y; — 2] B)/o} =0, (8.17)
j=1
where p’(u) = dp(u)/du, which extends the least squares estimating equation
XT(y—XB) = z;(y; — x]B) = 0. (8.18)
j=1

Many functions p(u) have been proposed. Setting p(u) = u?/2 gives least
squares. Other possibilities include p(u) = |u|, p(u) = vlog(1 + u?/v)/2, and

u?, if |u] < e,
ol ={ u

c(2|u| —¢), otherwise,
corresponding to the median, a ¢, density, and a Huber estimator (Exam-
ple 7.19). These have the drawback that large outliers are not downweighted
to zero. This can be achieved with a redescending function such as the bi-
weight,

p'(u) = umax [{1 — (u/c')Z}Q,O} ;

taking ¢’ = 4.865 gives asymptotic efficiency 0.95 for normal data.

Notice that Y p{(y; — 2 3)/c} has second derivative o=2 > x;27 ¢ (y; —
x7 ), whose expectation is of form ¢ 2X"X x E{g/(¢)} under a model in
which y; = 273 + o¢; and the ¢; are independent and identically distributed
with zero mean and unit variance. The ideas of Section 7.2 imply that the
M-estimator has asymptotic variance

o} (X"X)T  x E{g(e)*} /E{g ()},

so its efficiency relative to least squares is simply E{g'(¢)} /E {g(¢)?}. The
Huber estimator for regression has efficiencies given by the right panel of
Figure 7.4, for instance.

Equation (8.17) may be solved using iterative versions of least squares de-
scribed in Section 10.2.2, though these may fail to converge if p is not convex.



Figure 8.3 Data
for which least
squares estimation
fails. Left: log
survival proportions
for rats given doses
of radiation, with
lines fitted by least
squares with (solid)
and without (dots)
the outlier, and a
Huber M-estimate
for the entire data
(dashes) (Efron,
1988). Right:
simulated data with
a batch of outliers
(circles), and fits by
least squares to all
data (solid), least
squares to good data
only (large dash),
Huber (dot-dash),
biweight (dashes),
and least trimmed
squares (medium
dash). The Huber
and biweight fits are
the same to plotting
accuracy.
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In practice o too must be estimated, by the median absolute deviation of the
residuals y; — z7 3 at each iteration, or using an M-estimator of scale.

Initial values for these fits can be found by a highly resistant procedure such
as least trimmed squares, whereby 3 is chosen to minimize ) ¢, (y; — z] ﬂ)?i);
this is the sum of the smallest ¢ = [n/2]| 4 [(p+1)/2] squared residuals, found
by a Monte Carlo search. Highly resistant procedures do not usually provide
standard errors, which can be obtained by a data-based simulation procedure
such as the bootstrap; see the bibliographic notes.

Example 8.15 (Survival data) The left panel of Figure 8.3 shows data
on batches of rats given doses of radiation. They are well fit by a straight line,
apart from an apparent outlier, which strongly affects the least squares fit
— note what the pattern of residuals will be. The least squares estimates of
slope and its standard error with and without the outlier are —5.91 (1.05) and
—7.79 (0.59), while Huber estimation gives —7.02 (0.46). Downweighting the
outlier using the robust estimator gives a result intermediate between keeping
it and deleting it.

This sample is small and the outlier sticks out, so robust methods are not
really needed. They are more valuable for larger more complex data sets where
visualization is difficult and outliers non-obvious. ]

Example 8.16 (Simulated data)
estimators, we generated sets of 25 standard normal observations y with a

To illustrate and compare some robust

single covariate x, and then added k outliers with mean 6, having the t5
distribution. The right panel of Figure 8.3 shows one of these datasets, with
k = 5. We then computed five estimates of slope, from least squares applied
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k Least squares M-estimation Least trimmed
No outliers ~ With outliers Huber Biweight squares

1 0.00 (0.07) 0.17 (0.06) 0.07 (0.07)  0.01 (0.07) —0.01 (0.13)

2 0.00 (0.07) 0.26 (0.06) 0.13 (0.07)  0.02 (0.09) 0.01 (0.14)

5 0.00 (0.07) 0.41 (0.05) 0.38 (0.06) 0.19 (0.19) 0.01 (0.14)

10 0.00 (0.06) 0.48 (0.04) 0.48 (0.04) 0.46 (0.12) 0.05 (0.20)

with and without the outliers, from Huber and biweight M-estimators having
efficiency 0.95 at the normal model, and from least trimmed squares. Table 8.4
shows the bias and standard deviation of the slope estimators for various k,
computed from 200 replicate data sets.

Inclusion of just one outlier ruins the least squares estimator, which is the
benchmark when outliers are excluded. The biweight gives the better of the
M-estimators, but with & > 5 it is badly biased. The M-estimators perform
as badly as least squares when contamination is high. Least trimmed squares
is least biased overall, but is very inefficient even for & = 1. This suggests
that a good practical data analysis strategy is to use an initial least trimmed
squares fit to identify and delete outliers, and then apply M-estimation to the
remaining data. [

Misspecified variance

Outliers are just one of many possible problems in regression. Suppose that
although E(y) = X, the variance is var(y) = V rather than the assumed

N

02I,. Then B = (XTX)~'XTy has variance

(X*X)"HX"VX)(XTX) L (8.19)
If V = 021, then var(8) = 02(X™X)~!, which itself is the inverse Fisher
information for 5 under the normal model. Thus if the variance of y is correctly
supposed to equal 021, the least squares estimator attains the Cramér-Rao
lower bound appropriate to normal responses, while (7.20) implies that var(a)
is inflated otherwise.

Most packages use the formula o?(X*X)~! and make no allowance for pos-
sible variance misspecification. If plots such as those described in Section 8.6
do not suggest a particular variance to be fitted using weighted least squares,
the weights being W = V!, then it may be better to apply least squares but
to base confidence intervals on an estimate of (8.19). One simple possibility
is to replace V with V = diag{r2,...,r2}, where ri = (y; —y;)/(1 = hjj).

Table 8.4 Bias
(standard deviation)
of estimators of slope
in sample of 25 good
data and k outliers,
estimated from 200
replications.



8.5 - Analysis of Variance 421

Exercises 8.4
1 Check the details of Example 8.14.

2 Show that 5 and S? are unbiased estimators of 8 and o2 even when the errors
are not normal, provided that the second-order assumptions are satisfied.

3 Consider a linear regression model (8.1) in which the errors ¢; are independently
distributed with Laplace density

flu;0) = (2%%0) L exp{—|u/(2"%0)|}, —oo <u < o0,0>0.
Verify that this density has variance o. Show that the maximum likelihood
estimate of 3 is obtained by minimizing the L' norm Sy — xJTﬁ| of y — X(.
Show that if in fact the ¢; B N(0,0?), the asymptotic relative efficiency of the

estimators relative to least squares estimators is 2/7.

4 Consider a linear model y; = x;6+¢;, j = 1,...,n in which the €; are uncorre-
lated and have means zero. Find the minimum variance linear unbiased estima-
tors of the scalar 8 when (i) var(e;) = z;0°, and (ii) var(e;) = z70°. Generalize
your results to the situation where var(e) = o /w;, where the weights w; are
known but o2 is not.

5 Use (8.18) to establish that (7.20) takes form
(X"X) ' XTVX(XTX) T > e (XTX) !

when var(y) is wrongly supposed equal to %I, instead of V.

8.5 Analysis of Variance

8.5.1 F statistics

In most regression models a key question is whether or not the explanatory
variables affect the response. For example, in the bicycle data, we were con-
cerned how the time to climb the hill depended on the seat height and other
factors. Ockham’s razor suggests that we use the simplest model we can. This
poses the question: which explanatory variables are needed? To be concrete,
suppose that we fit a normal linear model

y:Xﬁ—i—E:(Xl,Xg)<§;>+5:X161+X2ﬁ2+8, (8.20)

where X7 is an n x ¢ matrix, X» is an n x (p—¢) matrix, ¢ < p, and 8 and 9
are vectors with respective lengths ¢ and p — q. We suppose that X has rank
p and X; has rank g. The explanatory variables X, are unnecessary if gy = 0,
in which case the simpler model y = X331 + € holds. How can we detect this?

In Figure 8.2, let the line x = 0 in the horizontal plane through the origin
represent the linear subspace spanned by the columns of X;. The fitted value
71 = X1(XTX;) 1 XTy is the orthogonal projection of 3 onto this subspace.
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The vector of residuals, y — 71 = {I, — X1(XTX1) !XT}y, resolves into the
two orthogonal vectors y — ¢ and i — y1; that is,

Y=t =W-9+E-n),
where (y — 9)" (¥ — y1) = 0. These vectors are the residual from the more
complex model, y — 7, and the change in fitted values when X5 is added to
the design matrix, § — 1. As these vectors are orthogonal linear functions of

the normally distributed vector y, they are independent. Pythagoras’ theorem
implies that

=9)"W-9)=u-9"W-+T-50)"T—-1),
or equivalently
SS(B) = $S(B) + {8(B) - 55 (D)} (8:21)

Thus the residual sum of squares for the simpler model is the sum of two inde-
pendently distributed parts: the residual sum of squares for the more elaborate
model, S5 (B), and the reduction in sum of squares when the columns of X,
are added to the design matrix, SS(3;) — SS(B).

If the submodel is correct, so too is the more elaborate model, because [

takes the particular value zero. In this case SS(B;) has a 02x2_ , distribution,
and SS(3) has a 022 _, distribution. Since SS(5;) — SS(5) is independent
of $S(B), (8.21) implies that when B = 0, SS(;) — SS(3) has a ax2_,
distribution, and that

o 15508) - SS(6)}/(p—a)

S5()/(n— ) Frmanr
recall (8.8). If 3 is non-zero, the reduction in sum of squares due to including
the columns of X5 in the design matrix will be larger on average than if 52 = 0.
Thus if §2 # 0, F will tend to be large relative to the Fj,_, ,,—, distribution.
We can therefore test the adequacy of the simpler model using the statistic
F, large values of which suggest that (3 # 0.

Exercise 8.5.3 gives the algebraic equivalent of the geometric argument
above. As we saw in Section 8.2.3, F' arises from the likelihood ratio statistic
for comparison of the two models. When X5 consists of a single covariate, 05 is
scalar, and tests and confidence intervals for it may be obtained by fitting the
more elaborate model (8.20) and calculating T = (32 — 62)/(81)%2). Here 52 is
the estimate of o2 from the more elaborate model, and the null distribution

of T is t,,—p. In this situation there is a simple connection to F': when testing
Ba =0, F =T?=p3/(s*v).

Example 8.17 (Cement data) Suppose that we want to compare the
models y = By + 2101 + ¢ and y = By + 101 + 2082 + 303 + 404 + €. This



Fuy uy(a) is the o
quantile of the F
distribution with vq
and vo degrees of
freedom.
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corresponds to asking if is there any effect on y of x2, x3, or x4, after allowing
for the effect of x1. Here X7 is a 13 x 2 matrix whose columns are a vector
of ones and z1, and X5 is a 13 X 3 matrix whose columns are x5, z3, and xg4;
both matrices have full rank.

For the full model p =5 and the residual sum of squares is SS(B) = 47.86,
and for the simpler model ¢ = 2 and the residual sum of squares is S.S (31) =
1265.7. Thus the reduction in sum of squares due to the columns of X5 after
fitting X7 is 1265.7 — 47.86 = 1217.84 on three degrees of freedom. To test
whether this is a significant reduction, we compute

(1265.7 — 47.86) /(5 — 2)
47.86/(13 —5)

F= = 67.86,

which would be consistent with an Fj g distribution if the simpler model was
adequate. As F' greatly exceeds F35(0.95) = 4.066, there is strong evidence
that there are effects of the added covariates.

Having established that adding extra covariates helps to explain the overall
variation, it is natural to ask whether this is due to a subset of them rather
than to all three. Is there a more informative decomposition of the sum of
squares due to adding X7 [

8.5.2 Sums of squares

The interpretation of sums of squares is most useful if they can be decomposed
into the reductions from successively adding different explanatory variables to
the design matrix.

Suppose that we have a normal linear model

y=1,00+ X101 + Xofa+ - + X Om + €, (8.22)

where we call the matrices 1,,, X1, X5, and so forth terms; the constant term
1,, is a column of n ones. Usually the simplest model that might be considered
is y = 1,00 + €, in which case the fitted value is 7o = 1,7, and the residual
sum of squares is SSp = > (y; — ¥)? with vop = n — 1 degrees of freedom.

We now consider the successive reductions in sum of squares due to adding
the terms X1, X2, and so forth to the design matrix. Let 7, be the fitted value
when the terms X1,..., X, are included, and write

Y=o =Y = Ym) + Um — Ym—1) + -+ (11 — %o)-
This decomposition extends that leading to (8.21) and shown in Figure 8.2.

The geometry of least squares implies that the quantities in parentheses on
the right are mutually orthogonal. Pythagoras’ theorem tells us that (y —

Y0)" (y — Yo) equals

= Um)" (W= Um) + Gm = Jm—1)" Gm = Ym—1) + -+ + (U1 = J0)" (U1 — Do),
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Table 8.5 Analysis
of variance table.

Terms df Residual Terms df Reduction in Mean square
sum of squares  added sum of squares

1n n—1 SSo

1n, X1 m S8 X1 n-l-n SSo — SS1 55055,

1n, X1, X2 Vo SSs Xo vy — 2 SS1 — SS3 Sf%}iz

In, X1, Xm Vm SSm Xm VUm—1—Vm SSm—1—SSm 5Sm—1=55m

VYm—1—"Vm

or equivalently
SS9 =85m + (SSm—1—59Sm) + -+ (5S) — S51), (8.23)

where S5, denotes the residual sum of squares that corresponds to the fitted
value g, on v, degrees of freedom. In (8.23) the difference SS,_1 — S5, is
the reduction in residual sum of squares due to adding the term X, when
the model already contains 1,, X;,..., X,_1. As y is normal and the vectors
Yr — Yr—1 and y — Y, are all linear functions of the data, the geometry of least
squares implies that S5, and all the SS,_; — 5.5, are mutually independent.

As more terms are successively added to the model, the degrees of freedom
of the residual sums of squares decrease, that is, vy > 11 > -+ > v,,, with
Vr = Vpy1 when the columns of X,.;; are a linear combination of the columns
of the matrices 1,, X1,...,X;. If vp = vry1, Ur = Yr41, and SS,. = SS,41.
The term X, 4; is then redundant, because its inclusion does not change the
fitted model.

Analysis of variance

The sums of squares can be laid out in an analysis of variance table. The
prototype is Table 8.5. The residual sums of squares decrease as terms are
added successively to the model. Often the three leftmost columns are omitted
and their bottom row is placed under the right-hand columns; S.S,, is used to
compute the denominator for the F' statistics for inclusion of X7, X5 and so
forth, and these may be included also, as in the examples below.

Example 8.18 (Cement data) Table 8.6 gives the analysis of variance
when the covariates x1, x2, x3, and x4 are successively included in the design
matrix. There are very large reductions due to fitting 1 and x5, but those due
to 3 and x4 are smaller. The F' statistics for testing the effects of 1 and x-
are highly significant, but once z1 and x5 are included the F statistic for x3 is
not large compared to the F g distribution. A similar conclusion holds for x4.



Table 8.6 Analysis
of variance table for
the cement data,
showing reductions
in overall sum of
squares when terms
are entered in the
order given.

Table 8.7 Models
for the means of the
crossed and
self-fertilized plants
in the pth pot and
jth pair for the
maize data.
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Term df Reduction in Mean square F
sum of squares

T1 1 1450.1 1450.1 242.5
9 1 1207.8 1207.8 202.0
3 1 9.79 9.79 1.64
T4 1 0.25 0.25 0.04
Residual 8 47.86 5.98
Terms Crossed Self-fertilized
1 Iz H
1+Fertilization w4 o o
1+Fertilization+Pot w+oa+Bp w+ Bp

1+Fertilization+Pot+Pair  p+a+8p +v; p+Bp +7;

Thus once z1 and x5 are included, x3 and x4 are unnecessary in accounting
for the response variation. [ |

Example 8.19 (Maize data) Consider models for the maize data with
means as in Table 8.7. In order, these correspond to: no differences among
pairs and no difference between cross-fertilization and self-fertilization; no
differences among pairs but an effect of fertilization type; differences among
the pots and an effect of fertilization type; and differences among the pots
and among the pairs and an effect of fertilization type. Table 8.8 gives the
analysis of variance when these models are fitted successively.

There are four pot parameters [3,, but the reduction in degrees of freedom
when the pots term is included is three because although the corresponding
30 x 4 matrix has rank four, its columns sum to a column of ones. As the design
matrix already contains a column of ones, including the four columns for the
pots term increases the rank of the design matrix by only three. Likewise only
11 columns of the 30 x 15 matrix of terms for pairs increase the rank of a
design matrix that already contains the overall mean and the pots term: the
remaining four columns are linear combinations of those already present.

The residual sum of squares for the eventual model is 9972.5 on 14 degrees
of freedom, so the denominator for F statistics is 9972.5/14 = 712.3. The F'
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Term df Reduction in Mean square F
sum of squares

Fertilization 1 3286.5 3286.5 4.61
Pot 3 1053.6 351.2 0.49
Pair 11 4467.3 406.1 0.57
Residual 14 9972.5 712.3

statistic for fertilization is just significant at the 5% level, but there seem to
be no differences among pots or pairs. We can attribute to random variation
the reduction in sum of squares when the pots and pairs terms are added, and
obtain a better estimate of o2, namely

(9972.5 4 1053.6 + 4467.3) /(14 + 3 + 11) = 553.3

on 28 degrees of freedom. The F' statistic for fertilization with this pooled
estimate of o2 as denominator is 5.94 on 1 and 28 degrees of freedom and its
significance level is 0.02, so the addition of the sums of squares for pots and
pairs to the residual has resulted in a more sensitive analysis. [

8.5.3 Orthogonality

The reduction in sum of squares when a term is added depends on the terms
already in the model. This can obscure the interpretation of an analysis of
variance, if a term that gives a large reduction early in a sequence of fits gives
a small reduction if fitted later in the sequence instead.

Suppose that a normal linear model (8.22) applies. The reductions in sum
of squares due to the terms X, are unique only if the vector spaces spanned
by the columns of the X, are all mutually orthogonal, that is, XX, = 0
when r # s. Suppose that this is true, that in addition X'1,, = 0, and that

y =100+ X1p1 + Xof2 +¢. (8.24)

Then the orthogonality of 1,,, X7, and X5 implies that the least squares esti-
mators are

Bo 110 0o \ !
@\1 == 0 XiFXl 0 (1 Xl Xg)Ty,
Ba 0 0 X3 Xo

so that By =7, B1 = (X7 X1) "' X7y, and By = (X X5) "1 XJy, with residual
sum of squares

YTy — BTXTX3 = yTy — ny — BT XT X151 — B3 X3 Xofo. (8.25)

Table 8.8 Analysis
of variance table for
linear models fitted

to the maize data.
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For the simpler models

y=1,00+¢e, y=1.00+Xi01+e y=1,00+ X202 +c¢,

a similar calculation gives residual sums of squares

YTy —ny’, Yy -0y - BIXTXa 0, YTy -y — 05 X5 Xofe,
and comparison with (8. 25) shows that the reductions due to X; and Xy are
ﬁlTXlTXlﬂl and 62TX2TX252 whether or not the other has been included in the
design matrix. Consequently the reductions in sums of squares due to X7 and
Xs are unique. This argument readily extends to models with more than two

mutually orthogonal terms X,.. In fact (8.24) has three, as we see by writing
1, = Xo.

Example 8.20 (Orthogonal polynomials) Consider a normal linear model
with design matrix

1 -2 2 -1 1
1 -1 -1 2 -4
X = (1117331733275537554) = 1 0 -2 0 6 s
1 1 -1 -2 —4
1 2 2 1 1

the last four columns of which correspond to linear, quadratic, cubic, and
quartic polynomials in a covariate with five values equally spaced one unit
apart. The columns of X are mutually orthogonal, and it follows that the
reduction due to any of them does not depend on which of the others have
already been fitted.

If the values had been equally-spaced but § units apart, the model would
be y = 1,80 + 62181 + - - - + 6%x4B4 + ¢, and the orthogonality of the terms
would be unaffected. ]

The argument leading to (8.25) rarely applies directly, but it may do so if
an overall mean, corresponding to a column of ones in the design matrix, is
fitted first. Suppose that the matrices X; and X5 in (8.24) are not mutually
orthogonal and are not orthogonal to 1,,, but that we rewrite the model as

y = 1,00+ T 01 +T302) + (X1 — 1,77) 61 + (X2 — 1,73) 02 + €
= luyo+ 2181 + Z2f32 + €,

say, where T] and T3 are the averages of the rows of X; and Xs. Then Z;
and Zs are centred and Z{'1,, = Z3'1,, = 0. This rearrangement of the model
changes the intercept but leaves 31 and (3> unaffected. If the original matrices
X; and X5 are such that Z{Z5 = 0, we can apply the argument leading to
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(8.25) to our new model, to obtain the successive residual sums of squares

SSo = yTy—ny’,
SS1 = y'y—ny? - BLZT 21,
5SSy = y'y—ny* — B ZTZ1B1 — B3 Zy Zofa,

as the terms Z; and Zs, or equivalently X; and X5, are added to the design
matrix. Since Z; is defined purely in terms of X; and 1,, and Z5 is defined
purely in terms of X5 and 1,, the reduction in sum of squares due to adding
X, after including the constant column 1, in the design matrix is the same
whether or not X5 is present. Hence provided the constant is fitted first, the
reductions in sum of squares due to X; and X5 are independent of the order
in which they are included. This argument extends to models with more than
two X, provided that the centred matrices Z, are mutually orthogonal.

Example 8.21 (3 x 2 layout) In a 3 x 2 layout with no interaction the
observations and their means can be written

Y1 Y12 v J e
Yo1 Y22, w+o pt+o+a.
Y31 Y32 P+ ptdeta

In terms of the parameter vector (u, «, d2,d5)", the design matrix is

1 0 00
1 1 00
1 01 0
X_1110’
1 0 0 1
11 0 1

with X7 the second column of X, and X5 the third and fourth columns of X.
Evidently X; and X5 are not orthogonal and they are not orthogonal to the
constant. On the other hand Z; and Z; in the corresponding centred matrix,

1 -1 _1 _1
2 3 3
;11 1
2 3 3
1 -1 o2 1
2 3 3
1 1oz 1
i1 3
1 —_ = = =
2 3 3
1 112
2 3 3

are orthogonal to the constant by construction and to each other because the
design is balanced: 2 and d3 each occur equally often with a and without
«. This balance has the consequence that provided that pu is fitted first, the
reductions in sums of squares due to X; and X5, or equivalently Z; and Zs,
are unique. [ |
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A designed experiment such as Example 8.21 can often be balanced, so
that orthogonality is arranged, at least approximately, and the interpretation
of its analysis of variance is relatively clear-cut. Even if the terms are not
orthogonal, however, it may be possible to order them unambiguously. One
example is polynomial dependence of y on x, where terms of increasing degree
are added successively. Another example is when some terms represent clas-
sifications that are known to affect y but which are of secondary importance,
and others correspond to the question of primary interest. For instance, it
would be natural to assess the effects of different treatments on the incidence
of heart disease after taking into account the effects of classifying variables
such as age, sex, and previous medical history.

Exercises 8.5

1  Consider the cement data of Example 8.3, where n = 13. The residual sums of
squares for all models that include an intercept are given below.

Model SS  Model SS  Model SS
———— 27158 12-- 579 123- 48.11
1-—— 12657 1-3-— 12271 12-4 4797
-2-- 906.3 1—--4 74.8 1-34 50.84

-—3- 19394 —-23- 4154 —-234 17381
-———4 8839 —-2-4 868.9

--34 175.7 1234 47.86

Compute the analysis of variance table when x4, x3, 2, and x: are fitted in
that order, and test which of them should be included in the model. Are your
conclusions the same as in Example 8.187

2  (a)Let A, B, C, and D represent pXp, pXq, g X g, and ¢ X p matrices respectively.
Show that provided that the necessary inverses exist

(A+BCD) ' =A—A'B(C""+ DA 'B)"'DA™".

(b) If the matrix A is partitioned as

_ (An A12)
A_(A21 Az )’

and the necessary inverses exist, show that the elements of the corresponding
partition of A~! are

A = (A — AAyp An) T, AT = (A — An A A) T
A2 = AT ARLAR, AP = _AG A AM.
3 In (8.20), suppose that X; and X2 have ranks ¢ and p— g respectively, and define

H=XX"X)"'X", P=1I,—H, H = X;(XTX1)"'XT and P, = I,, — Hi.
Let y = Hy, and 1 = Hyy.
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Model SS Model SS Model SS Model SS
— —— 18780 — Po— 17726 F Po — 14440 F—Pa 9972
F—— 15493 — —Pa 13259 —PoPa 13259 F PoPa 9972

(a) Show that (y — )" (¥ — 1) = 0 if and only if HH; = Hi, and show
that H1H = HH,. Give a geometrical interpretation of the equations H1H =
HH, = H;.

(b) Show that

(XTPX1) ' = (X7 X)) — Hi Xo(Xo P X2) ' Xo X (X7 X))~
(¢) Show that
H=X,(X{PX1) ' XT — Hi Xo(Xg P1X2) ' X5 + Xo( XS P Xo) ' XJPy.

(d) Use (b) and (c) to show that HH, = H.

Under what two circumstances might one of the reductions in residual sum of
squares SSr — SSr4+1 in an analysis of variance table for a normal linear model
equal zero? Does the more probable of these occur when the columns of either
of the design matrices below are included successively in their models:

—_ 0 =

(a) (b)

=
SO ==
=0 O
— o= O
==
OO ==
_o o
~)

0

Suppose that the maize data consisted of three pots each containing two pairs
of plants, 12 plants in all. Using the parametrization in Example 8.19, write
out the 12 x 11 design matrix whose first two columns are terms for the overall
mean and for cross-fertilization, whose next three columns are the pots term,
and whose last six columns are the pairs term. Say what the degrees of freedom
for the four models in Example 8.19 would then be, and hence give the degrees
of freedom in the analysis of variance table.

The residual sums of squares in Example 8.19 are given in Table 8.9. For which of
the terms are the reductions in residual sum of squares independent of the order
of fitting? Explain why adding the Pots term to a model that already contains
the Pairs term does not reduce the sum of squares, even if Fertilization is
not included.

Verify that the columns of the design matrix in Example 8.20 are orthogonal.
Use Gram—Schmidt orthogonalization to derive the corresponding matrices for
two, three, and four observations.

Verify that 1,, Z1, and Z» in Example 8.21 are orthogonal. Show that if one of
the rows of the original design matrix is missing, the Z, are not orthogonal.

Table 8.9 Sums of
squares for models
fitted to maize data.
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8.6 Model Checking
8.6.1 Residuals

Discrepancies between data and a regression model may be isolated or sys-
tematic, or both. One type of isolated discrepancy is when there are outliers:
a few observations that are unusual relative to the rest. Systematic discrepan-
cies arise, for example, when a transformation of the response or a covariate is
needed, when correlated errors are supposed independent, or when a term is
incorrectly omitted. There are many techniques for detecting such problems.
Graphs are widely used, often supplemented by more formal methods that
sharpen their interpretation.
The assumptions underlying the linear regression model (8.1) are:

e [inearity — the response depends linearly on each explanatory variable
and on the error, with no systematic dependence on any omitted terms;

e constant variance — the responses have equal variances, which in par-
ticular do not depend on the level of the response;

e independence — the errors are uncorrelated, and independent if normal;
and sometimes

e normality — in the normal linear model the errors are normally dis-
tributed.

Many graphical methods for checking these assumptions are based on the raw
residuals, e = y—7. These are estimates of the unobserved errors e, with mean
vector and variance matrix

E(e) =0, var(e) =o?(I, — H),

where H is the hat matrix X (XTX) 1 XT. The covariance of two different
residuals, e; and ey, equals —o?h i, so in general the residuals are correlated.
A difficulty in direct comparison of the e; is that their variances, o%(1—h;;),
are usually unequal. We therefore construct standardized residuals
ej yj — i

— = 8.26
VST ) P S k) 850

where 7 B = 7, is the jth fitted value and s? is the unbiased estimate of o2
based on the model. The r; have means zero and approximately unit variances,
and hence are comparable with standard normal variables.

The simplest check on linearity is to plot the response vector y against
each column of the design matrix X. It is also useful to plot the standardized
residuals r against each variable, whether or not it has been used in the model.
Incorrect form of dependence on an explanatory variable, or omission of one,
will show as a pattern in the corresponding plot. More formal techniques
designed to detect wholesale nonlinearity are discussed below.
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Constancy of variance is usually checked by a plot of the r; or |r;| against
fitted values. A common failure of this assumption occurs when the error
variance increases with the level of the response; this shows as a trumpet-
shaped plot. Since the raw residuals e and the fitted values ¥ are uncorrelated,
we would expect random scatter if the model fitted adequately. This plot can
also help to detect a nonlinear relation between the response and fitted value,
as in Example 8.24 below.

Non-independence of the errors can be hard to detect and can have a serious
effect on the standard errors of estimates, but serial correlation of time-ordered
observations may show up in scatterplots of lagged r;, or in their correlogram.

Assumptions about the distribution of the errors can be checked by proba-
bility plots of the r;. In particular, normal scores plots are widely used.

Single outliers — maybe due to mistakes in data recording, transcription,
or entry — are likely to show up on any of the plots described above, while
multiple outliers may lead to masking where each outlier is concealed by the
presence of others.

Example 8.22 (Cycling data) Figure 8.4 shows plots of the r; for the
model that includes effects of seat height, dynamo and tyre pressure. The top
panels show the r; plotted against the day on which the run took place, and
the order of the run within each day. There is slight evidence of dependence
on these, but we must beware of spurious patterns when there are only sixteen
observations. To check whether these patterns might be genuine, we construct
the F statistic for inclusion of factors corresponding to day and run after
including seat height, dynamo, and tyre pressure in the model. Its value is
3.99, to be compared to F7 5(0.95) = 4.88. Any evidence of differences among
days and runs is weak, and we discount it.

The lower left panel of the figure shows residuals plotted against fitted
values. There is a slight suggestion that the error variance increases as the
fitted value does, but this is mostly due to the largest observation at the right
of the plot.

The lower right panel of the figure shows a normal probability plot of the
residuals. This is slightly upwardly curved, but not remarkably so in so small
a set of data.

Inspection of Table 8.3 shows that the largest residual is for the sixth setup,
of which the experimenter writes:

Its comparison run (setup 5) was only 54 seconds. This is the largest
amount of variation in the whole table. I suspect that the correct reading
for setup 6 was 55 seconds, that is, I glanced at my watch and thought
that it said 60 instead of 55 seconds. Since I am not sure, however, 1
have not changed it for the analysis. The conclusions would be the same
in any case.



Figure 8.4

Residual plots for
data on cycling up a
hill. The panels
showing residuals
plotted against levels
of day and run, and
against fitted values,
would show random
variation if the
model is adequate, as
seems to be the case.
The normal scores
plot shows that the
errors appear close
to normal.
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One reason that the conclusions would be unchanged is that a well-designed
experiment like this is relatively robust to a single bad value.

To sum up: the linear model (8.2) seems to fit these data adequately.

8.6.2 Nonlinearity

Linearity is usually a convenient fiction for describing how a response depends

on the explanatory variables, and there are many ways it can fail. For exam-

ple, a linear model may be appropriate for a transformation of the original
response, so that a(y) = 273+ ¢ for some function a(-); then y = a= (2" B+¢)
and error is not additive on the original scale. Another possibility is that

the response is a nonlinear function of ™3 but the error is additive, that is,
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y = b(z" B)+¢ for some b(-). More generally we could put a(y) = b(z" ) +c(e)
for fairly arbitrary functions a(-), b(-) and ¢(-). Such models can be fitted, but
they are beyond our scope.

For a simpler approach, we consider parametric transformation of the re-
sponse, in which we assume that for some family of transformations a(-) in-
dexed by a parameter A, there is a transformation such that a(y) = 20 + .
In principle we might consider many possible transformations, but practical
experience suggests that power and logarithmic transformations are among
the most fruitful. The following example gives a general approach.

Example 8.23 (Box—Cox transformation) Suppose that a normal lin-

ear model applies not to y, but to
A
-1
O = { i
logy,

As X varies in the range (—2,2) this encompasses the inverse transformation
(A =—1),log (A = 0), cube and square roots (A = %, §
(A =1), as well as the square transformation (A =

A£0,
A=0.

), and the original scale
2). We assume below that
all the y; are positive. If not, the transformation must be applied to y; + &,
with & chosen large enough to make all the y; + & positive.

Now let 4 denote the n x 1 vector of transformed responses, and assume
that a normal linear model

yN = X3+«

2. We assume that the
design matrix contains a column of ones, so that using y» rather than y*

applies for some values of A\, 3, and error variance
leaves the fit unchanged; it merely changes the intercept and rescales (3.

To obtain the likelihood for 3, 02, and ), note that on taking into account
the Jacobian of the transformation from 3 to y, the density of yj is
A-1

Yj Lo 2
(2mo2)1/2 P {_F(yj N

Consequently the log likelihood based on independent ¥, . .., y, is

= Z - ~1)) logy;.
j=1

If A is regarded as fixed, the maximum likelihood estimates of 3 and o2 are

fyj; B,0%N) =

Z(ﬂ,aQ,)\)Ef% nlogo? + Tﬂ + (A

By = (XTX)"1XTyN and SS(@,\)/n, where SS(@,\) is the residual sum of

squares for the regression of ¥y on the columns of X. Thus the profile log
likelihood for A is

lp(A) = glaxﬁ(ﬁ,a A= -2 {1og SS(B3y) — log gw—l)} :

Suggested by Box
and Cox (1964).
George E. P. Box
(1919-) was
educated at London
University and has
held posts in
industry and at
Princeton and the
University of
‘Wisconsin. He has
made important
contributions to
robust and Bayesian
statistics,
experimental design,
time series, and to
industrial statistics.
Sir David Roxbee
Cox (1924-) was
born in Birmingham
and educated in
Cambridge and
Leeds. He has held
posts at Imperial
College London,
Cambridge, and
Oxford where he
nows works. He has
made highly
influential
contributions across
the whole of
statistical theory and
methods. See
DeGroot (1987a) and
Reid (1994).



8.6 - Model Checking 435

where g = ([T y;)"/™ is the geometric average of y1, . . ., y,. Equivalently £,()\)
equals f%nlog 5SSy (BA)’ where SSQ(EA) is the residual sum of squares for the
regression of y(* /g on the columns of X . Exercise 8.6.3 invites you to provide
the details.

A plot of the profile log likelihood ¢,(\) summarizes the information con-
cerning A; a (1 — 2a) confidence interval is the set for which £,(A\) > £, ) —

¢, () is the a %01(1 —2a). The exact maximum likelihood estimate of A is rarely used, since
quantile of the Xﬁ

disteibution. a nearby value is usually more easily interpreted. [

A different approach is to consider whether the model y = b(x™3) 4+ € might
apply. This cannot be linearized by a response transformation and if there
is evidence that b(-) is substantially nonlinear but the variance is constant
it may be necessary to fit a nonlinear normal model. The following example
gives one method for detecting this sort of nonlinearity.

Example 8.24 (Non-additivity) Suppose that it is feared that y = b(z" )+
e, where b(-) is a smooth nonlinear function. Taylor series expansion of b(-)
about a typical value of ™3, 7, say, gives

y=b(n) + V' (n)("B—n)+ 3" ()" —n)*+e.

If the model contains a constant, so that ™0 = By + 101 + -+ -, then y =
2%y 4 6(27y)? + ¢, where 7 is just a reparametrization of 3, and § o b”(n). A
large value of ¢ corresponds to strong nonlinear dependence of y on ™.

Let us fit the model y = X+ ¢, giving fitted values x]TB and residual sum

-~

of squares SS(3). Then as y — 2™y = §(27v)? + ¢, non-additivity should show
up as curvature in a plot of standardized residuals against fitted values.

A formal test for non-zero § is based on refitting the model with the column

~

(2 8)* added to the design matrix. Although the residual sum of squares for
this model, SSs5, depends upon the fitted values for the previous fit, the F

statistic for inclusion of (2] 3)?,

~

SS(6)—SS
L7 (8.27)
SSs/(n—p—1)
See Tukey (1949). has an F} ,_,—1 distribution; this is known as Tukey’s one degree of freedom
for non-additivity. [

Covariates that are artificially created to help assess model fit, such as

~

(x]T ()? in Example 8.24, are known as constructed variables.

Example 8.25 (Poisons data) Table 8.10 contains data from a completely
randomized experiment on the survival times of 48 animals. The animals were
divided at random into groups of size four, and then each group was given one
of three poisons and one of four treatments. Thus there are two factors, one
with three and the other with four levels. The lower part of Table 8.10 and the
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Treatment Poison 1 Poison 2 Poison 3
A 0.31, 0.45, 0.46, 0.43 0.36, 0.29, 0.40, 0.23 0.22, 0.21, 0.18, 0.23
B 0.82, 1.10, 0.88, 0.72 0.92, 0.61, 0.49, 1.24 0.30, 0.37, 0.38, 0.29
C 0.43, 0.45, 0.63, 0.76 0.44, 0.35, 0.31, 0.40 0.23, 0.25, 0.24, 0.22
D 0.45, 0.71, 0.66, 0.62 0.56, 1.02, 0.71, 0.38 0.30, 0.36, 0.31, 0.33
Treatment  Poison 1 Poison 2 Poison 3 Average

A 0.41 (0.07) 0.32 (0.08) 0.21 (0.02) 0.31

B 0.88 (0.16) 0.82 (0.34) 0.34 (0.05) 0.68

C 0.57 (0.16)  0.38 (0.06) 0.24 (0.01) 0.39

D 0.61 (0.11) 0.67 (0.27)  0.33 (0.03) 0.53

Average 0.62 0.55 0.28 0.48

upper panels of Figure 8.5 both show strong effects of treatment and poison:
poison 3 is most potent, and treatments B and D are more efficacious than A
and C. There is also evidence that the response variance depends on the mean:
the standard deviations are smaller for poison X treatment combinations with
smaller average response.

One model for these data is

Yipj =t e+ Bp+ew, t=1,2,3,4, p=1,23, j=1,2,3,4. (8.28)

Here p represents a baseline average response in the absence of treatments
or poisons, oy represents the effect of the tth treatment, 3, the effect of the
pth poison and &4y; is the unobserved error for the jth replicate given the
tth treatment and pth poison. We assess the fit of (8.28) initially through the
plot of standardized residuals against fitted values in the upper left panel of
Figure 8.6, which shows a striking increase of error variance with the mean
response. The model underpredicts for the lowest responses, where r; > 0
and therefore y; > y;, and overpredicts for the middle responses, where the
residuals are mostly negative. Following Example 8.24, this suggests that the
poison and treatment effects are not additive. The neighbouring panel shows
that the errors are somewhat positively skewed relative to the normal distri-
bution. The model fits the data poorly, not owing to a few bad observations,
but in a systematic way, as was also suggested by the lower left panel of
Figure 8.5.

Ignoring for a moment the nonconstancy of variance, we explore whether

Table 8.10 Poison
data (Box and Cox,
1964). Survival times
in 10-hour units of
animals in a 3 X 4
factorial experiment
with four replicates.
The table
underneath gives
average (standard
deviation) for the
poison X treatment
combinations.



Figure 8.5 Poison
data. The upper
panels show how the
responses depend on
the factor levels. The
lower left panel
shows a x3
probability plots of
the San, where s
is the sample
variance of the four

2
pt

replicates y,¢; given
the pth poison and
tth treatment. The
lower right panel
shows the same plot

for the y;ti. .
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the explanatory variables act additively. The F' statistic for non-additivity,
(8.27), equals 14.03. This is large compared with the 0.95 quantile of the F} 41
distribution and gives strong evidence of non-additivity.

The lower right panel of Figure 8.6 shows the profile log likelihood for the
transformation parameter, X\. There is strong evidence that the original scale
(A = 1) is poor; log transformation (A = 0) also seems inappropriate. The
most readily interpretable value of A in the 95% confidence interval seems to
be —1, corresponding to fitting a linear model to the inverse response 1/y.
This can be interpreted in terms of the rate of dying, whose units are time™!.
The lower left panel of the figure suggests that the evidence for non-additivity

has gone, and that the inverse transformation has roughly equalized the error
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variances. A probability plot shows that the residuals on this scale are close
to normal.

To sum up, the model y=! = u + oy + B, + &1p; seems to fit the data
adequately, and has a direct interpretation as a linear model for the effect of
poisons and treatments on the speed of dying.

We return to these data in Examples 9.6 and 9.8. ]

8.6.3 Leverage, influence, and case deletion

We call the explanatory and response variables (z;,y;) the jth case. We have
already seen how an odd y; can arise, but there can also be effects due to
unusual explanatory variables. To see how, recall that var(y; —z73) = o?(1—

Figure 8.6
Diagnostic plots for
the two-way layout
model for the
poisons data. The
upper left panel a
plot of standardized
residuals for the fit
of the two-way
layout model to the
original data against
the fitted value,
while its neighbour
shows the normal
probability plot of
these residuals. The
lower right panel
shows the profile log
likelihood for the
Box—Cox parameter
A and suggests that
a linear model
should be fitted to
the inverse response,
1/y. The lower left
panel shows the
residuals for the
two-way layout
model with response
1/y plotted against
its fitted values; this
does not display the
non-linearity and
systematic increase
of variance of the
panel above.
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hj;), and notice that if hj; is close to one the jth fitted value must lie very
close to y; itself. Indeed, if h;; = 1, the model is constrained so that x]TB =y;.
This is undesirable because in effect a degree of freedom, the equivalent of one
parameter, is used to fit one response value exactly. The effect on B\ could be
catastrophic if y; were outlying.

The quantity hj; is called the leverage of the jth case. Other things being
equal, the argument above suggests that low leverage is good. But tr(H) =
>~ hj; = p (Exercise 8.2.5), so the average leverage cannot be reduced below
p/n. Approximate equalization of leverage is one attribute of good design. In
the factorial experiment in Table 8.3, for example, h;; = i for each case. A
general guideline is that cases for which h;; > 2p/n deserve closer inspection;
it may be worthwhile to repeat an analysis without them in order to assess
their effect on both the values and the precision of the estimates. In itself,
however, high leverage is not sufficient reason to delete a case, which if not
outlying may be very informative.

Example 8.26 (Straight-line regression) The matrix formulation of
Y=+ @ -T)m+e, j=1,....n,

is given in Example 8.6, and it is easily deduced that the jth leverage is

1 z; —7)>

no 3 (er —T)

When the constant is dropped the leverage is (z; — T)?/ Y, (zx — T)?, and
when the covariate z; is dropped the leverage is n~!. Thus hj; can be in-
terpreted as a sum of contributions for each parameter. As the contribution
corresponding to 7, is quadratic in x; — T, responses with large values of
|z; — Z| will strongly affect the slope of the fitted line. All the responses have
equal weight in estimating the intercept. These effects do not depend on the
response values and depend purely on the design matrix. [

hjj =

Having seen that an individual case may substantially affect least squares
estimates, it is natural to ask how to measure this. One overall influence
measure for the jth case is Cook’s distance, defined as

1 e -
i = ﬁ(y —§-3)" Y=y
where y_; = X B_j, and subscript —j denotes a quantity calculated with the
jth case deleted from the model. Cook’s distance measures the overall change
in the fitted values when the jth case is deleted from the model, standardized
by the dimension of # and the estimate of 2. It can be revealing to refit a

model without the cases whose values of C; are largest.
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To gain some insight into Cj, note that the least squares estimate of 3
calculated without the jth case is

ﬁ_j =(X"X — :cjas;)_l(XTy — ZY;)-
Some linear algebra shows that

By =F - (x7x) g (5.20)

and it follows that (Exercise 8.6.5)

rih;
p(1 = hy;)’
where r; is the standardized residual. Therefore large values of C; arise if a
case has high leverage or a large standardized residual, or both. A plot of C;

against h;; /(1 — h;;) helps to distinguish between these possibilities. A crude
rule is that as a residual with |rj| > 2 or a case with leverage h;; > 2p/n

C; = (8.30)

deserve attention, a value of C; greater than 8/(n —2p) is worth a closer look.
It is possible for the model to depend on a case whose Cook’s distance is zero
(Exercise 8.6.6), however, and there is no substitute for careful inspection of
the data, residuals, and leverages.

As an observation with a large standardized residual can have a big effect on
a fitted model, it is natural to ask whether an outlier is more easily detected
by comparing y; with its predicted value based on the other observations,
x]T-B_j. After all, if the model is correct and y; is not an outlier, we expect
that E(E) = E(E,J—) = ] f3, although of course ij will be a less precise
estimate of § than 3 On the other hand, an outlying response y; does not
affect z7 B_ 4, so any discrepancy between them should be more obvious. There
is a close connection to the idea of cross-validation. Now (8.29) implies that

~

Yi— Y

Yk — Tk By =Yk — U + 2p (XTX) )
L= hyj

and since 2] (XX ) tz; = hji, we find that var(y; — x;FB,j) =02/(1 — hyj).
This suggests that deletion residuals be defined as
/ Yi — %P Yi —Y-ji

r. = =

var(y; — gch.ﬁ_j)lﬂ s_j(1— hj;)/?’

where 7_; ; is the jth element of the vector §_; and the estimate of o2 based
on the data with the jth case deleted equals

1 ~ R .
2 = ——— (= V-3)" (y—7—j) — {yj — Y+

n—1—p

hyi(y =5\
1 — hyj '



Table 8.11
Simulated data and
case diagnostics.
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Case 1 To y n r r! h C
1 0.02 —6.31 0.95 0.41 1.16 1.20 0.88 3.28
2 0.36 0.39 0.44 0.53 -0.08 —-0.07 0.13 0.00
3 7.12 —0.64 0.27 0.38 -0.14 -0.13 0.68 0.01
4 -1.54 1.13 0.09 0.59 -0.45 -0.42 0.29 0.03
5 0.24 -1.90 -0.82 049 -1.07r -1.08 0.15 0.07
6 0.26 —0.06 0.03 0.53 -0.40 -0.37 0.12 0.01
7 -0.16 0.13 -0.22 054 -0.61 -0.59 0.14 0.02
8 0.43 0.80 0.13 0.54 -0.33 -0.31 0.15 0.01
9 -0.02 0.59 3.57 0.55 2.47 6.31 0.15 0.37

10 4.58 0.29 0.57 0.45 0.11 0.10 0.31 0.00

Yet more algebra shows that the deletion residual can be expressed as

1/2
, (npl
L 2 S — T3
n—p-—r;j

which is a monotonic function of r; that exaggerates values for which |r;| > 1.
As their derivation suggests, deletion residuals for outlying observations are
more prominent than are the corresponding ;.

Example 8.27 (Cycling data) Table 8.3 gives standardized residuals,
deletion residuals, and measures of leverage and influence for the model with
an intercept and three main effects fitted to these data. The design is balanced,
and since (XTX)™ ! = %14, all the leverages equal i; consequently the stan-
dardized residuals are a simple multiple of the raw residuals. As remarked in
Example 8.22, the only unusual residual is for setup 6, whose deletion residual
is strikingly large: there is strong evidence that this is an outlier. The cor-
responding Cook statistic, 0.56, is by far the largest, but it is unremarkable
relative to 8/(n — 2p) = 1. The belt-and-braces statistician might repeat the
analysis without this datum, but it makes little difference. [

Exercises 8.6

1 Show that the standardized residuals r; have means zero and variances (n —
p)/(n —p — 2). What can you say about their joint distribution?

2 Table 8.11 shows simulated data on the dependence of y = Bo + B1x1 + B2xa+ €
on covariates x1 and x2. The residual sum of squares was 12.43.
(a) Choose a case and check the relationships between 3, 7, r’, h, and C.
(b) Discuss the fit. If it is not adequate, explain what further steps you would
take in analyzing the data.

3 Provide the details for Example 8.23.
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4 Compute and interpret the leverages for Examples 8.9 and 8.20.
5  Use Exercise 8.5.2(a) with C'= —1 to show that
(XTX —zja) ™ = (XTX) 7+ (1= hyy) H(XTX) ey (XTX) T
it may help to note that h;; = 2] (X" X) 'z;. Hence show that
By =(X"X —aja]) (X Ty —ajy5) = B— (1= hyy) " (XTX) " a(y; — ),
deduce that 7 — 7_; = (1 — hy;) "' X(XTX) ‘2, (y; — ¥;), and finally that

~  ~ ~  ~ 2
o~ W=y W —yy) by
= = .
ps? p(1 — hyj)
6  Suppose that the straight-line regression model y = Go + Bix + € is fitted to
data in which 1 = --- = zp—1 = —a and =, = (n — 1)a, for some positive a.

Show that although y, completely determines the estimate of 381, C;, = 0. Is
Cook’s distance an effective measure of influence in this situation?

8.7 Model Building
8.7.1 General

Once the context for a regression problem is known and the data have been
scrutinized for outliers, missing values, and so forth, a model must be built.
Related investigations will often suggest a form for it, the main initial ques-
tions concerning the choice of response and explanatory variables.

The purpose of the analysis determines one or perhaps more responses,
which may combine several of the original variables. Once it is chosen, ques-
tions arise about whether individual responses are correlated, and if their
variance is constant. If not, it may be necessary to use weighted or general-
ized least squares (Section 8.2.4), or to consider transformations. These may
also be suggested by constraints, for example that the response is positive,
but it is then also good to consider more general classes of models discussed
in Chapter 10.

Scatterplots of the response against potential explanatory variables and of
these variables against each another are needed to screen out bad data, to
suggest which covariates are likely to be important, and perhaps also to indi-
cate suitable transformations. Dimensional considerations or subject-matter
arguments, for example that certain regression coefficients should be positive,
may suggest fruitful combinations of covariates or particular relations between
them and the response.

It may be clear that the response depends on a few variables, and that
possible models can be fitted and compared using F' and related tests. Once
some suitable models have been found, the techniques of model checking out-
lined in Section 8.6 can be applied. Often unexpected discrepancies between
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a fitted model and data will lead to further thought, and then to more cy-
cles of model-fitting, checking, and interpretation, iterated until a broadly
satisfactory model has been found.

If p is much larger than n, then the design matrix must be cut down to size.
One possibility is to use principal components regression. The basis of this is
the spectral decomposition, which enables us to write X*X = UDUT™, where
D is the diagonal matrix diag(ds,...,d,) containing the ordered eigenvalues
dp > -+ > dy > 0 of X"X, and the columns of U are the corresponding
eigenvectors. The matrix U can be chosen so that UUT = UTU = I. The idea
is to form the design matrix from the columns of Z = XU, which are called
principal components. The first principal component, 21, is the linear combi-
nation z = Xwu of the columns of X for which 27z is largest, the next, zo, is
the linear combination that maximizes 2322 subject to 2]z = 0, the third,
73, maximizes 23 z3 subject to 27 z3 = 2722 = 0, and so forth. The hope is that
much of the dependence of the response on the columns of X will be concen-
trated in these first few z,s, in which case a good low-dimensional regression
model may be obtainable. Sometimes it is useful to centre the columns of X
by subtracting their averages, or to scale them by dividing centred columns
by their standard deviations. The resulting principal components do not equal
those for X.

Principal components and corresponding parameter estimates may be un-
interpretable in terms of the original covariates, though this drawback is less
critical when the goal of analysis is prediction.

8.7.2 Collinearity

If there is a nonzero vector ¢ such that Xc¢ = 0, the columns of the design
matrix are said to be collinear. Then X has rank less than p and XX has no
unique inverse. The simplest example of this arises in straight-line regression:
if all the z; are equal, it is impossible to find unique parameter estimates (Ex-
ample 8.6). This difficulty arises more generally, because linear dependence
among the columns of the design matrix means that some combinations of
parameters cannot be estimated from the data; collinearity leads to inde-
terminable estimates with infinite variances. Related difficulties arise if the
columns of X are almost collinear.

The matrix XX is invertible only if all its eigenvalues d, > --- > dy > 0
are positive. Even if XTX is invertible, however, the estimators can be very
poor. The squared distance between 3 and [ is expressible as

p .
(B-B)"(B-8) 20> 22/d,, where Zi,...,Z, < N(0,1).

r=1
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Thus (B - ﬂ)T(E — [3) has mean and variance

p p

UQZd;l, 20’4Zd;2,
r=1

r=1

bounded below respectively by ¢2/d; and 20%/d?, and B may be far distant
from B for small d;. The practical implication is that parameter estimates
from different but related datasets may vary greatly, giving apparently con-
tradictory interpretations of the same phenomenon.

Diagnostics to warn of collinearity can be based on functions of the d, such
as the condition number (d,/d;)'/?, but its statistical interpretation is not
clear-cut. The condition number is sometimes reduced by replacing X with
the matrix obtained on dropping the column of ones if any and centering the
remaining columns, or by using the corresponding correlation matrix.

The most straightforward solution to collinearity or near collinearity is to
drop columns from the design matrix until the estimates are better behaved.

A more systematic approach to dealing with weak design matrices is ridge
regression, which starts by rewriting the original model y = 18y + X101 +¢ as
y =106y + Zv+¢, where Z71 = 0 and the diagonal of Z7Z consists of ns. This
involves centring each column of X by subtracting its average, then dividing
by its standard deviation, and multiplying by n'/2. This centring and rescaling
ensures that the elements of v and of § have the same interpretations apart
from a change of scale, unlike with principal components regression. Then
the least squares estimates are BO =7y and § = (Z7Z)"1Z%y. The idea is to
replace Z"Z by Z"Z + M,_1, where A > 0 is called the ridge parameter. The
corresponding estimates, 3 = (Z7Z + A\,_1) ' Z"y, are biased unless A = 0,
when they are the least squares estimates of . Large values of A increase the
bias by shrinking the estimates towards the origin, but this decreases their
variance. The value of A is chosen empirically by minimization of a criterion
such as the cross-validation sum of squares

CVO) =D (v =75 )%

j=1

where y7 is the fitted value for y; predicted from the ridge regression model
obtained when the jth case is deleted. Cross-validation, introduced in Sec-
tion 7.1.2, is here used to assess how well the ridge regression fit would predict
a new set of independent data like the original observations. A variant ap-
proach chooses A to minimize the generalized cross-validation sum of squares,

N -5
GOViY = ; {1 —tr(Hy)/n}*’



Table 8.12
Parameter estimates
and their standard
errors for the full
model and a reduced
model fitted to the
cement data.
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Full model Reduced model
Parameter  Estimate  Standard error Estimate  Standard error
Bo 62.41 70.07 71.64 14.14
51 1.55 0.74 1.45 0.12
B2 0.51 0.72 0.42 0.19
B3 0.10 0.75
B4 -0.14 0.71 -0.24 0.17

where Hy = n= 11,17+ Z(Z"Z +XI,—1)"*Z" is the hat matrix corresponding
to the ridge regression, and the vector of fitted values 7 = H,y depends on .
We discuss these in more detail on page 585, though in another context.

Estimates such as 7, that shrink towards a common value, here v = 0, may
also be derived by Bayesian arguments (Chapter 11).

Example 8.28 (Cement data) The astute reader will have realized that
if the middle four columns of Table 8.1 are percentages, they may sum to 100.
In fact they sum to (99,97,95,97,98,97,97,98,96,98,98,98,98). As there is
a column of ones in the design matrix for the full model, its columns are
nearly dependent: estimation of five parameters is almost impossible. This is
reflected by the standard errors in Table 8.12. The standard error for 30 is
vastly inflated by inclusion of x3 because 3y is almost impossible to estimate,
whereas the other estimates are less badly affected.

The residual sum of squares for model without x3 is 47.97, only slightly
larger than that for the full model, 47.86. Thus inclusion of x3 changes the fit
of the model very little, but has a drastic effect on the precision of parameter
estimation.

The eigenvalues of XTX with all five columns of X are 44676, 5965.4,
810.0, 105.4 and 0.00012. The condition number of 6056 indicates strong ill-
conditioning, and > d,-! = 821 seems very large.

The left panel of Figure 8.7 shows how the parameter estimates 7, depend
on the ridge parameter A. All change fairly sharply as A increases from zero,
and are more stable for A > 0.2. The right panel shows that GCV(\) decreases
sharply when A increases from zero, and is minimized when A = 0.3. The
dotted lines show that when x3 is dropped both the 7y and GCV(\) depend
much less on A, consistent with the discussion above. [ |

8.7.3 Automatic variable selection

The screening and selection of many explanatory variables may be onerous.
With p covariates, each to be included or not, at least 2P possible design ma-



446 8 - Linear Regression Models
o
© ©
g o ,
£ o
§ ¥ N
T« 2 10
£ o |3 8 ©
© o
E o \K ©
oo 0
o < -
o
© 0

00 05 10 15 20 00 05 10 15 20
lambda lambda

trices must be fitted even before accounting for transformations, combinations
of covariates, and so forth. Consequently automatic procedures for variable
selection are widely used if p is large. While valuable as screening procedures,
they are no substitute for careful model-building incorporating knowledge of
the system under study and should be treated as a backstop; their output
should always be considered critically.

Stepwise methods

Forward selection takes as baseline the model with an intercept only. Each
term is added separately to this, and the base model for the next stage is
taken to be the model with the intercept and the term that most reduces the
sum of squares. Each of the remaining terms is added to the new base model,
and the process continued, stopping if at any stage the F' statistic for the
largest reduction in sum of squares is not significant or if the design matrix is
rank deficient.

Backward elimination starts from the model containing all terms, and then
successively drops the least significant term at each stage. It stops when no
term can be deleted without increasing the sum of squares significantly.

Backward elimination is generally the preferable of the two because its
initial estimate of o2 will usually be better than that for forward selection,
though at the possible expense of an unstable initial model. They may yield
different final models.

In stepwise regression four options are considered at each stage: add a term,
delete a term, swap a term in the model for one not in the model, or stop.
This algorithm is often used in practice.

These three procedures have been shown to fit complicated models to com-
pletely random data, and although widely used they have no theoretical basis.

Figure 8.7 Ridge
regression analysis of
cement data. Left:
variation of elements
of v, as a function of
A, for models with
all four covariates
(solid) and with z1,
z2, and x4 only
(dots). Right:
generalized
cross-validation
criterion GCV(A) for
these models.



Table 8.13 Data
on light water
reactors (LWR)
constructed in the
USA (Cox and Snell,
1981, p. 81). The
covariates are date
(date construction
permit issued), T1
(time between
application for and
issue of permit), T2
(time between issue
of operating license
and construction
permit), capacity
(power plant
capacity in MWe), PR
(=1 if LWR already
present on site), NE
(=1 if constructed in
north-east region of
USA), CT (=1 if
cooling tower used),
BW (=1 if nuclear
steam supply system
manufactured by
Babcock-Wilcox), N
(cumulative number
of power plants
constructed by each
architect-engineer),
PT (=1 if partial
turnkey plant).
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cost date Ty To capacity PR NE CT BW N PT
1 460.05 68.58 14 46 687 0 1 0 0 14 0
2 45299 6733 10 73 1065 0 0 1 0 1 0
3 443.22 67.33 10 &5 1065 1 0 1 0 1 0
4 652.32 68.00 11 67 1065 0 1 1 0 12 0
5 642.23 68.00 11 78 1065 1 1 1 0 12 0
6 34539 6792 13 51 514 0 1 1 0 3 0
7 27237 68.17 12 50 822 0 0 0 0 5 0
8 31721 68.42 14 59 457 0 0 0 0 1 0
9 457.12 68.42 15 55 822 1 0 0 0 5 0
10 690.19 6833 12 71 792 0 1 1 1 2 0
11  350.63 68.58 12 64 560 0 0 0 0 3 0
12 402.59 68.75 13 47 790 0 1 0 0 6 0
13 412.18 68.42 15 62 530 0 0 1 0 2 0
14 495.58 68.92 17 52 1050 0 0 0 0 7 0
15 394.36 68.92 13 65 850 0 0 0 1 16 O
16 423.32 68.42 11 67 778 0 0 0 0 3 0
17 712.27 69.50 18 60 845 0 1 0 0 17 0
18 289.66 68.42 15 76 530 1 0 1 0 2 0
19 881.24 69.17 15 67 1090 0 0 0 0 1 0
20 490.88 68.92 16 59 1050 1 0 0 0 8 0
21  567.79 68.75 11 70 913 0 0 1 1 15 0
22 66599 70.92 22 57 828 1 1 0 0 20 O
23 62145 69.67 16 59 786 0 0 1 0 18 0
24 608.80 70.08 19 58 821 1 0 0 0 3 0
25 473.64 7042 19 44 538 0 0 1 0 19 0
26  697.14 71.08 20 57 1130 0 0 1 0 21 0
27 20751 6725 13 63 745 0 0 0 0 8 1
28 288.48 67.17 9 48 821 0 0 1 0 7 1
29 284.88 67.83 12 63 886 0 0 0 1 11 1
30 280.36 67.83 12 71 886 1 0 0 1 11 1
31 217.38 67.25 13 72 745 1 0 0 0 8 1
32 270.71 67.83 7 80 886 1 0 0 1 11 1

This arbitrariness is reflected in rules for deciding which terms to include, some
of which use tables of the F or t distributions. Others simply drop a term from
the model if its F statistic is less than a number such as 4, and otherwise in-
clude the term. Sometimes a theoretically-motivated criterion such as AIC is
used.

Example 8.29 (Nuclear plant data) Table 8.13 contains data on the
cost of 32 light water reactors. The cost (in dollars x10~% adjusted to a 1976
base) is the quantity of interest, and the others are explanatory variables.

Costs are typically relative. Moreover large costs are likely to vary more
than small ones, so it seems sensible to take log(cost) as the response y. For
consistency we also take logs of the other quantitative covariates, fitting linear
models using date, log(T1), log(T2), log(capacity), PR, NE, CT, log(N), and
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Full model Backward Forward
Est (SE) t Est (SE) t Est (SE) t

Constant —14.24 (4.229) —3.37 —13.26 (3.140) —4.22 —7.627 (2.875) —2.66
date 0.209 (0.065) 3.21 0.212 (0.043) 4.91 0.136 (0.040) 3.38
log(T1) 0.092 (0.244) 0.38
log(T2) 0.290 (0.273) 1.05
log(cap) 0.694 (0.136) 5.10 0.723 (0.119) 6.09 0.671 (0.141) 4.75
PR —0.092 (0.077) —1.20
NE 0.258 (0.077) 3.35 0.249 (0.074) 3.36
CT 0.120 (0.066) 1.82 0.140 (0.060) 2.32
BW 0.033 (0.101) 0.33
log(N) —0.080 (0.046) —1.74 —0.088 (0.042) —2.11
PT —0.224 (0.123) —1.83 —0.226 (0.114) —1.99 —0.490 (0.103)  —4.77
Residual SE (df) 0.164 (21) 0.159 (25) 0.195 (28)

PT. The last of these indicates six plants for which there were partial turnkey
guarantees, and some subsidies may be hidden in their costs.

Estimates and standard errors for the full model and those found by back-
ward elimination and forward selection are given in Table 8.14. Backward
elimination starts by refitting the model without BW and then considering the
t statistics for the remaining variables, dropping the next least significant, here
log(T1), and so forth. The effects for the variables retained are strengthened;
most are highly significant. Forward selection chooses a smaller model with
larger residual sum of squares, and this results in smaller ¢ statistics. Step-
wise selection starting from this model yields the model chosen by backward
elimination. Examination of residuals for this suggests no difficulty, and we
are left with a model in which cost increases with capacity, though not pro-
portionally, with presence of a cooling tower, with date, and in the north-east
region of the USA, but is decreased by a partial turnkey guarantee, and with
architect’s experience. [

Likelihood criteria

A more satisfactory approach is to fit all reasonable models and adopt the
one that minimizes some overall measure of discrepancy. One such measure
is the residual sum of squares, but this continues to decrease as the number
of parameters increases and always yields the model with all possible terms.
This suggests that model complexity be penalized by balancing it against a
measure of fit. We now discuss one approach to this.

Suppose that the data were generated by a true model g under which the
responses Y; are independent normal variables with means p; and variances
02 and let E,(-) denote expectation with respect to this model. Following the



The scaling factor 2
is included for
comparability with
AIC.
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discussion in Section 4.7, our ideal would be to choose the candidate model
f(y;0) to minimize the loss when predicting a new sample like the old one,

n +
E, [EF [25 1o LJ)A} . 8.31
Here Y1+, ..., YT is another sample independent of Yi,...,Y, but with the
same distribution, E} denotes expectation over Y;",...,Y,, and 9 is the
maximum likelihood estimator of # based on Y7,...,Y,.
If the candidate model is normal, then 6 comprises the mean responses
Wi, ..., n and o2, with maximum likelihood estimators fiy,..., [, and &2.

Then the sum in (8.31) equals

<Y+ )’ (Vi — py)?
2Z{loga —log o® 7]072] ,

and hence the inner expectation is

n

Z{loga—i— +w loga2—1}.

7j=1

Suppose that in our earlier terminology a candidate linear model with full-
rank n X p design matrix X is correct, that is, the true model is nested within
it. Then the vector p = (p1, ..., p,)" of true means lies in the column space
of X and there is a p x 1 vector 3 such that 4 = X 3. Hence i = (i1, ..., fin)"
is normal with mean pu, from which 1t follows that >~ (u; — ;)% = (G —p) " (A —
W) ~ o? Xp independent of ng? ~ o2 anp. Now the expected values of a x?2
variable and of its inverse are v and (v — 2)~!, provided v > 2, and so (8.31)
equals

2) n n? np

nfpf2+nfpf2

—nlogo? —n,

nE, (logo
or equivalently for our purposes,

~ +p)
E, (log5? +7n(n .
n g(oga) p——

This is estimated unbiasedly by the corrected information criterion
1+p/n
1—(p+2)/n’
and the ‘best’ candidate model is taken to be that which minimizes this.

Taylor expansion gives AIC. = nloga?+n+2(p+1)+O(p?/n), and for large
n and fixed p this will select the same model as AIC = nlog 52 + 2p. When p

AIC. =nloga? +n

is comparable with n, AIC. penalizes model dimension more severely.
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n Number of covariates
1 2 3 4 5 6 7

10 G 131 504 91 63 83 128
BIC 72 373 97 83 109 266
AIC 52 329 97 91 125 306

AIC. 15 398 565 18 4

20 Cp 4 673 121 88 61 53
BIC 6 781 104 52 30 27
AlIC 2 577 144 104 76 97
AlIC. 8 859 94 30 8 1

40 Gy 712 107 73 66 42
BIC 904 56 20 15 5
AIC 673 114 90 69 54
AlIC. 78 105 52 41 16

A widely used related criterion is

SS
Cp:s—;‘f’Zp*’ﬂ,

where S5, is the residual sum of squares for the fitted model and s? is an
estimate of o%; C}, can be derived as an approximation to AIC (Problem 8.16),

2 can be estimated

though its original motivation was different. In some cases o
from the full model, but care is needed because the choice of s2 is critical to

successful use of C,,.

Example 8.30 (Simulation study) Twenty different nx7 design matrices
X were constructed using standard normal variables, centered and scaled so
that each column of X had mean zero and unit variance. The parameter
vector was 3 = (3,2,1,0,0,0,0)", so the true model had three covariates, and
the errors were taken to be independent standard normal variables. Then the
models with the first p columns of X were fitted for p=1,...,7, and the best
of these was selected using AIC, AIC,, the Bayesian criterion BIC, and C).
This procedure was performed 50 times for each design matrix.

Table 8.15 shows the results of this experiment. For n = 10 and 20, AIC.
has the highest chance of selecting the true model, and moreover the models
selected using it are the least dispersed because of the stronger penalty ap-
plied, at least for p comparable with n. For n = 40 the consistent criterion
BIC is most likely to select the true model. In practice, however, the true
model would rarely be among those fitted, and so AIC, seems the best of the
criteria considered, particularly when p is comparable with n. [

Table 8.15

Number of times
models were selected
using various model
selection criteria in
50 repetitions using
simulated normal
data for each of 20
design matrices. The
true model has
p=3.
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Example 8.31 (Nuclear plant data) When AIC, is computed for the 21°
possible models in Example 8.29, the model chosen by backward elimination is
selected, with AIC. = —71.24. Two nearby models have AIC. within 2 of the
minimum, namely those without 1log(N) and without PT, but dropping these
covariates together increases AIC, sharply. The interpretation and overall fit
are changed little by dropping them singly, so we retain them. [

Plots of the contributions to these criteria from individual observations
can be useful in diagnosing whether particular cases strongly influence model
choice.

There may be several different models whose values of AIC. are similarly
low. If a single model is needed the choice among them should if possible be
based on subject-matter considerations. If there are several equally plausible
models with quite different interpretations, then it is important to say so.

Inference after model selection

One reason that automatic variable selection should if possible be avoided is
its consequence for subsequent inference. To illustrate this, consider a straight-
line regression model y = By + zf1 + ¢, based on n pairs (z;,y;) with Y z; =
0 and independent normal errors with mean zero and known variance o2.
Then the least squares estimate 31 is normally distributed with mean (; and
variance v = 02/ 3" x;, and following the discussion in Section 8.3.2 we would
base inference for (3; on Z = (31 — 51)/1)1/2, whose distribution is standard
normal when model selection is not taken into account. Suppose, however,
that before attempting to construct a confidence interval for (;, we test for
inclusion of the covariate x in the model, declaring that it should be included
if |§1/v1/2| > 21_q. If not, we declare that 81 = 0 and use the simpler model
y = Po +e. Now as Bl = 1 + v'/2Z, post-model selection inference for £,
given that = has been included will be based on the conditional density of Z
given that |Z + 81 /v'/?| > 21_,, which is
() {H(2< 20 —0)+1—H(z < —24—0)}

¢5(z) = ‘@(Za75)+q>(za+§) , —o00 <z <00,

where § = (1 /v'/? is the standardized slope. Figure 8.8 displays ¢s(z) for
6 =0,1,...,5 and a = 0.025, corresponding to two-sided testing at the 5%
level. When (1 = 0, for example, Z considered conditionally takes values in
the tails of the standard normal distribution but not in its centre. Conditional
on variable selection, Z is clearly far from pivotal unless || > 0. Hence it is
only a sensible basis for inference on g; if the regression on x is very strong.

2 is unknown,

In practice there are three complications: the error variance o
there are typically many covariates, and the true model is not among those
fitted. However the broad conclusion applies: if variables are selected automat-

ically, the only covariates for which subsequent inference using the standard
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confidence intervals is reliable are those for which the evidence for inclusion
is overwhelming, that is, for which it is clear that |§| > 0. Other covariates
should be considered in the light of previous knowledge and the context of
the model.

Model uncertainty

Inference is often performed after comparing different competing models, and
the questions arise if, when, and how one should allow for this. Consider for
example the quantity [y in the two models My and M7 in which y = By + ¢
and y = By + 201 + ¢, where E(e) = 0. It is sometimes suggested that one
should somehow average the variances of the estimators 30 across the models,
but this is inappropriate because the interpretation of 3y is model-dependent.
Although the same symbol is used, Gy represents the unconditional response
mean E(Y) under My, while under M; it represents the conditional mean
E(Y | # = 0). Hence the meaning of 3y depends on the context and inference
for it must be conditioned on the model in which it appears: averaging is
meaningless unless the quantity of interest has the same interpretation for all
models considered. In particular, the interpretation of regression coefficients
typically depends on the model in which they appear. Having said this, one
situation in which the quantity of interest has a model-free interpretation is
prediction, and below we treat the simplest example of this.

Consider using the fits of My and M; to estimate the mean py = [y +
x4 01 of a future variable Y, with covariate x, # 0, assuming the error ¢
to be normal with mean zero and known variance o2; note that u, has the
same interpretation under both models. Suppose that n independent pairs
(xj,y;) are available and that Y z; = 0, so that Bo = 7 with variance o2/n
under either model, independent of the slope estimate 31 with variance v =
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0%/ x%. The estimators of y; and their biases, variances, and mean squared
erTors are

Model Estimator Bias Variance MSE
MO . ﬁ(-)i- :ﬁ()? x-‘rﬂh 02/77/7 0'2/7'L+.’L'3_6%,
Ml : ﬁ}i- :ﬂ0+x+ﬂ17 Oa 0'2/’/7,‘}’273_’[1, 0'2/714’.%3_1)7

so 119 improves on il if |§] < 1, where § = 31 /v'/? is the standardized slope.

This suggests that it may be possible to construct a better estimator of pi4
by choosing ﬁg if an estimator of d is close enough to zero, and otherwise
taking ﬁi If we decide between the models on the basis that M is indicated
when |§1\/vl/2 > 21_q, corresponding to a two-sided test of the hypothesis
that 81 = 0 at level (1 — 2«), then the overall estimator is

hy = BO +I+Bl {I (Bl/vl/2 < *Z1fa> +1 (51/111/2 > Zka)}
= Bo+a0 20+ 2){I(Z<20-0)+1(Z>z_o—0)},

where we have written 8, = v/2(§ + Z), with Z = (B, — $1)/v/? a standard
normal variable; note that —z;_, = z,. The bias and variance of fi, are

0,2

E (i —py) = 230" 2 B(Q), var(fiy) = -t ztv var(Q),

where Q = (0 + Z){I(Z < za = 6) + I(Z > 210 — 0)} = 6. As v = 0%/ Y a3,
the bias is O(n~'/?) and the variance is O(n~'), while the mean squared error
is 0% /n + 2% v {E(Q)? + var(Q) }. Elementary calculations give the functions
E(Q), var(Q), and E(Q)? + var(Q), which are shown in the upper right panel
of Figure 8.9 for a = 0.025, corresponding to choosing between the models at
the two-sided 95% level. As we might have anticipated, i1 is generally biased
towards zero because of the possibility of using the simpler estimator ﬁi even
if 51 # 0; its bias tends to zero when |§| > 0. The variance of [i is largest
when |6] = 2, and then decreases to the limit corresponding to use of ﬁi_

One difficulty with iy is that the indicator variables badly inflate its bias
and variance. A simple way to avoid this is to use a weighted combination of
1Y and 7i}. Take for example the estimator

Y= (L= W)L+ Wik = (1= W)Fo+ W (Bo+24f1)
where the weight
B exp(—AIC;/2)
exp(—AIC;/2) 4 exp(—AICy/2)
depends on the information criteria AICy and AIC; for the two models. If
AIC; <« AICy, then W = 1, the data give a strong preference for M;, and

pY = [l If on the other hand 8y = 0, then W slightly favours My but the
estimators under both models are unbiased.
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Under our simplifying assumptions, AICy — AIC; = Bf/v —2=(0+2)%-2,
and as Yy = BO + x+Wﬁl, the quantity that corresponds to @ above is
QY =0+ 2)G{(0+2)*/2—1} — 6, where G(u) = exp(u)/ {1+ exp(u)}.
The bias and variance of i’y depend on those of Q", which are shown in the
upper left panel of Figure 8.9. Both are smaller than the values for ziy, and
the mean squared error is considerably reduced. Evidently 7i¥¥ improves on i},
over a wide range of values of §, while its mean squared error is smaller than
that of fiy. The weighted estimator i¥f clearly improves on the model-choice
estimator fiy.

Example 8.32 (Simulation study) To assess how this approach performs
in a slightly more realistic setting, we performed a small simulation study with
linear model data simulated in the same way as in Example 8.30, now with
n=15and f* =7(0,4,3,2,1,1,0,0); thus p = 8 including a constant vector.

Figure 8.9
Properties of
estimators of

Bo + 41 in the
straight-line
regression model.
Left: bias (dots),
variance (solid) and
mean squared error
(dashes) for weighted
estimator ;L\i Right:
corresponding
quantities for
model-choice
estimator py. The
weighted estimator
improves
considerably on the
model-choice
estimator. The upper
panels are for
theoretical
calculations, and the
lower ones for the
simulation
experiment described
in Example 8.32.
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We then fitted the eight models with a constant only, constant plus the first
covariate, constant plus first and second covariates, and so forth, and combined
the corresponding estimators and AIC-based weights, to obtain a weighted
estimator 0 of 6 = 13 3. We compared this with the estimator 0, obtained
from the ‘best’ model, this being chosen as the model minimizing —2Zq +
3.84q, where ?q is the log likelihood obtained when fitting the model with
q parameters. This information criterion is constructed to give probability
0.05 of selecting the more complex of two nested models differing by one
parameter, when in fact the simpler model is correct. This criterion is intended
to mimic hypothesis testing procedures for model selection, such as backward
elimination.

This experiment was repeated with 20 different response vectors for each
of 250 design matrices: 5000 datasets, for 7 = 0,0.05,0.1,0.2,0.4,...,1.2. The
lower panels of Figure 8.9 show the bias, variance, and mean squared error
of 6 and §+. The results bear out the preceding toy analysis: the weighted
estimator has lower mean squared error except when the regression effects are
small. ]

Although we have only considered the simplest situation, our broad con-
clusion generalizes to more complex settings: sharp choices among estimators
from different models tends to give worse predictions than do estimators in-
terpolating smoothly among them.

Exercises 8.7

1 Consider the cement data of Example 8.3, where n = 13. The residual sums of
squares for all models that include an intercept are given in Exercise 8.5.1.
(a) Use forward selection, backward elimination, and stepwise selection to select
models for these data, including variables significant at the 5% level.
(b) Use C} to select a model for these data.

2 Another criterion for model selection is to choose the covariates that minimize
the cross-validated sum of squares Y _(y; 7{1’];57]’)27 where 3_; is the estimate of
(8 obtained when the jth case is deleted. Show this is equivalent to minimizing

>(y; — x;r,ﬁ\)2/(1 — hj;)?, and compare computational aspects of this approach
with those based on AIC.

8.8 Bibliographic Notes

There are books on all aspects of the linear model. Seber (1977) and Searle
(1971) give a thorough discussion of the theory, while Draper and Smith
(1981), Weisberg (1985), Wetherill (1986) and Rawlings (1988) have somwhat
more practical emphases; see also Sen and Srivastava (1990) and Jgrgensen
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(1997a). Most of these books cover the central topics of this chapter in more
detail. Scheffé (1959) is a classic account of the analysis of variance.

Robust approaches to regression are described by Li (1985), and in more
detail in Huber (1981), Hampel et al. (1986), and Rousseeuw and Leroy (1987).

Davison and Hinkley (1997) and Efron and Tibshirani (1993) give accounts
of bootstrap methods, which are simulation approaches to finding standard
errors, confidence limits and so forth, for use with awkward estimators.

The formal analysis of transformations was discussed by Box and Cox (1964)
and further developed by many others; for book-length discussions see Atkin-
son (1985) and Carroll and Ruppert (1988). The test for non-additivity was
suggested by Tukey (1949); see also Hinkley (1985). Books on general regres-
sion diagnostics include Cook and Weisberg (1982), Belsley et al. (1980) and
Chatterjee and Hadi (1988). Belsley (1991) focuses on problems of collinearity.
Shorter accounts of aspects of model-checking are Davison and Snell (1991)
and Davison and Tsai (1992). Atkinson and Riani (2000) describe how diag-
nostic procedures may be used to give reliable strategies for data analysis.

Stone and Brooks (1990) and their discussants give numerous references and
comparison of various approaches to regression situations with fewer obser-
vations than covariates, such as principal components regression and partial
least squares. Perhaps the most widespread of these is ridge regression (Ho-
erl and Kennard, 1970a,b; Hoerl et al., 1985). Brown (1993) is a book-length
treatment of these and related methods.

Variable selection for the linear model has been intensively studied. Linhart
and Zucchini (1986) and Miller (1990) give useful surveys, now somewhat
dated owing to the considerable amount of work in the 1990s. Model selection
based on AIC was suggested by Akaike (1973) in a much-cited paper, though
related criteria such as C), were already in use (Mallows, 1973). Schwartz
(1978) proposed use of BIC, and Hurvich and Tsai (1989, 1991) derive the
modified AIC with improved small-sample properties. McQuarrie and Tsai
(1998) give a comprehensive discussion of these and related criteria. Potscher
(1991) and Hurvich and Tsai (1990) give theoretical and numerical results on
inference after model selection in linear models. More general discussion and
many further references may be found in Chatfield (1995) and Burnham and
Anderson (2002).

8.9 Problems

1 Consider Table 8.16. Formulate the design matrix X for the model in which
E(Yield) = 8; + B3(z — 2), estimate the parameters and test whether 31 = [3a.

2 Suppose that random variables Yy;, 7 =1,...,ng,9 = 1,..., G, are independent
and that they satisfy the normal linear model Yy; = z, 3+ €,4;. Write down the
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Table 8.16
Rescaled yields Variet, Level of fertilizer, z
y
(tonnes/Ha) when 0 1 2 3 4

two varieties of corn

were treated with

five levels of 1 02 06 05 08 09
fertiliser. 2 0.1 02 04 06 0.7

covariate matrix for this model, and show that the least squares estimates can
be written as (XTWX1) ' XTW Z, where W = diag{ni,...,nc}, and the gth
element of Z is n;l Zj Yy;. Hence show that weighted least squares based on Z
and unweighted least squares based on Y give the same parameter estimates and
confidence intervals, when o2 is known. Why do they differ if 62 is unknown,
unless ng =17

Discuss how the residuals for the two setups differ, and say which is preferable
for model-checking.

3 Let Yi,...,Y, and Z1,...,Z, be two independent random samples from the
N(p1,0?) and N(uz,03) distributions respectively. Consider comparison of the
model in which 67 = 02 and the model in which no restriction is placed on
the variances, with no restriction on the means in either case. Show that the
likelihood ratio statistic W}, to compare these models is large when the ratio
T =5(Y; —=Y)?/Y (Z; — Z)? is large or small. Show that T is proportional
to a random variable with the F' distribution, and discuss whether the model
of equal variances is plausible for the maize data of Example 1.1.

4  Find the expected information matrix for the parameters (8o, 51,02) of the
normal straight-line regression model (5.2).

5  The usual linear model y = X + ¢ is thought to apply to a set of data, and
it is assumed that the e; are independent with means zero and variances o<,
so that the data are summarized in terms of the usual least squares estimates

and estimate of o2, E and S2. Unknown to the unfortunate investigator, in fact

var(e;) = vjo?, and v1,...,v, are unequal. Show that 3 remains unbiased for
G and find its actual covariance matrix.

6  Suppose that y satisfies a quadratic regression, that is,
y=P0+ab +2°fa+e,

and that we can control the values of x. It is decided to choose x = +a 7 times
each and x = 0 n — 2r times.

(a) Derive explicit expressions for the least squares estimates. Are they uncor-
related? If not, can they easily be made so?

(b) What value of r is best if we intend to test for the adequacy of a linear
regression?

(c) What value of r is best if we intend to predict y at z = a/27

7 By rewriting y — X3 as e + ng X3 and that €™ X = 0, show that

(y— XB)"(y — XB) = SS(B) + (B — B)" X" X (5 — B).
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Hence show that that the likelihood for the normal linear model equals

_SS() _
(2n)n/zgn P { 207 202

B-B"X"XB ﬁ)},

and use the factorization criterion to establish that (3, 5S(8)) is a minimal
sufficient statistic for (3, 02). The sample size n and the covariate matrix X are
also needed to calculate the likelihood, so why are they not regarded as part of
the minimal sufficient statistic?

Consider a normal linear regression y = o + le +e 1n which the parameter
of interest is ¥ = (o/f1, to be estimated by w ﬁo/ﬁl, let var(ﬁo) = oo,

COV(BOa Bl) = o%vo1 and var(ﬁl) = o211,
(a) Show that

Bo — B
{52 (voo — 2¢vo1 + 1/}21)11)}1/2

~ tn*Pa

and hence deduce that a (1 — 2«) confidence interval for 1 is the set of values
of 1 satisfying the inequality

B3 — st (a)voo + 20 {s*t5_p(@)vor — Bof } + ¢ {3% - szti,p(a)vu} <0.

How would this change if the value of o was known?

(b) By considering the coefficients on the left-hand-side of the inequality in (a),
show that the confidence set can be empty, a finite interval, semi-infinite inter-
vals stretching to +c0, the entire real line, two disjoint semi-infinite intervals —
six possibilities in all. In each case illustrate how the set could arise by sketching
a set of data that might have given rise to it.

(¢) A government Department of Fisheries needed to estimate how many of a
certain species of fish there were in the sea, in order to know whether to continue
to license commercial fishing. Each year an extensive sampling exercise was
based on the numbers of fish caught, and this resulted in three numbers, y, z,
and a standard deviation for y, 0. A simple model of fish population dynamics
suggested that y = Bo + f1x + €, where the errors € are independent, and the
original population size was ¥ = (Bo/f1. To simplify the calculations, suppose
that in each year o equalled 25. If the values of y and = had been

y: 160 150 100 80 100
rz: 140 170 200 230 260

after five years, give a 95% confidence interval for . Do you find it plausible
that o = 257 If not, give an appropriate interval for 1.

Over a period of 2m + 1 years the quarterly gas consumption of a particular
household may be represented by the model

Yij=0i+vj+ei, i=1,...,4,j=—-m,—m+1,..., m—1m,

where the parameters 3; and v are unknown, and &;; VY (0,0%). Find the
least squares estimators and show that they are independent with variances

(2m+1)"'o? and o?/ (8 . i2).
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10

11

12

13

Show also that

4 m 4 2zm ]?2
—1 2 372 j=—m -J
Bm-1)" DY Vi-em+1)> V- S

i=1 j=—m i=1

is unbiased for o, where Y;. = (2m +1)"' "

J==

mY;j and 7.3‘ = %Zj:l Y;J

A statistician travels regularly from A to B by one of four possible routes, each
route crossing a river bridge at R. The times taken for the possible segments
of the journey are independent random variables with means as shown in the
figure, each having variance 02/2.

o1 B1

He times the complete journey once by each route, obtaining observations y;;
distributed as random variables Y;; having means E(Y;;) = a;+0;, for i, 5 = 1, 2.
Why it is not possible to estimate all the parameters from these observations?
Now define p = a1 + 1, v = a2 — a1 and § = B2 — B1. Obtain expressions for
the least squares estimates of u, v and § and also for their variance matrix.

If the observed vector of times is (y11, Y21, Y12, y22) = (124,120,128, 136) min-
utes, determine which route has the smallest estimated mean time. Obtain a
90% confidence interval for the mean on the assumption that the times are
normally distributed.

Suppose that we wish to construct the likelihood ratio statistic for comparison
of the two linear models y = X161 + ¢ and y = X161 + X202 + €, where the
components of ¢ are independent normal variables with mean zero and variance
o%; call the corresponding residual sums of squares SS; and SS on v1 and v
degrees of freedom.

(a) Show that the maximum value of the log likelihood is —3n(log SS+1—logn)
for a model whose residual sum of squares is S.S, and deduce that the likelihood
ratio statistic for comparison of the models above is W = nlog(S5S1/S5S).

(b) By writing SS1 =SS + (551 — SS), show that W is a monotonic function
of the F statistic for comparison of the models.

(¢) Show that W = (1 — v)F when n is large and v is close to n, and say why
F would usually be preferred to W.

Suppose that the denominator in the F' statistic was replaced by SS(@)/(n—q)7
giving F', say. Use the geometry of least squares to explain why F does not have
an F distribution, even if the simpler model is correct so that SS(81) ~ U2xi,q.
Show that F” is a monotone increasing function of F', that tends to be less than
F if the simpler model is not adequate.

Table 8.17 gives results from n = 10 runs of a computer experiment to assess
the accuracy of a hydrological model. The response y is the relative accuracy
of predictions, and the covariates x1, x2, x3, and x4 represent parameters input
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ole 8.17
sidual sums of
ares for fits of Model SS Model SS  Model SS
:ar models to

put from n = 10

s of a ---- 11.06 12-- 556 123- 475
[rological model. 1--- 596 1-3- 478 12-4 0.74
-2-- 1019 1--4 134 1-34 083

--3- 996 -23- 809 -234 3.05
---4 9.09 -2-4 794
--34 651 1234 0.69

to the model. The table gives the residual sums of squares for all normal linear
models that include an intercept and the z;.

Taking the level of significance to be 5%, select models for the data using (a) for-
ward selection, (b) backward elimination, (c) stepwise model selection starting
from the full model, and (d) Cp. Comment briefly.

14 In the normal straight-line regression model it is thought that a power trans-
formation of the covariate may be needed, that is, the model

yzﬁo-i-ﬁlx(/\) +e

may be suitable, where 2™ is the power transformation

A
LN =) B X #£0,
logz, A=0.

(a) Show by Taylor series expansion of z(») at A\ = 1 that a test for power trans-
formation can be based on the reduction in sum of squares when the constructed
variable x log x is added to the model with linear predictor [y + fix.

(b) Show t}ft the profile log likelihood for A is equivalent to £,(\) = — 5 log SS(8x),
where SS(0») is the residual sum of squares for regression of y on the n x 2
design matrix with a column of ones and the column consisting of the x?).
Why is a Jacobian for the transformation not needed in this case, unlike in
Example 8.237

(Box and Tidwell, 1962)

15 Consider model y = X181 + X262 + €, which leads to least squares estimates
B\ _ (XEX1 XEX2>*1 (XFy)
BQ - X2TX1 XéFXQ X;y :

Let Hi = X1(X{X1)"'X{, P. = I, — Hy, and define Hy and P» similarly;
notice that these projection matrices are symmetric and idempotent.

(a) Show that [B> can be expressed as
(X5 PiXo) ' Xa'y — (X3 X2) ™ Xg X0 (XT P2Xa) ' X1y,

and use the result from Exercise 8.5.3 to deduce that 52 = (X3P X2) ' XT Py,
with variance matrix 02(X§P1X2)71. Note that (32 is the parameter estimate
from the regression of Py on the columns of P; X>.

(b) Use the geometry of least squares to show that the residual sums of squares



Recall that a model
is called correct if it
contains all
covariates with
non-zero coefficients,
and called true if it
contains precisely
these covariates.

With D(t) =

fooc w!"le ¥ du,
(1) - r'(1)? =
1.64493.
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for regression of y on X; and X» is the same as for the regression of Piy on X,
and Xs.

(¢) Suppose that in a normal linear model, X» is a single column that depends
on y only through the fitted values from regression of y on Xi, so that X
is itself random. Noting that the residuals Piy are independent of the fitted
\Lalues7 H,y, and arguing conditionally on Hiy, show that the t statistic for

(B2 has a distribution that is independent of X>. Hence give the unconditional
distribution of (8.27).

(a) Show that AIC for a normal linear model with n responses, p covariates
and unknown o® may be written as nloga> 4 2p, where o2 = SS,/n is the
maximum likelihood estimate of o2. If G2 is the unbiased estimate under some
fixed correct model with g covariates, show that use of AIC is equivalent to use
of nlog{1+(c%—52)/5¢}+2p, and that this is roughly equal to n(c? /o —1)+2p.
Deduce that model selection using C), approximates that using AIC.

(b) Show that C}, = (¢—p)(F —1)+p, where F is the F statistic for comparison
of the models with p and ¢ > p covariates, and deduce that if the model with p
covariates is correct, then E(Cp) = ¢, but that otherwise E(C}) > q.

Consider the straight-line regression model y; = a + Bz; +0g5, j = 1,...,n.
Suppose that ij = 0 and that the €; are independent with means zero,
variances €, and common density f(-).

(a) Write down the variance of the least squares estimate of (.

(b) Show that if o is known, the log likelihood for the data is

{a,B) = —nlogo + ilogf (M) ’
j=1

g

derive the expected information matrix for o and 3, and show that the asymp-
totic variance of the maximum likelihood estimate of 3 can be written as

0?/(iy 3), where
Z._E{d%ogf(a)}

de?

Hence show that the the least squares estimate of 3 has asymptotic relative
efficiency i/v x 100%.

(c) Show that the cumulant-generating function of the Gumbel distribution,
f(u) = exp{—u — exp(—u)}, —00 < u < o0, is logI'(1 — ¢), and deduce that
its variance is roughly 1.65. Find ¢ for this distribution, and show that the
asymptotic relative efficiency of least squares is about 61%.

Over a period of 90 days a study was carried out on 1500 women. Its purpose
was to investigate the relation between obstetrical practices and the time spent
in the delivery suite by women giving birth. One thing that greatly affects this
time is whether or not a woman has previously given birth. Unfortunately this
vital information was lost, giving the researchers three options: (a) abandon the
study; (b) go back to the medical records and find which women had previously
given birth (very time-consuming); or (c) for each day check how many women
had previously given birth (relatively quick). The statistical question arising was
whether (c) would recover enough information about the parameter of interest.
Suppose that a linear model is appropriate for log time in delivery suite, and
that the log time for a first delivery is normally distributed with mean u + «
and variance o2, whereas for subsequent deliveries the mean time is p. Suppose
that the times for all the women are independent, and that for each there is
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a probability 7 that the labour is her first, independent of the others. Further
suppose that the women are divided into k groups corresponding to days and
that each group has size m; the overall number is n = mk. Under (c), show that
the average log time on day j, Z;, is normally distributed with mean y+ R;a/m
and variance 02 /m, where R; is binomial with probability 7 and denominator
m. Hence show that the overall log likelihood is

k

m
l(p, ) = —1klog (2#02/m) ~ 557 Z(zJ — u—rjo/m)?,
j=1

where z; and 7; are the observed values of Z; and R; and we take 7 and ¢? to

be known. If R; has mean mr and variance m72, show that the inverse expected
information matrix is

I oz)fl _ o (mr? +7% —mn

Hs T onr2 —mm m :

(i) fm=1,7>=x(l—-n),and 7 = n1/n, where n = ng + n1, show that
I(p, 04)71 equals the variance matrix for the two-sample regression model. Ex-
plain why.

(ii) If 72 = 0, show that neither y nor « is estimable; explain why.

(iii) If 72 = m(1 — 7), show that yu is not estimable when 7 = 1, and that « is
not estimable when m = 0 or m = 1. Explain why the conditions for these two
parameters to be estimable differ in form.

(iv) Show that the effect of grouping, (m > 1), is that var(a) is increased by a
factor m regardless of 7 and o2.

(v) Tt was known that ¢ = 0.2, m = 1500/90, 7 = 0.3. Calculate the standard
error for a.

It was known from other studies that first deliveries are typically 20-25% longer
than subsequent ones. Show that an effect of size a = log(1.25) would be very
likely to be detected based on the grouped data, but that an effect of size
a = log(1.20) would be less certain to be detected, and discuss the implications.

Suppose that model y = X34 Zv+¢ holds, but that model y = X(+¢ is fitted,
giving 3 = (X"X)"' X"y with hat matrix H = X(X"X)™' X" and residuals
e=y— X/ﬁ\.

(a) Show that

e=(I-H)y=U—-H)Zy+ (I — H)e,

and hence that E(e) = (I — H)Z~. What happens if Z lies in the space spanned
by the columns of X7

(b) Now suppose that Z is a single column z. Explain how an added variable
plot of the residuals from the regression of y on X against the residuals from
the regression of z on X can help in deciding whether or not to add z to the
design matrix.

(c) Discuss the interpretation of the added variable plots in Figure 8.10, bearing
in mind the possibility of outliers and of a need to transform z before including
it in the design matrix.

Figure 8.11 shows standardized residuals plotted against fitted values for linear
models fitted to four different sets of data. In each case discuss the fit and
explain briefly how you would try to remedy any deficiencies.

Data (x1,¥1),---,(Zn,yn) satisfy the straight-line regression model (5.3). In a
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Figure 8.10 Added A B
variable plots for
four normal linear <+ . <«

models.
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- 0
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0
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C D

Residual from y
- 0

Residual from y
0

-15 5 0 5 10 15 -2 -1 0 1

Residual from z Residual from z

calibration problem the value y+ of a new response independent of the existing
data has been observed, and inference is required for the unknown corresponding

value x4 of x.
(a) Let s2 = > (z; —T)? and let S be the unbiased estimator of the error

variance o2. Show that

Y., — Ao — A1 i — T
T({II+) — + Bl i ( +_ ) 73
[S2{1+n"t + (z4 —7)%/s2}]

is a pivot, and explain why the set

X120 = {24 1 tn2(a) ST(zy) Stn2(l—a)}

contains x4 with probability 1 — 2a.

(b) Show that the function g(u) = (a + bu)/(c + u?)*/?, ¢ > 0, a,b # 0, has
exactly one stationary point, at & = —bc/a, that sign g(4) = sign a, that
g(u) is a local maximum if a > 0 and a local minimum if ¢ < 0, and that
limy—+o0 g(u) = Fb. Hence sketch g(u) in the four possible cases a,b < 0,
a,b>0,a<0<band b<0<a.

(c) By setting uw = S(z4 —T)/sz, show that T'(z4) can be written in form g(u).
Deduce that Xi_2, can be a finite interval, two semi-infinite intervals or the
entire real line. Discuss.

(d) Show that if in fact y1 = 0, X1_2 has infinite length with probability 1—2c.
(e) A different approach considers z4 to be an unknown parameter, and con-
structs the likelihood for 3, o2 and x4 based on the pairs (z5,v;) and y4+. Does
the resulting profile log likelihood £, (x4 ) result in confidence sets such as those
in (c)?
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Figure 8.11
Standardized
residuals plotted
against fitted values
for four normal
linear models.



