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Linear Regression Models

Regression models are used to describe how one or perhaps a few response
variables depend on other explanatory variables. The idea of regression is at
the core of much statistical modelling, because the question ‘what happens
to y when x varies?’ is central to many investigations. It is often required to
predict or control future responses by changing the other variables, or to gain
an understanding of the relation between them. There is usually a single re-
sponse, treated as random. Often there are many explanatory variables, which
are treated as non-stochastic. The simplest models involve linear dependence
and are described in this chapter, while Chapter 9 deals with more struc-
tured situations in which the explanatory variables have been chosen by the
experimenter according to a design. Chapter 10 describes some of the many
extensions of regression to nonlinear dependence. Throughout we simplify our
previous notation by using y to represent both the response variable and the
value it takes; no confusion should arise thereby.

8.1 Introduction

If we denote the response by y and the explanatory variables by x, our concern
is how changes in x affect y. In Section 5.1, for example, the key question was
how the annual maximum sea level in Venice depended on the passage of time.
We fitted the straight-line regression model

yj = β0 + β1xj + εj, j = 1, . . . , n,

where we took yj to be the jth annual maximum sea level and xj to be the
year in which this occurred. The parameters β0 and β1 represent a baseline
maximum sea level and the annual rate at which sea level increases, while
εj is a random variable that represents the difference between the underlying
level, β0 + β1xj , and the value observed, yj .
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An immediate generalization is to increase the number of explanatory vari-
ables, setting

yj = β1xj1 + · · · + βpxjp + εj = xT
j β + εj,

where xT
j = (xj1, . . . , xjp) is a 1×p vector of explanatory variables associated

with the jth response, β is a p × 1 vector of unknown parameters and εj

is an unobserved error accounting for the discrepancy between the observed
response yj and xT

j β. In matrix notation,

y = Xβ + ε, (8.1)

where y is the n × 1 vector whose jth element is yj , X is an n × p matrix
whose jth row is xT

j , and ε is the n × 1 vector whose jth element is εj . The
data on which the investigation is to be based are y and X , and the aim is to
disentangle systematic changes in y due to variation in X from the haphazard
scatter added by the errors ε. Model (8.1) is known as a linear regression
model with design matrix X .

Example 8.1 (Straight-line regression) For the straight-line regression
model, (8.1) becomes

⎛

⎜⎜⎜
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⎠

,

so X is an n× 2 matrix and β a 2× 1 vector of parameters.

Example 8.2 (Polynomial regression) Suppose that the response is a
polynomial function of a single covariate,

yj = β0 + β1xj + · · · + βp−1x
p−1
j + εj .

For example, we might wish to fit a quadratic or cubic trend in the Venice
sea level data, in which case we would have p = 3 or p = 4 respectively. Then
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⎟⎟⎟
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,

where X has dimension n× p.

A key point is that (8.1) is linear in the parameters β. Polynomial regression
can be written in form (8.1) because of its linearity, not in x, but in β.
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Table 8.1 Cement
data (Woods et al.,
1932): y is heat
evolved in calories
per gram of cement,
and x1, x2, x3, and
x4 are percentage
weight of clinkers,
with x1,
3CaO.Al2O3, x2,
3CaO.SiO2, x3,
4CaO.Al2O3.Fe2O3,
and x4, 2CaO.SiO2.

Case x1 x2 x3 x4 y

1 7 26 6 60 78.5
2 1 29 15 52 74.3
3 11 56 8 20 104.3
4 11 31 8 47 87.6
5 7 52 6 33 95.9
6 11 55 9 22 109.2
7 3 71 17 6 102.7
8 1 31 22 44 72.5
9 2 54 18 22 93.1
10 21 47 4 26 115.9
11 1 40 23 34 83.8
12 11 66 9 12 113.3
13 10 68 8 12 109.4

Example 8.3 (Cement data) Table 8.1 contains data on the relationship
between the heat evolved in the setting of cement and its chemical compo-
sition. Data on heat evolved, y, for each of n = 13 independent samples
are available, and for each sample the percentage weight in clinkers of four
chemicals, x1, 3CaO.Al2O3, x2, 3CaO.SiO2, x3, 4CaO.Al2O3.F e2O3, and x4,
2CaO.SiO2, is recorded.

Figure 8.1 shows that although the response y depends on each of the
covariates x1, . . . , x4, the degrees and directions of the dependences differ.

In this case we might fit the model

yj = β0 + β1x1j + β2x2j + β3x3j + β4x4j + εj ,

where Figure 8.1 suggests that β1 and β2 are positive, and that β3 and β4 are
negative. The design matrix has dimension 13× 5, and is

X =

⎛

⎜⎜
⎝

1 7 26 6 60
1 1 29 15 52
...

...
...

...
...

1 10 68 8 12

⎞

⎟⎟
⎠ ;

the vectors y and ε have dimension 13× 1 and β has dimension 5× 1.

In the examples above the explanatory variables consist of numerical quan-
tities, sometimes called covariates. Dummy variables that represent whether
or not an effect is applied can also appear in the design matrix.

Example 8.4 (Cycling data) Norman Miller of the University of Wis-
consin wanted to see how seat height, tyre pressure and the use of a dynamo
affected the time taken to ride his bicycle up a hill. He decided to collect data
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Figure 8.1 Plots of
cement data. The
variables are heat
evolved in calories
per gram, y,
percentage weight in
clinkers of x1,
3CaO.Al2O3, x2,
3CaO.SiO2, x3,
4CaO.Al2O3.Fe2O3,
and x4, 2CaO.SiO2.
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at each combination of two seat heights, 26 and 30 inches from the centre of
the crank, two tyre pressures, 40 and 55 pounds per square inch (psi) and
with the dynamo on and off, giving eight combinations in all. The times were
expected to be quite variable, and in order to get more accurate results he
decided to make two timings for each combination. He wrote each of the eight
combinations on two pieces of card, and then drew the sixteen from a box in
a random order. He planned to make four widely separated runs up the hill
on each of four days, first adjusting his bicycle to the setups on the successive
pieces of card, but bad weather forced him to cancel the last run on the first
day; he made five on the third day to make up for this. Table 8.2 gives timings
obtained with his wristwatch.

The lower part of Table 8.2 shows how average time depends on experi-
mental setup. There is a large reduction in the average time when the seat
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Table 8.2 Data
and experimental
setup for bicycle
experiment (Box
et al., 1978,
pp. 368–372). The
lower part of the
table shows the
average times for
each of the eight
combinations of
settings of seat
height, tyre pressure,
and dynamo, and the
average times for the
eight observations at
each setting,
considered
separately.

Setup Day Run Seat height Dynamo Tyre pressure Time
(inches) (psi) (secs)

1 3 2 – – – 51
2 4 1 – – – 54
3 2 2 + – – 41
4 2 3 + – – 43
5 3 3 – + – 54
6 2 1 – + – 60
7 3 1 + + – 44
8 4 3 + + – 43
9 1 1 – – + 50

10 4 4 – – + 48
11 3 5 + – + 39
12 4 2 + – + 39
13 3 4 – + + 53
14 1 3 – + + 51
15 1 2 + + + 41
16 2 4 + + + 44

Seat height Dynamo Tyre pressure
(inches from centre of crank) (psi)

– 26 Off 40
+ 30 On 55

Dynamo Tyre pressure low Tyre pressure high
Seat low Seat high Seat low Seat high

Off 52.5 42.0 49.0 39.0
On 57.0 43.5 52.0 42.5

Dynamo Tyre pressure Seat
Off On Low High Low High

45.63 48.75 48.75 45.63 52.63 41.75

is raised and smaller reductions when the tyre pressure is increased and the
dynamo is off.

The quantities that are varied in this experiment — seat height, tyre pres-
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sure, and the state of the dynamo — are known as factors. Each takes two
possible values, known as levels. Here there are two types of factors: quan-
titative and qualitative. The two levels of seat height and tyre pressure are
quantitative — other values might have been chosen, and more than two levels
could have been used — but the dynamo factor has only two possible levels
and is qualitative.

An experiment like this, in which data are collected at each combination
of a number of factors, is known as a factorial experiment. Such designs and
their variants are widely used; see Section 9.2.4. In this case an experimental
setup with three factors each having two levels is applied twice: the design
consists of two replicates of a 23 factorial experiment.

One linear model for the data in Table 8.2 is that at the lower seat height,
with the dynamo off, and the lower tyre pressure, the mean time is µ, and
the three factors act separately, changing the mean time by α1, α2, and α3

respectively. This corresponds to the linear regression model

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

y13

y14

y15

y16

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
1 0 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 1 1 0
1 1 1 0
1 0 0 1
1 0 0 1
1 1 0 1
1 1 0 1
1 0 1 1
1 0 1 1
1 1 1 1
1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜
⎝

µ
α1

α2

α3

⎞

⎟⎟
⎠+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8
ε9
ε10
ε11
ε12
ε13
ε14
ε15
ε16

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Table 8.2 suggests that µ
.
= 52.5, that α1 < 0, α2 > 0, and α3 < 0. The

baseline time is µ, which corresponds to the mean time at the lower level of
all three factors, and the overall average time is y = µ+ 1

2α1 + 1
2α2 + 1

2α3 + ε,
where ε is the average of the unobserved errors.

A different formulation of the model would take the overall mean time as
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the baseline, leading to

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
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⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 −1 −1 −1
1 −1 −1 −1
1 1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 −1 1 −1
1 1 1 −1
1 1 1 −1
1 −1 −1 1
1 −1 −1 1
1 1 −1 1
1 1 −1 1
1 −1 1 1
1 −1 1 1
1 1 1 1
1 1 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜
⎝

β0

β1

β2

β3

⎞

⎟⎟
⎠+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8
ε9
ε10
ε11
ε12
ε13
ε14
ε15
ε16

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (8.2)

In (8.2) the effect of increasing seat height from 26 to 30 inches is 2β1, the
effect of switching the dynamo on is 2β2, and the effect of increasing tyre
pressure is 2β3. As each column of the design matrix apart from the first has
sum zero, the overall average time in this parametrization is β0 + ε. Although
the parameter β0 is related to the overall mean, it does not correspond to
a combination of factors that can be applied to the bicycle — how can the
dynamo be half on? Despite this, we shall see below that (8.2) is convenient
for some purposes.

Often it is better to apply a linear model to transformed data than to the
original observations.

Example 8.5 (Multiplicative model) Suppose that the data consist of
times to failure that depend on positive covariates x1 and x2 according to

y = γ0x
γ1
1 xγ22 η,

where η is a positive random variable. Then

log y = log γ0 + γ1 log x1 + γ2 log x2 + log η,

which is linear in log γ0, γ1, and γ2. The variance of the transformed response
log y does not depend on its mean, whereas y has variance proportional to the
square of its mean, so in addition to achieving linearity, the transformation
equalizes the variances.
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Exercises 8.1
1 Which of the following can be written as linear regression models, (i) as they

are, (ii) when a single parameter is held fixed, (iii) after transformation? For
those that can be so written, give the response variable and the form of the
design matrix.
(a) y = β0 + β1/x + β2/x2 + ε;
(b) y = β0/(1 + β1x) + ε;
(c) y = 1/(β0 + β1x + ε);
(d) y = β0 + β1xβ2 + ε;
(e) y = β0 + β1x

β2
1 + β3x

β4
2 + ε;

2 Data are available on the weights of two groups of three rats at the beginning
of a fortnight, x, and at its end, y. During the fortnight, one group was fed
normally and the other group was fed a growth inhibitor. Consider a linear
model for the weights,

yjg = αg + βgxjg + εjg, j = 1, . . . , 3, g = 1, 2.

(a) Write down the design matrix for the model above.
(b) The model is to be reparametrized in such a way that it can be specialized
to (i) two parallel lines for the two groups, (ii) two lines with the same intercept,
(iii) one common line for both groups, just by setting parameters to zero. Give
one design matrix which can be made to correspond to (i), (ii), and (iii), just
by dropping columns.

8.2 Normal Linear Model

8.2.1 Estimation

Suppose that the errors εj in (8.1) are independent normal random variables,
with means zero and variances σ2. Then the responses yj are independent
normal random variables with means xT

j β and variances σ2, and (8.1) is the
normal linear model. The likelihood for β and σ2 is

L(β,σ2) =
n∏

j=1

1

(2πσ2)1/2
exp

{
− 1

2σ2
(yj − xT

j β)2
}

,

and the log likelihood is

ℓ(β,σ2) ≡ − 1
2

⎧
⎨

⎩
n log σ2 +

1

σ2

n∑

j=1

(yj − xT
j β)2

⎫
⎬

⎭
.

Whatever the value of σ2, the log likelihood is maximized with respect to
β at the value that minimizes the sum of squares

SS(β) =
n∑

j=1

(yj − xT
j β)2 = (y −Xβ)T(y −Xβ). (8.3)

We obtain the maximum likelihood estimate of β by solving simultaneously
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the equations

∂SS(β)

∂βr
= 2

n∑

j=1

xjr(yj − βTxj) = 0, r = 1, . . . , p.

In matrix form these amount to the normal equations

XT(y −Xβ) = 0, (8.4)

which imply that the estimate satisfies (XTX)β = XTy. Provided the p × p
matrix XTX is of full rank it is invertible, and the least squares estimator of
β is

β̂ = (XTX)−1XTy.

The maximum likelihood estimator of σ2 may be obtained from the profile
likelihood for σ2,

ℓp(σ
2) = max

β
ℓ(β,σ2) = − 1

2

{
n log σ2 +

1

σ2
(y −X β̂)T(y −X β̂)

}
, (8.5)

and it follows by differentiation that the maximum likelihood estimator of σ2

is

σ̂2 = n−1(y −X β̂)T(y −X β̂) = n−1
n∑

j=1

(yj − xT
j β̂)2.

We shall see below that σ̂2 is biased and that an unbiased estimator of σ2 is

S2 =
1

n− p
(y −X β̂)T(y −X β̂) =

1

n− p

n∑

j=1

(yj − xT
j β̂)2.

Example 8.6 (Straight-line regression) We write the straight-line re-
gression model (5.3) in matrix form as

⎛

⎜⎜⎜
⎝

y1

y2
...

yn

⎞

⎟⎟⎟
⎠

=

⎛

⎜⎜⎜
⎝

1 x1 − x
1 x2 − x
...

...
1 xn − x

⎞

⎟⎟⎟
⎠

(
γ0

γ1

)
+

⎛

⎜⎜⎜
⎝

ε1
ε2
...
εn

⎞

⎟⎟⎟
⎠

.

The least squares estimates are

β̂ =

(
γ̂0

γ̂1

)
=

(
n

∑
(xj − x)∑

(xj − x)
∑

(xj − x)2

)−1( ∑
yj∑

(xj − x)yj

)

=

(
n−1 0
0 1∑

(xj−x)2

)( ∑
yj∑

(xj − x)yj

)

=

(
y∑

(xj−x)yj∑
(xj−x)2

)

.
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If all the xj are equal, XTX is not invertible, and γ̂1 is undetermined: any
value is possible.

The unbiased estimator of σ2 is

1

n− 2

n∑

j=1

{
yj − y − (xj − x)

∑
(xk − x)yk∑
(xk − x)2

}2

.

Example 8.7 (Surveying a triangle) Suppose that we want to estimate
the angles α, β, and γ (radians) of a triangle ABC based on a single inde-
pendent measurement of the angle at each corner. Although there are three
angles, their sum is the constant α+ β + γ = π, and so just two of them vary
independently. In terms of α and β, we have yA = α+ εA, yB = β + εB, and
yC = π − α− β + εC , and this gives the linear model

⎛

⎝
yA

yB

yC − π

⎞

⎠ =

⎛

⎝
1 0
0 1
−1 −1

⎞

⎠
(
α
β

)
+

⎛

⎝
εA

εB

εC

⎞

⎠ .

Hence
(
α̂
β̂

)
= 1

3

(
2 −1
−1 2

)(
π + yA − yC

π + yB − yC

)
= 1

3

(
π + 2yA − yB − yC

π + 2yB − yA − yC

)
.

It is straightforward to show that s2 = (yA + yB + yC − π)2/3.

The sum of squares SS(β) plays a central role. Its minimum value,

SS(β̂) =
n∑

j=1

(yj − xT
j β̂)2 = (y −X β̂)T(y −X β̂),

is called the residual sum of squares because it is the residual squared discrep-
ancy between the observations, y, and the fitted values, ŷ = X β̂. The vector
ŷ is the linear combination of the columns of X that best accounts for the
variation in y, in the sense of minimizing the squared distance between them.
Note that

ŷ = X β̂ = X(XTX)−1XTy = Hy,

say, where the hat matrix H = X(XTX)−1XT “puts hats” on y. Evidently H
is a projection matrix; see Section 8.2.2.

The unobservable error εj = yj − xT
j β is estimated by the jth residual

ej = yj − ŷj = yj − xT
j β̂. In vector terms,Sometimes ej is

called a raw
residual.

e = y −X β̂ = y −Hy = (In −H)y,

where In is the n× n identity matrix.
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Table 8.3 Data
from bicycle
experiment, together

with fitted values ŷ,
raw residuals e,
standardized
residuals, r, deletion
residuals r′,
leverages h and
Cook distances C.

Setup Seat Dynamo Tyre Time ŷ e r r′ h C
height pressure y

1 –1 –1 –1 51 52.62 –1.625 –0.99 –0.99 0.25 0.08
2 –1 –1 –1 54 52.62 1.375 –0.84 0.83 0.25 0.06
3 1 –1 –1 41 41.75 –0.750 –0.46 –0.44 0.25 0.02
4 1 –1 –1 43 41.75 1.250 0.76 0.75 0.25 0.05
5 –1 1 –1 54 55.75 –1.750 –1.06 –1.07 0.25 0.09
6 –1 1 –1 60 55.75 4.250 2.59 3.72 0.25 0.56
7 1 1 –1 44 44.87 –0.875 –0.53 –0.52 0.25 0.02
8 1 1 –1 43 44.87 –1.875 –1.14 –1.16 0.25 0.11
9 –1 –1 1 50 49.50 0.500 0.30 0.29 0.25 0.01

10 –1 –1 1 48 49.50 –1.500 –0.91 –0.91 0.25 0.07
11 1 –1 1 39 38.62 0.375 0.23 0.22 0.25 0.00
12 1 –1 1 39 38.62 0.375 0.23 0.22 0.25 0.00
13 –1 1 1 53 52.62 0.375 0.23 0.22 0.25 0.00
14 –1 1 1 51 52.62 –1.625 –0.99 –0.99 0.25 0.08
15 1 1 1 41 41.75 –0.750 –0.46 –0.44 0.25 0.02
16 1 1 1 44 41.75 2.250 1.37 1.43 0.25 0.16

Example 8.8 (Cycling data) For model (8.2) we find that

(XTX)−1 = 1
16I4,

so the least squares estimates (XTX)−1XTy are

1
16

(
y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10 + y11 + y12 + y13 + y14 + y15 + y16

−y1 − y2 + y3 + y4 − y5 − y6 + y7 + y8 − y9 − y10 + y11 + y12 − y13 − y14 + y15 + y16
−y1 − y2 − y3 − y4 + y5 + y6 + y7 + y8 − y9 − y10 − y11 − y12 + y13 + y14 + y15 + y16
−y1 − y2 − y3 − y4 − y5 − y6 − y7 − y8 + y9 + y10 + y11 + y12 + y13 + y14 + y15 + y16

)
=

(
47.19

−5.437
1.563

−1.563

)
.

Thus the overall average time is 47.19 seconds, putting the seat at height 30
inches rather than 26 inches changes the time by an average of 2× (−5.437) =
−10.87 seconds, putting the dynamo on rather than off changes the time by
an average of 2× 1.563 = 3.13 seconds, and increasing the tyre pressure from
40 to 55 psi changes the time by –3.13 seconds. The largest effect is due to
increasing the seat height. The model suggests that the fastest time is obtained
with no dynamo, a high seat and tyres at 55 psi.

The residual sum of squares for this model is 43.25 seconds squared, the
overall sum of squares is

∑
y2

j = 36221 seconds squared, and therefore the
sum of squares explained by the model is 36221− 43.25 = 36177.75 seconds
squared; this is the amount of variation removed when Xβ is fitted.

The fitted values are ŷ = X β̂, giving ŷ1 = β̂0 − β̂1 − β̂2 − β̂3 = 52.625,
e1 = y1 − ŷ1 = 51− 52.625 = −1.625, and so forth. Table 8.3 gives the data,
fitted values, residuals and quantities discussed in Examples 8.22 and 8.27.
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Figure 8.2 The
geometry of least
squares estimation.
The space spanned
by all three axes
represents the
n-dimensional
observation space in
which y lies. The
horizontal plane
through O represents
the p-dimensional
space in which the
linear combination
Xβ lies, and
estimation by least
squares amounts to
minimizing the
squared distance
(y − Xβ)T(y − Xβ).
In the figure the
value of Xβ that
gives the minimum
lies vertically below
y, which corresponds
to orthogonal
projection of y into
the p-dimensional
subspace spanned by
the columns of X;
the fitted value
ŷ = Hy is the point
closest to y in that
subspace, and the
projection matrix is
H =
X(XTX)−1XT. The
vector of residuals
e = y − ŷ is
orthogonal to the

fitted value ŷ. The
line x = z = 0
represents the space
spanned by the
columns of the
reduced model
matrix X1, with
corresponding fitted

value ŷ1. The

orthogonality of ŷ1,

ŷ − ŷ1, and y − ŷ
implies that when
the data are normal
the corresponding
sums of squares are
independent.
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8.2.2 Geometrical interpretation

Figure 8.2 shows the geometry of least squares. The n-dimensional vector
space inhabited by the observation vector y is represented by the space spanned
by all three axes, and the p-dimensional subspace in which Xβ lies is repre-
sented by the horizontal plane through the origin. The least squares estimate
β̂ minimizes (y −Xβ)T(y −Xβ), which is the squared distance between Xβ
and y. We see that (y−Xβ)T(y−Xβ) is minimized when the vector y−Xβ
is orthogonal to the horizontal plane spanned by the columns of X , so that
for any column x of X we have xT(y − Xβ) = 0. Equivalently the normal
equations XT(y − Xβ) = 0 hold, and provided XTX is invertible we obtain
β̂ = (XTX)−1XTy. The fitted value ŷ = X β̂ = X(XTX)−1XTy = Hy is the
orthogonal projection of y onto the plane spanned by the columns of X , and
the matrix representing that projection is H . Notice that ŷ is unique whether
or not XTX is invertible.

Figure 8.2 shows that the vector of residuals, e = y − ŷ = (In −H)y, and
the vector of fitted values, ŷ = Hy, are orthogonal. To see this algebraically,
note that

ŷTe = yTHT(In −H)y = yT(H −H)y = 0, (8.6)

because HT = H and HH = H , that is, the projection matrix H is symmetric
and idempotent (Exercise 8.2.5). The close link between orthogonality and
independence for normally distributed vectors means that (8.6) has important
consequences, as we shall see in Section 8.3. For now, notice that (8.6) implies
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that

yTy = (y − ŷ + ŷ)T(y − ŷ + ŷ) = (e + ŷ)T(e + ŷ) = eTe + ŷTŷ, (8.7)

as is clear from Figure 8.2 by Pythagoras’ theorem. That is, the overall sum
of squares of the data,

∑
y2

j = yTy, equals the sum of the residual sum of

squares, SS(β̂) =
∑

(yj − ŷj)2 = eTe, and the sum of squares for the fitted
model,

∑
ŷ2

j = ŷTŷ.
Such decompositions are central to analysis of variance, discussed below.

8.2.3 Likelihood quantities

Chapter 4 shows how the observed and expected information matrices play
a central role in likelihood inference, by providing approximate variances for
maximum likelihood estimates. To obtain these matrices for the normal linear
model, note that the log likelihood has second derivatives

∂2ℓ

∂βr∂βs
= − 1

σ2

n∑

j=1

xjrxjs,
∂2ℓ

∂βr∂σ2
=

1

σ4

n∑

j=1

xjr(yj − xT
j β),

∂2ℓ

∂(σ2)2
= − 1

2

⎧
⎨

⎩
− 1

σ4
+

2

σ6

n∑

j=1

(yj − xT
j β)2

⎫
⎬

⎭
, r, s = 1, . . . , p.

Thus elements of the expected information matrix are

E

(
− ∂2ℓ

∂βr∂βs

)
=

1

σ2

n∑

j=1

xjrxjs, E

(
− ∂2ℓ

∂βr∂σ2

)
= 0, E

{
− ∂2ℓ

∂(σ2)2

}
=

n

2σ4
,

or in matrix form

I(β,σ2) =

(
σ−2XTX 0

0 1
2nσ−4

)
, I(β,σ2)−1 =

(
σ2(XTX)−1 0

0 2σ4/n

)
.

Provided that X has rank p, the matrices I(β,σ2) and J(β̂, σ̂2) are positive
definite (Exercise 8.2.7).

Under mild regularity conditions on the design matrix and the errors, the
general theory of likelihood estimation implies that the asymptotic distribu-
tion of β̂ and σ2 is normal with means β and σ2, and covariance matrix given
by I(β,σ2)−1, the block diagonal structure of which implies that β̂ and σ̂2

are asymptotically independent. We shall see in the next section that stronger
results are true: when the errors are normal the estimates β̂ have an exact
normal distribution and are independent of σ̂2 for every value of n, while σ̂2

has a distribution proportional to χ2
n−p provided that n > p.

The quantities β̂ and SS(β̂) are minimal sufficient statistics for β and σ2

(Problem 8.7).
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Example 8.9 (Two-sample model) Suppose that we have two groups
of normal data, the first with mean β0,

y0j = β0 + ε0j , j = 1, . . . , n0,

and the second with mean β0 + β1,

y1j = β0 + β1 + ε1j , j = 1, . . . , n1,

where the εgj are independent with means zero and variances σ2. The matrix
form of this model is

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

y01
...

y0n0

y11
...

y1n1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

1 0
...

...
1 0
1 1
...

...
1 1

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

(
β0

β1

)
+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ε01
...

ε0n0

ε11
...

ε1n1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The estimator of β is β̂ = (XTX)−1XTy, that is,
(
β̂0

β̂1

)
=

(
n0 + n1 n1

n1 n1

)−1(
n0y0· + n1y1·

n1y1·

)

=

(
n−1

0 −n−1
0

−n−1
0 n−1

0 + n−1
1

)(
n0y0· + n1y1·

n1y1·

)

=

(
y0·

y1· − y0·

)
,

where y0· = n−1
0

∑
y0j and y1· = n−1

1

∑
y1j are the group averages. One

can verify directly that the elements of σ2(XTX)−1 give the variances and
covariance of the least squares estimators.

In this example the fitted values are β̂0 = y0· for the first group and β̂0+β̂1 =
y1· for the second group, and the unbiased estimator of σ2 is

S2 =
1

n0 + n1 − 2

⎧
⎨

⎩

n0∑

j=1

(y0j − y0·)
2 +

n1∑

j=1

(y1j − y1·)
2

⎫
⎬

⎭
.

A minimal sufficient statistic for (β0,β1,σ2) is (y0·, y1·, s
2).

Example 8.10 (Maize data) The discussion in Example 1.1 suggests
that a model of matched pairs better describes the experimental setup for the
maize data than the two-sample model of Example 8.9. We parametrize the
matched pair model so that the jth pair of observations is

y1j = βj − β0 + ε1j, y2j = βj + β0 + ε2j , j = 1, . . . , m,

where we assume that the εji are independent normal random variables with
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means zero and variances σ2. We have m = 15. The average difference between
the heights of the crossed and self-fertilized plants in a pair is 2β0, and the
mean height of the pair is βj . The matrix form of this model is

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

y11

y21

y12

y22
...

y1m

y2m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 1 0 · · · 0
1 1 0 · · · 0
−1 0 1 · · · 0
1 0 1 · · · 0
...

...
...

...
−1 0 0 · · · 1
1 0 0 · · · 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜
⎝

β0

β1

β2
...
βm

⎞

⎟⎟⎟⎟⎟
⎠

+

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ε11
ε21
ε12
ε22
...

ε1m

ε2m

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

so β has dimension (m + 1)× 1 and XTX = diag(2m, 2, . . . , 2) has dimension
(m + 1)× (m + 1).

We see that

β̂0 = (y21 − y11 + y22 − y12 + · · · + y2m − y1m)/(2m),

β̂j = 1
2 (y1j + y2j), j = 1, . . . , m,

and that the estimators are independent. The unbiased estimator of σ2 is

S2 =
1

2m− (m + 1)

m∑

j=1

{
(y1j − β̂j + β̂0)

2 + (y2j − β̂j − β̂0)
2
}

,

which can be written as {2(m− 1)}−1
∑

(dj − d)2, where dj = y2j − y1j is the
difference between the heights of the crossed and self-fertilized plants in the
jth pair, and d = m−1

∑
dj is their average. Note that β̂0 equals 1

2d.

Likelihood ratio statistic

The likelihood ratio statistic is a standard tool for comparing nested models.
In the context of the normal linear model, let

y = Xβ + ε = (X1 X2 )

(
β1

β2

)
+ ε = X1β1 + X2β2 + ε,

where X1 is an n×q matrix, X2 is an n×(p−q) matrix, q < p, and β1 and β2 are
vectors of parameters of lengths q and p−q. Suppose that we wish to compare
this with the simpler model in which β2 = 0, so the mean of y depends only
on X1. Under the more general model the maximum likelihood estimators of
β and σ2 are β̂ and σ̂2 = n−1SS(β̂), where SS(β) = (y−Xβ)T(y−Xβ), and
it follows from (8.5) that the maximized log likelihood is

ℓp(σ̂2) = − 1
2

{
n logSS(β̂) + n− n log n

}
,

where ℓp(σ2) = maxβ ℓ(β,σ2) is the profile log likelihood for σ2. When β2 = 0,
the maximum likelihood estimator of σ2 is

σ̂2
0 = n−1SS(β̂1) = n−1(y −X1β̂1)

T(y −X1β̂1),
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where β̂1 is the estimator of β1 when β2 = 0. Hence the likelihood ratio
statistic for comparison of the models is

2
{
ℓp(σ̂2)− ℓp(σ̂2

0)
}

= n log
{
SS(β̂)/SS(β̂1)

}

= n log

⎡

⎣1 +
p− q

n− p

{
SS(β̂1)− SS(β̂)

}
/(p− q)

SS(β̂)/(n− p)

⎤

⎦

= n log

(
1 +

p− q

n− p
F

)
, (8.8)

say. Here F ≥ 0, with equality only if the two sums of squares are equal. This
event can occur only if the columns of X2 are linearly dependent on those of
X1. If not, the results of Section 4.5.2 imply that the likelihood ratio statistic
has an approximate χ2 distribution, but as it is a monotonic function of F ,
large values of (8.8) correspond to large values of F . We shall see in Section 8.5
that the exact distribution of F is known and can be used to compare nested
models, with no need for approximations.

It is instructive to express F explicitly in terms of the least squares estima-
tors. As (8.8) is a likelihood ratio statistic for testing β2 = 0, it is invariant
to 1–1 reparametrizations that leave β2 fixed, and we write E(y) as

X1β1 + X2β2 = X1β1 + H1X2β2 + (I −H1)X2β2

= X1

{
β1 + (XT

1 X1)
−1XT

1 X2β2

}
+ Z2β2

= X1λ+ Z2ψ,

say, where H1 = X1(XT
1 X1)−1XT

1 is the projection matrix for X1, Z2 =
(I −H1)X2 is the matrix of residuals from regression of the columns of X2 on
those of X1, and the new parameters are λ and ψ = β2. Note that

XT
1 Z2 = XT

1

{
I −X1(X

T
1 X1)

−1XT
1

}
X2 = 0,

and that H1 is idempotent. In this new parametrization the parameter esti-
mates are

(
λ̂
ψ̂

)
=

(
XT

1 X1 XT
1 Z2

ZT
2 X1 ZT

2 ZT
2

)−1(
XT

1

ZT
2

)
y =

(
(XT

1 X1)−1XT
1 y

(ZT
2 Z2)−1ZT

2 y

)
,

while if ψ = β2 = 0, the least squares estimate of λ remains λ̂. Consequently

SS(β̂) = (y −X1λ̂− Z2ψ̂)T(y −X1λ̂− Z2ψ̂)

= (y −X1λ̂)T(y −X1λ̂)− 2ψ̂TZT
2 (y −X1λ̂) + ψ̂TZT

2 Z2ψ̂

= SS(β̂1)− ψ̂TZT
2 Z2ψ̂,

since

ψ̂TZT
2 (y −X1λ̂) = ψ̂TZT

2 y − ψ̂TZT
2 X1λ̂
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= ψ̂T(ZT
2 Z2)(Z

T
2 Z2)

−1ZT
2 y

= ψ̂T(ZT
2 Z2)ψ̂.

Thus the F statistic in (8.8) may be written as

F =
n− p

p− q

β̂T
2 XT

2 (I −H1)X2β̂2

SS(β̂)

and this is large if β̂2 differs greatly from zero.
If β2 is scalar, then p− q = 1, the matrix ZT

2 Z2 = XT
2 (I −H1)X2 = v−1

pp is
scalar, and F = T 2, where

T =
β̂2 − β2

(vpps2)1/2
(8.9)

with s2 = SS(β̂)/(n− p) and β2 = 0. Thus F is a monotonic function of T 2.
We shall see in Section 8.3.2 that T has a tn−p distribution.

8.2.4 Weighted least squares

Suppose that a normal linear model applies but that the responses have un-
equal variances. If the variance of yj is σ2/wj, where σ2 is unknown but the
wj are known positive quantities giving the relative precisions of the yj , the
log likelihood can be written as

ℓ(β,σ2) ≡ − 1
2

{
n log σ2 +

1

σ2
(y −Xβ)TW (y −Xβ)

}
,

where W = diag{w1, . . . , wn} is known as the matrix of weights. Let W 1/2 =
diag{w1/2

1 , . . . , w1/2
n }, and set y′ = W 1/2y and X ′ = W 1/2X . Then the sum of

squares may be written as (y′ −X ′β)T(y′ −X ′β). As this has the same form
as (8.3), the estimates of β and σ2 are

β̂ = (X ′TX ′)−1X ′Ty′ = (XTWX)−1XTWy, (8.10)

and

s2 = (n− p)−1y′T{I −X ′(X ′TX ′)−1X ′T}y′

= (n− p)−1yT{W −WX(XTWX)−1XTW}y. (8.11)

These are the weighted least squares estimates. This device of replacing y
and X with W 1/2y and W 1/2X allows methods for unweighted least squares
models to be applied when there are weights (Exercise 8.2.9).

Example 8.11 (Grouped data) Suppose that each yj is an average of a
random sample of mj normal observations, each with mean xT

j β and variance
σ2, and that the samples are independent of each other. Then yj has mean
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xT
j β and variance σ2/mj , and the yj are independent. The estimates of β and
σ2 are given by (8.10) and (8.11) with weights wj ≡ mj .

Weighted least squares can be extended to situations where the errors are
correlated but the relative correlations are known, that is, var(y) = σ2W−1,
where W is known but not necessarily diagonal. This is sometimes called
generalized least squares. The corresponding least squares estimates of β and
σ2 are given by (8.10) and (8.11).

Weighted least squares turns out to be of central importance in fitting
nonlinear models, and is used extensively in Chapter 10.

Exercises 8.2
1 Write down the linear model corresponding to a simple random sample y1, . . . , yn

from the N(µ,σ2) distribution, and find the design matrix. Verify that

µ̂ = (XTX)−1XTy = y, s2 = SS(β̂)/(n − p) = (n − 1)−1
∑

(yj − y)2.

2 Verify the formula for s2 given in Example 8.7, and show directly that its
distribution is σ2χ2

1.

3 The angles of the triangle ABC are measured with A and B each measured twice
and C three times. All the measurements are independent and unbiased with
common variance σ2. Find the least squares estimates of the angles A and B
based on the seven measurements and calculate the variance of these estimates.

4 In Example 8.10, show that the unbiased estimator of σ2 is {2(m−1)}−1
∑

(dj−
d)2.

Recall that: (i) if the
matrix A is square,
then tr(A) =

∑
aii;

(ii) if A and B are
conformable, then
tr(AB) = tr(BA);
(iii) λ is an
eigenvalue of the
square matrix A if
there exists a vector
of unit length a such
that Aa = λa, and
then a is an
eigenvector of A; and
(iv) a symmetric
matrix A may be
written as ELET,
where L is a diagonal
matrix of the
eigenvalues of A, and
the columns of E are
the corresponding
eigenvectors, having
the property that
ET = E−1. If the
matrix is symmetric
and positive definite,
then all its
eigenvalues are real
and positive.

5 Show that if the n×p design matrix X has rank p, the matrix H = X(XTX)−1XT

is symmetric and idempotent, that is, HT = H and H2 = H , and that tr(H) =
p. Show that In − H is symmetric and idempotent also. By considering H2a,
where a is an eigenvector of H , show that the eigenvalues of H equal zero or
one. Prove also that H has rank p.
Give the elements of H for Examples 8.9 and 8.10.

6 In a linear model in which n → ∞ in such a way that β̂
P−→ β, show that

ej
P−→ εj . Generalize this to any finite subset of the residuals e. Is this true for

the entire vector e?
Let yj = β0 + β1xj + εj with x1 = · · · = xk = 0 and xk+1 = · · · = xn = 1. Is β̂
consistent if n → ∞ and k = 1? If k = m, for some fixed m? If k = n/2? Which
of the εj can be estimated consistently in each case?

7 Show that in a normal linear model in which X has rank p, the matrices I(β,σ2)

and J(β̂, σ̂2) are positive definite.

8 (a) Consider the two design matrices for Example 8.4; call them X1 and X2.
Find the 4 × 4 matrix A for which X1 = X2A, and verify that it is invertible
by finding its inverse.
(b) Consider the linear models y = X1β+ε and y = X2γ+ε, where X1 = X2A,
γ = Aβ, and A is an invertible matrix. Show that the hat matrices, fitted values,
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residuals, and sums of squares are the same for both models, and explain this
in terms of the geometry of least squares.

9 (a) Consider a normal linear model y = Xβ + ε where var(ε) = σ2W−1, and
W is a known positive definite symmetric matrix. Show that a inverse square
root matrix W 1/2 exists, and re-express the least squares problem in terms of
y1 = W 1/2y, X1 = W 1/2X, and ε1 = W 1/2ε. Show that var(ε) = σ2In. Hence
find the least squares estimates, hat matrix, and residual sum of squares for the
weighted regression in terms of y, X, and W , and give the distributions of the
least squares estimates of β and the residual sum of squares.
(b) Suppose that W depends on an unknown scalar parameter, ρ. Find the
profile log likelihood for ρ, ℓp(ρ) = maxβ,σ2 ℓ(β,σ2, ρ), and outline how to use
a least squares package to give a confidence interval for ρ.

8.3 Normal Distribution Theory

8.3.1 Distributions of β̂ and s2

The derivation of the least squares estimators in the previous section rests on
the assumption that the errors satisfy the second-order assumptions

E(εj) = 0, var(εj) = σ2, cov(εj , εk) = 0, j ̸= k, (8.12)

and in addition are normal variables. As they are uncorrelated, their normality
implies they are independent. On setting εT = (ε1, . . . , εn), we have

E(ε) = 0, cov(ε, ε) = E(εεT) = σ2In,

where In is the n× n identity matrix. The least squares estimator equals

β̂ = (XTX)−1XTy = (XTX)−1XT(Xβ + ε) = β + (XTX)−1XTε,

which is a linear combination of normal variables, and therefore its distribution
is normal. Its mean vector and covariance matrix are

E(β̂) = β + (XTX)−1XTE(ε),

var(β̂) = cov{β + (XTX)−1XTε,β + (XTX)−1XTε}
= (XTX)−1XTcov(ε, ε)X(XTX)−1,

so

E(β̂) = β, var(β̂) = σ2(XTX)−1. (8.13)

Therefore β̂ is normally distributed with mean and covariance matrix given
by (8.13). We shall see below that the residual sum of squares has a chi-
squared distribution, independent of β̂. Thus the key distributional results for
the normal linear model are

β̂ ∼ Np

{
β,σ2(XTX)−1

}
independent of SS(β̂) ∼ σ2χ2

n−p. (8.14)
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To show that the least squares estimator and residual sum of squares are
independent, note that the residuals can be written as

e = (In −H)y = (In −H)(Xβ + ε) = (In −H)ε,

because HX = X(XTX)−1XTX = X . Therefore the vector e = (In − H)ε
is a linear combination of normal random variables and is itself normally
distributed, with mean and variance matrix

E(e) = E{(In −H)ε} = 0,

(8.15)

var(e) = var {(In −H)ε} = (In −H)var(ε)(In −H)T = σ2(In −H).

The covariance between β̂ and e is

cov(β̂, e) = cov{β + (XTX)−1XTε, (In −H)ε}
= (XTX)−1XTcov(ε, ε)(In −H)T

= (XTX)−1XTσ2In(In −H)T = 0.

As both e and β̂ are normally distributed and their covariance matrix is zero,
they are independent, which implies that β̂ and the residual sum of squares
SS(β̂) = eTe are independent.

The key to the distribution of SS(β̂) is the decomposition

εTε = (y −Xβ)T(y −Xβ)

= (y −X β̂ + X β̂ −Xβ)T(y −X β̂ + X β̂ −Xβ)

=
{
e + X(β̂ − β)

}T {
e + X(β̂ − β)

}
,

which leads to

εTε/σ2 = eTe/σ2 + (β̂ − β)TXTX(β̂ − β)/σ2, (8.16)

because eTX = yT(In−H)X = 0. The left-hand side of (8.16) is a sum of the n
independent chi-squared variables ε2j/σ

2, so its distribution is χ2
n; its moment-

generating function is (1 − 2t)−n/2, t < 1
2 . It follows from applying (3.23) to

the normal distribution of β̂ in (8.14) that (β̂ − β)TXTX(β̂ − β)/σ2 ∼ χ2
p.

On taking moment-generating functions of both sides of (8.16) we therefore
obtain

(1 − 2t)−n/2 = E
{
exp(teTe/σ2)

}
× (1− 2t)−p/2, t < 1

2 ,

because e and β̂ are independent. Therefore eTe/σ2 has moment-generating
function (1− 2t)−(n−p)/2, showing that its distribution is χ2

n−p. We need only

recall that SS(β̂) = eTe to establish the remaining result in (8.14): under the
normal linear model, we have SS(β̂)/σ2 ∼ χ2

n−p.
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As the distribution of SS(β̂) is σ2χ2
n−p, its mean is E{SS(β̂)} = (n− p)σ2,

and its variance is var{SS(β̂)} = 2(n− p)σ4. Thus

S2 =
1

n− p

n∑

j=1

(yj − xj β̂)2 =
1

n− p
SS(β̂)

is an unbiased estimator of σ2, whereas σ̂2 = SS(β̂)/n is biased.

8.3.2 Confidence and prediction intervals

Confidence intervals for components of β are based on the distributions of β̂
and S2. Under the normal linear model the rth element of β̂ satisfies

β̂r ∼ N(βr,σ
2vrr),

where vrr is the rth diagonal element of (XTX)−1, and β̂ is independent of
S2, whose distribution is (n− p)−1σ2χ2

n−p. Therefore

T =
β̂r − βr√

S2vrr
∼ tn−p,

which makes the connection with (8.9). A (1− 2α) confidence interval for βr

is β̂r ± sv1/2
rr tn−p(α). When σ2 is known, we replace s by σ and tn−p(α) by tν(α) is the α

quantile of the tν
distribution.

the normal quantile zα.
Similar reasoning gives confidence intervals for linear functions of β. The

maximum likelihood estimator of the linear function xT
+β is xT

+β̂, which has
a normal distribution with mean xT

+β and variance

var(xT
+β̂) = xT

+var(β̂)x+ = σ2xT
+(XTX)−1x+.

As S2 is independent of β̂, confidence regions for xT
+β can be based on

xT
+β̂ − xT

+β
{
S2xT

+(XTX)−1x+

}1/2
∼ tn−p.

If σ2 is known, the observed s is replaced in the confidence interval by σ and
quantiles of the t distribution are replaced by those of the normal. Notice that
the variance of a fitted value ŷj = xT

j β̂ is σ2xT
j (XTX)−1xj , and this equals

σ2hjj , where hjj is the jth diagonal element of the hat matrix H .
A confidence interval for a function of parameters is different from a predic-

tion interval for a new observation, y+ = xT
+β+ε+. The presence of ε+ would

introduce uncertainty about y+ even if β was known, and a prediction interval
must take this into account. If ε+ is normal with mean zero and variance σ2,
independent of the data from which β̂ is estimated, we have

E(xT
+β̂ + ε+) = xT

+β,

var(xT
+β̂ + ε+) = var(xT

+β̂) + var(ε+) = σ2{xT
+(XTX)−1x+ + 1}.
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When σ2 is unknown, therefore, a prediction interval for y+ can be based on

y+ − xT
+β̂

[
S2
{
1 + xT

+(XTX)−1x+

}]1/2
∼ tn−p,

with the appropriate changes if σ2 is known.

Example 8.12 (Cycling data) The covariance matrix for the parameter
estimates in Example 8.8 is σ2

16 I4. As the residual sum of squares is SS(β̂) =
43.25, n = 16 and p = 4, an estimate of σ2 is s2 = 43.25/12 = 3.604 on
12 degrees of freedom, and each estimate β̂r has standard error (s2/16)1/2 =
0.475.

A 0.95 confidence interval for the true value of β1 is β̂1±st12(0.025)/4, and
this is −5.437 ± 0.475 × 2.18 = (−6.47,−4.40) seconds, clear evidence that
the time is shorter when the seat is higher. The change due to the effect of
tyre pressure is 2β̂3 seconds, for which the standard error is 2 × s/4 = 0.95
seconds.

A 0.95 prediction interval for a further timing y+ made with all three fac-
tors set at their higher levels would be 41.75 ± (1 + 4

16 )1/2st12(0.025), which
is (39.49, 46.01). The variability introduced by ε+ forms the bulk of the vari-
ability of y+, whose variance is five times that of the fitted value.

Example 8.13 (Maize data) Consider the two-sample model applied to
the data in Table 1.1. If we assume that the heights of the cross-fertilized
plants form a random sample with means β0 + β1, and that the heights of
the self-fertilized plants form a random sample with height β0, and that both
have variance σ2, the results of Example 8.9 establish that the estimates are

β̂0 = y0· = 140.6, β̂1 = y1· − y0· = 161.53− 140.6 = 20.93,

that the unbiased estimate of σ2 is s2 = 553.19, and that the estimated
variance of β̂1 is s2(n−1

0 + n−1
1 ) = 73.78. As s2 has 28 degrees of freedom, a

0.95 confidence interval for β1 has limits

β̂1 ± s(n−1
0 + n−1

1 )1/2t28(0.025) = 20.93 ± 73.781/2 × 2.048 = 3.34, 38.52.

This does not contain zero, and is evidence that the crossed plants are signif-
icantly taller than self-fertilized plants.

For the matched pairs model of Example 8.10, there are m = 15 pairs, with
β̂0 = 10.48 and s2 = 712.36, on 2m− (m+1) = 14 degrees of freedom. A 0.95
confidence interval for β0 based on this model has limits

β̂0 ± {s2/(2m)}1/2t14(0.025) = 10.48 ± (712.36/30)1/2× 2.154 = 0.00, 20.96.

The corresponding interval for the height increase for crossed plants is an
interval for 2β0, that is, (0.00, 41.91). This is wider than the interval for the
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two-sample model, and just contains the value zero, giving evidence that there
may be no increase due to cross-fertilization. The increase in interval width has
two causes. First, the estimate of σ2 for the matched pairs model equals 712.36,
which is larger than the value 553.19 for the two-sample model. Second, there
are only 14 degrees of freedom for the matched pairs estimate of variance, and
|t14(0.025)| > |t28(0.025)|, which slightly inflates the matched pairs confidence
interval relative to the interval from the matched analysis.

Exercises 8.3
1 The following table gives the parameter estimates, standard errors and correla-

tions, when the model y = β0 + β1x1 + β2x2 + β3x3 + ε is fitted to the cement
data of Example 8.3. The residual sum of squares is 48.11.

Estimate SE Correlations of Estimates
(Intercept) 48.19 3.913 (Intercept) x1 x2

x1 1.70 0.205 x1 -0.736
x2 0.66 0.044 x2 -0.416 -0.203
x3 0.25 0.185 x3 -0.828 0.822 -0.089

On the assumption that this normal linear model applies, compute 0.95 con-
fidence intervals for β0, β1, β2, and β3, and test the hypothesis that β3 = 0.
Compute a 0.90 confidence interval for β2 − β3.

2 Let β̂ be a least squares estimator, and suppose that ε+ ∼ N(0, σ2) independent

of β̂. Verify that var(xT
+β̂) = σ2xT

+(XTX)−1x+ and that var(xT
+β̂ + ε+) =

σ2{1 + xT
+(XTX)−1x+}. Assuming that a normal linear model is suitable for

the cycling data, calculate a 0.90 confidence interval for the mean time to cycle
up the hill when the three factors are at their lowest levels. Obtain also a 0.90
prediction interval for a future observation made with that setup.

8.4 Least Squares and Robustness

In Section 8.2.1 we established that β̂ = (XTX)−1XTy is the maximum likeli-
hood estimator of the regression parameter β under the assumption of normal
responses. The model is a linear exponential family with complete minimal
sufficient statistic (β̂, S2), and it follows that these are the unique minimum
variance unbiased estimators of (β,σ2). It is natural to ask to what optimal-
ity properties hold more generally. We shall see below that β̂ has minimum
variance among all estimators linear in the responses y, under assumptions
on the mean and variance structure of y alone. Thus the least squares estima-
tor retains optimality properties even without full distributional assumptions.
This has important generalizations, as we shall see in Section 10.6.

Suppose that the second-order assumptions (8.12) hold, but that the er-
rors are not necessarily normal. Thus, although uncorrelated, they may be
dependent. Then E(y) = Xβ and var(y) = σ2In. Let β̃ denote any unbiased
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estimator of β that is linear in y. Then a p × n matrix A exists such that
β̃ = Ay, and unbiasedness implies that E(β̃) = AXβ = β for any parameter
vector β; this entails AX = Ip. NowThe n×n hat matrix

H = X(XTX)−1XT

is symmetric and
idempotent and
hence so is In − H.

var(β̃)− var(β̂) = Aσ2InAT − σ2(XTX)−1

= σ2
{
AAT −AX(XTX)−1XTAT

}

= σ2A(In −H)AT

= σ2A(In −H)(In −H)TAT

and this p × p matrix is positive semidefinite. Thus β̂ has smallest variance
in finite samples among all linear unbiased estimators of β, provided that
the second-order assumptions hold. This result, the Gauss–Markov theorem,Johann Carl

Friedrich Gauss
(1777–1855) was
born and educated in
Brunswick. He
studied in Göttingen
and obtained a
doctorate from the
University of
Helmstedt. His first
book, published at
the age of 24,
contained the largest
advance in geometry
since the Greeks. He
became director of
the Göttingen
observatory and
invented least
squares estimation
for the combination
of astronomical
observations, though
his statistical work
was not published
until much later. He
also wrote treatises
on theoretical
astronomy,
surveying, terrestial
magnetism, infinite
series, integration,
number theory, and
differential geometry.

gives further support for using β̂ if a linear estimator of β is sought, though
of course nonlinear estimators may have smaller variance.

Example 8.14 (Student t density) Suppose that y = Xβ + σε, where
the εj are independent and have the Student t density (3.11) with ν degrees
of freedom. Now var(εj) is finite and equals ν/(ν − 2) provided ν > 2, and
then the least squares estimator has variance matrix σ2ν/(ν− 2)× (XTX)−1.

How much efficiency is lost by using least squares rather than maximum
likelihood estimation for β? To see this we must compute the expected infor-
mation matrix, which gives the inverse variance of the maximum likelihood
estimator. The log likelihood assuming ν and σ2 known is

ℓ(β) ≡ −ν + 1

2

n∑

j=1

log
{
1 + (yj − xT

j β)2/(νσ2)
}

,

and differentiation with respect to β gives

∂ℓ(β)

∂β
=

ν + 1

νσ2

n∑

j=1

yj − xT
j β

1 + (yj − xT
j β)2/(νσ2)

xj ,

− ∂
2ℓ(β)

∂β∂βT
=

ν + 1

νσ2

n∑

j=1

1− (yj − xT
j β)2/(νσ2)

{
1 + (yj − xT

j β)2/(νσ2)
}2 xjx

T
j .

Now E{(1 + ε2/ν)−r} = (ν + 2r − 2) · · · ν/{(ν + 2r − 1) · · · (ν + 1)}, so the
expected information for β is σ−2(ν +1)/(ν+ 3)×XTX . Thus the maximum
likelihood estimator is a nonlinear function of y with large-sample variance
matrix σ2(ν+3)/(ν+1)×(XTX)−1. It follows that the least squares estimator
has asymptotic relative efficiency (ν − 2)(ν + 3)/{ν(ν + 1)}, independent of
the design matrix, β, or σ2. As ν →∞, the efficiency tends to one; for ν = 5,
10, and 20 it equals 0.8, 0.95, and 0.99. Maximum likelihood estimation of β
barely improves on least squares for a wide range of ν, because the t density
is close to normal unless ν is small.
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M-estimation

The least squares estimators have strong optimality properties, but because
they are linear in y, they are sensitive to outliers. When data are too extensive
to be carefully inspected or when bad data are present, robust or resistant
estimators are more appropriate. One approach to constructing them is to
replace the sum of squares with a function

∑
ρ{(yj − xT

j β)/σ} that down-
weights extreme values of (yj − xT

j β)/σ. The resulting estimators are called
M-estimators because they are maximum-likelihood-like: the function ρ takes
the place of a negative log likelihood. They may also be defined as the solutions
of the p× 1 estimating equation (Section 7.2)

σ−1
n∑

j=1

xjρ
′{(yj − xT

j β)/σ} = 0, (8.17)

where ρ′(u) = dρ(u)/du, which extends the least squares estimating equation

XT(y −Xβ) =
n∑

j=1

xj(yj − xT
j β) = 0. (8.18)

Many functions ρ(u) have been proposed. Setting ρ(u) = u2/2 gives least
squares. Other possibilities include ρ(u) = |u|, ρ(u) = ν log(1 + u2/ν)/2, and

ρ(u) =

{
u2, if |u| < c,
c(2|u|− c), otherwise,

corresponding to the median, a tν density, and a Huber estimator (Exam-
ple 7.19). These have the drawback that large outliers are not downweighted
to zero. This can be achieved with a redescending function such as the bi-
weight,

ρ′(u) = u max
[{

1− (u/c′)2
}2

, 0
]
;

taking c′ = 4.865 gives asymptotic efficiency 0.95 for normal data.
Notice that

∑
ρ{(yj − xT

j β)/σ} has second derivative σ−2
∑

xjxT
j g′(yj −

xT
j β), whose expectation is of form σ−2XTX × E {g′(ε)} under a model in

which yj = xT
j β + σεj and the εj are independent and identically distributed

with zero mean and unit variance. The ideas of Section 7.2 imply that the
M-estimator has asymptotic variance

σ2(XTX)−1 × E
{
g(ε)2

}
/E {g′(ε)} ,

so its efficiency relative to least squares is simply E {g′(ε)} /E
{
g(ε)2

}
. The

Huber estimator for regression has efficiencies given by the right panel of
Figure 7.4, for instance.

Equation (8.17) may be solved using iterative versions of least squares de-
scribed in Section 10.2.2, though these may fail to converge if ρ is not convex.
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Figure 8.3 Data
for which least
squares estimation
fails. Left: log
survival proportions
for rats given doses
of radiation, with
lines fitted by least
squares with (solid)
and without (dots)
the outlier, and a
Huber M-estimate
for the entire data
(dashes) (Efron,
1988). Right:
simulated data with
a batch of outliers
(circles), and fits by
least squares to all
data (solid), least
squares to good data
only (large dash),
Huber (dot-dash),
biweight (dashes),
and least trimmed
squares (medium
dash). The Huber
and biweight fits are
the same to plotting
accuracy.
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In practice σ too must be estimated, by the median absolute deviation of the
residuals yj − xT

j β̂ at each iteration, or using an M-estimator of scale.
Initial values for these fits can be found by a highly resistant procedure such

as least trimmed squares, whereby β is chosen to minimize
∑q

i=1(yj −xT
j β)2(i);

this is the sum of the smallest q = ⌊n/2⌋+⌊(p+1)/2⌋ squared residuals, found
by a Monte Carlo search. Highly resistant procedures do not usually provide
standard errors, which can be obtained by a data-based simulation procedure
such as the bootstrap; see the bibliographic notes.

Example 8.15 (Survival data) The left panel of Figure 8.3 shows data
on batches of rats given doses of radiation. They are well fit by a straight line,
apart from an apparent outlier, which strongly affects the least squares fit
— note what the pattern of residuals will be. The least squares estimates of
slope and its standard error with and without the outlier are −5.91 (1.05) and
−7.79 (0.59), while Huber estimation gives −7.02 (0.46). Downweighting the
outlier using the robust estimator gives a result intermediate between keeping
it and deleting it.

This sample is small and the outlier sticks out, so robust methods are not
really needed. They are more valuable for larger more complex data sets where
visualization is difficult and outliers non-obvious.

Example 8.16 (Simulated data) To illustrate and compare some robust
estimators, we generated sets of 25 standard normal observations y with a
single covariate x, and then added k outliers with mean 6, having the t5
distribution. The right panel of Figure 8.3 shows one of these datasets, with
k = 5. We then computed five estimates of slope, from least squares applied
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Table 8.4 Bias
(standard deviation)
of estimators of slope
in sample of 25 good
data and k outliers,
estimated from 200
replications.

k Least squares M-estimation Least trimmed
No outliers With outliers Huber Biweight squares

1 0.00 (0.07) 0.17 (0.06) 0.07 (0.07) 0.01 (0.07) −0.01 (0.13)
2 0.00 (0.07) 0.26 (0.06) 0.13 (0.07) 0.02 (0.09) 0.01 (0.14)
5 0.00 (0.07) 0.41 (0.05) 0.38 (0.06) 0.19 (0.19) 0.01 (0.14)
10 0.00 (0.06) 0.48 (0.04) 0.48 (0.04) 0.46 (0.12) 0.05 (0.20)

with and without the outliers, from Huber and biweight M-estimators having
efficiency 0.95 at the normal model, and from least trimmed squares. Table 8.4
shows the bias and standard deviation of the slope estimators for various k,
computed from 200 replicate data sets.

Inclusion of just one outlier ruins the least squares estimator, which is the
benchmark when outliers are excluded. The biweight gives the better of the
M-estimators, but with k ≥ 5 it is badly biased. The M-estimators perform
as badly as least squares when contamination is high. Least trimmed squares
is least biased overall, but is very inefficient even for k = 1. This suggests
that a good practical data analysis strategy is to use an initial least trimmed
squares fit to identify and delete outliers, and then apply M-estimation to the
remaining data.

Misspecified variance

Outliers are just one of many possible problems in regression. Suppose that
although E(y) = Xβ, the variance is var(y) = V rather than the assumed
σ2In. Then β̂ = (XTX)−1XTy has variance

(XTX)−1(XTV X)(XTX)−1. (8.19)

If V = σ2In, then var(β̂) = σ2(XTX)−1, which itself is the inverse Fisher
information for β under the normal model. Thus if the variance of y is correctly
supposed to equal σ2In, the least squares estimator attains the Cramér–Rao
lower bound appropriate to normal responses, while (7.20) implies that var(β̂)
is inflated otherwise.

Most packages use the formula σ2(XTX)−1 and make no allowance for pos-
sible variance misspecification. If plots such as those described in Section 8.6
do not suggest a particular variance to be fitted using weighted least squares,
the weights being W = V −1, then it may be better to apply least squares but
to base confidence intervals on an estimate of (8.19). One simple possibility
is to replace V with V̂ = diag{r2

1 , . . . , r
2
n}, where rj = (yj − ŷj)/(1− hjj).
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Exercises 8.4
1 Check the details of Example 8.14.

2 Show that β̂ and S2 are unbiased estimators of β and σ2 even when the errors
are not normal, provided that the second-order assumptions are satisfied.

3 Consider a linear regression model (8.1) in which the errors εj are independently
distributed with Laplace density

f(u;σ) = (23/2σ)−1 exp{−|u/(21/2σ)|}, −∞ < u < ∞,σ > 0.

Verify that this density has variance σ2. Show that the maximum likelihood
estimate of β is obtained by minimizing the L1 norm

∑
|yj − xT

j β| of y − Xβ.

Show that if in fact the εj
iid∼ N(0, σ2), the asymptotic relative efficiency of the

estimators relative to least squares estimators is 2/π.

4 Consider a linear model yj = xjβ+εj , j = 1, . . . , n in which the εj are uncorre-
lated and have means zero. Find the minimum variance linear unbiased estima-
tors of the scalar β when (i) var(εj) = xjσ2, and (ii) var(εj) = x2

jσ
2. Generalize

your results to the situation where var(ε) = σ2/wj , where the weights wj are
known but σ2 is not.

5 Use (8.18) to establish that (7.20) takes form

(XTX)−1XTV X(XTX)−1 ≥ σ2(XTX)−1

when var(y) is wrongly supposed equal to ε2In instead of V .

8.5 Analysis of Variance

8.5.1 F statistics

In most regression models a key question is whether or not the explanatory
variables affect the response. For example, in the bicycle data, we were con-
cerned how the time to climb the hill depended on the seat height and other
factors. Ockham’s razor suggests that we use the simplest model we can. This
poses the question: which explanatory variables are needed? To be concrete,
suppose that we fit a normal linear model

y = Xβ + ε = (X1, X2)

(
β1

β2

)
+ ε = X1β1 + X2β2 + ε, (8.20)

where X1 is an n×q matrix, X2 is an n× (p−q) matrix, q < p, and β1 and β2

are vectors with respective lengths q and p− q. We suppose that X has rank
p and X1 has rank q. The explanatory variables X2 are unnecessary if β2 = 0,
in which case the simpler model y = X1β1 + ε holds. How can we detect this?

In Figure 8.2, let the line x = 0 in the horizontal plane through the origin
represent the linear subspace spanned by the columns of X1. The fitted value
ŷ1 = X1(XT

1 X1)−1XT
1 y is the orthogonal projection of y onto this subspace.



422 8 · Linear Regression Models

The vector of residuals, y − ŷ1 = {In −X1(XT
1 X1)−1XT

1 }y, resolves into the
two orthogonal vectors y − ŷ and ŷ − ŷ1; that is,

y − ŷ1 = (y − ŷ) + (ŷ − ŷ1),

where (y − ŷ)T(ŷ − ŷ1) = 0. These vectors are the residual from the more
complex model, y − ŷ, and the change in fitted values when X2 is added to
the design matrix, ŷ − ŷ1. As these vectors are orthogonal linear functions of
the normally distributed vector y, they are independent. Pythagoras’ theorem
implies that

(y − ŷ1)
T(y − ŷ1) = (y − ŷ)T(y − ŷ) + (ŷ − ŷ1)

T(ŷ − ŷ1),

or equivalently

SS(β̂1) = SS(β̂) +
{

SS(β̂1)− SS(β̂)
}

. (8.21)

Thus the residual sum of squares for the simpler model is the sum of two inde-
pendently distributed parts: the residual sum of squares for the more elaborate
model, SS(β̂), and the reduction in sum of squares when the columns of X2

are added to the design matrix, SS(β̂1)− SS(β̂).
If the submodel is correct, so too is the more elaborate model, because β2

takes the particular value zero. In this case SS(β̂1) has a σ2χ2
n−q distribution,

and SS(β̂) has a σ2χ2
n−p distribution. Since SS(β̂1) − SS(β̂) is independent

of SS(β̂), (8.21) implies that when β2 = 0, SS(β̂1) − SS(β̂) has a σ2χ2
p−q

distribution, and that

F =
{SS(β̂1)− SS(β̂)}/(p− q)

SS(β̂)/(n− p)
∼ Fp−q,n−p;

recall (8.8). If β2 is non-zero, the reduction in sum of squares due to including
the columns of X2 in the design matrix will be larger on average than if β2 = 0.
Thus if β2 ̸= 0, F will tend to be large relative to the Fp−q,n−p distribution.
We can therefore test the adequacy of the simpler model using the statistic
F , large values of which suggest that β2 ̸= 0.

Exercise 8.5.3 gives the algebraic equivalent of the geometric argument
above. As we saw in Section 8.2.3, F arises from the likelihood ratio statistic
for comparison of the two models. When X2 consists of a single covariate, β2 is
scalar, and tests and confidence intervals for it may be obtained by fitting the
more elaborate model (8.20) and calculating T = (β̂2−β2)/(sv1/2

rr ). Here s2 is
the estimate of σ2 from the more elaborate model, and the null distribution
of T is tn−p. In this situation there is a simple connection to F : when testing
β2 = 0, F = T 2 = β̂2

2/(s2vrr).

Example 8.17 (Cement data) Suppose that we want to compare the
models y = β0 + x1β1 + ε and y = β0 + x1β1 + x2β2 + x3β3 + x4β4 + ε. This
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corresponds to asking if is there any effect on y of x2, x3, or x4, after allowing
for the effect of x1. Here X1 is a 13 × 2 matrix whose columns are a vector
of ones and x1, and X2 is a 13× 3 matrix whose columns are x2, x3, and x4;
both matrices have full rank.

For the full model p = 5 and the residual sum of squares is SS(β̂) = 47.86,
and for the simpler model q = 2 and the residual sum of squares is SS(β̂1) =
1265.7. Thus the reduction in sum of squares due to the columns of X2 after
fitting X1 is 1265.7 − 47.86 = 1217.84 on three degrees of freedom. To test
whether this is a significant reduction, we compute

F =
(1265.7− 47.86)/(5− 2)

47.86/(13− 5)
= 67.86,

which would be consistent with an F3,8 distribution if the simpler model wasFν1,ν2(α) is the α
quantile of the F
distribution with ν1
and ν2 degrees of
freedom.

adequate. As F greatly exceeds F3,8(0.95) = 4.066, there is strong evidence
that there are effects of the added covariates.

Having established that adding extra covariates helps to explain the overall
variation, it is natural to ask whether this is due to a subset of them rather
than to all three. Is there a more informative decomposition of the sum of
squares due to adding X2?

8.5.2 Sums of squares

The interpretation of sums of squares is most useful if they can be decomposed
into the reductions from successively adding different explanatory variables to
the design matrix.

Suppose that we have a normal linear model

y = 1nβ0 + X1β1 + X2β2 + · · · + Xmβm + ε, (8.22)

where we call the matrices 1n, X1, X2, and so forth terms ; the constant term
1n is a column of n ones. Usually the simplest model that might be considered
is y = 1nβ0 + ε, in which case the fitted value is ŷ0 = 1ny, and the residual
sum of squares is SS0 =

∑
(yj − y)2 with ν0 = n− 1 degrees of freedom.

We now consider the successive reductions in sum of squares due to adding
the terms X1, X2, and so forth to the design matrix. Let ŷr be the fitted value
when the terms X1, . . . , Xr are included, and write

y − ŷ0 = (y − ŷm) + (ŷm − ŷm−1) + · · · + (ŷ1 − ŷ0).

This decomposition extends that leading to (8.21) and shown in Figure 8.2.
The geometry of least squares implies that the quantities in parentheses on
the right are mutually orthogonal. Pythagoras’ theorem tells us that (y −
ŷ0)T(y − ŷ0) equals

(y − ŷm)T(y − ŷm) + (ŷm − ŷm−1)
T(ŷm − ŷm−1) + · · · + (ŷ1 − ŷ0)

T(ŷ1 − ŷ0),
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Table 8.5 Analysis
of variance table.

Terms df Residual Terms df Reduction in Mean square
sum of squares added sum of squares

1n n − 1 SS0

1n, X1 ν1 SS1 X1 n − 1 − ν1 SS0 − SS1
SS0−SS1
n−1−ν1

1n, X1, X2 ν2 SS2 X2 ν1 − ν2 SS1 − SS2
SS1−SS2
ν1−ν2

...
...

...
...

...
...

...

1n, X1, . . . , Xm νm SSm Xm νm−1 − νm SSm−1 − SSm
SSm−1−SSm

νm−1−νm

or equivalently

SS0 = SSm + (SSm−1 − SSm) + · · · + (SS0 − SS1), (8.23)

where SSr denotes the residual sum of squares that corresponds to the fitted
value ŷr, on νr degrees of freedom. In (8.23) the difference SSr−1 − SSr is
the reduction in residual sum of squares due to adding the term Xr when
the model already contains 1n, X1, . . . , Xr−1. As y is normal and the vectors
ŷr− ŷr−1 and y− ŷm are all linear functions of the data, the geometry of least
squares implies that SSm and all the SSr−1−SSr are mutually independent.

As more terms are successively added to the model, the degrees of freedom
of the residual sums of squares decrease, that is, ν0 ≥ ν1 ≥ · · · ≥ νm, with
νr = νr+1 when the columns of Xr+1 are a linear combination of the columns
of the matrices 1n, X1, . . . , Xr. If νr = νr+1, ŷr = ŷr+1, and SSr = SSr+1.
The term Xr+1 is then redundant, because its inclusion does not change the
fitted model.

Analysis of variance

The sums of squares can be laid out in an analysis of variance table. The
prototype is Table 8.5. The residual sums of squares decrease as terms are
added successively to the model. Often the three leftmost columns are omitted
and their bottom row is placed under the right-hand columns; SSm is used to
compute the denominator for the F statistics for inclusion of X1, X2 and so
forth, and these may be included also, as in the examples below.

Example 8.18 (Cement data) Table 8.6 gives the analysis of variance
when the covariates x1, x2, x3, and x4 are successively included in the design
matrix. There are very large reductions due to fitting x1 and x2, but those due
to x3 and x4 are smaller. The F statistics for testing the effects of x1 and x2

are highly significant, but once x1 and x2 are included the F statistic for x3 is
not large compared to the F1,8 distribution. A similar conclusion holds for x4.
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Table 8.6 Analysis
of variance table for
the cement data,
showing reductions
in overall sum of
squares when terms
are entered in the
order given.

Term df Reduction in Mean square F
sum of squares

x1 1 1450.1 1450.1 242.5
x2 1 1207.8 1207.8 202.0
x3 1 9.79 9.79 1.64
x4 1 0.25 0.25 0.04

Residual 8 47.86 5.98

Table 8.7 Models
for the means of the
crossed and
self-fertilized plants
in the pth pot and
jth pair for the
maize data.

Terms Crossed Self-fertilized

1 µ µ
1+Fertilization µ + α µ
1+Fertilization+Pot µ + α+ βp µ + βp

1+Fertilization+Pot+Pair µ + α+ βp + γj µ + βp + γj

Thus once x1 and x2 are included, x3 and x4 are unnecessary in accounting
for the response variation.

Example 8.19 (Maize data) Consider models for the maize data with
means as in Table 8.7. In order, these correspond to: no differences among
pairs and no difference between cross-fertilization and self-fertilization; no
differences among pairs but an effect of fertilization type; differences among
the pots and an effect of fertilization type; and differences among the pots
and among the pairs and an effect of fertilization type. Table 8.8 gives the
analysis of variance when these models are fitted successively.

There are four pot parameters βp, but the reduction in degrees of freedom
when the pots term is included is three because although the corresponding
30×4 matrix has rank four, its columns sum to a column of ones. As the design
matrix already contains a column of ones, including the four columns for the
pots term increases the rank of the design matrix by only three. Likewise only
11 columns of the 30 × 15 matrix of terms for pairs increase the rank of a
design matrix that already contains the overall mean and the pots term: the
remaining four columns are linear combinations of those already present.

The residual sum of squares for the eventual model is 9972.5 on 14 degrees
of freedom, so the denominator for F statistics is 9972.5/14 = 712.3. The F
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Table 8.8 Analysis
of variance table for
linear models fitted
to the maize data.

Term df Reduction in Mean square F
sum of squares

Fertilization 1 3286.5 3286.5 4.61
Pot 3 1053.6 351.2 0.49
Pair 11 4467.3 406.1 0.57

Residual 14 9972.5 712.3

statistic for fertilization is just significant at the 5% level, but there seem to
be no differences among pots or pairs. We can attribute to random variation
the reduction in sum of squares when the pots and pairs terms are added, and
obtain a better estimate of σ2, namely

(9972.5 + 1053.6 + 4467.3)/(14 + 3 + 11) = 553.3

on 28 degrees of freedom. The F statistic for fertilization with this pooled
estimate of σ2 as denominator is 5.94 on 1 and 28 degrees of freedom and its
significance level is 0.02, so the addition of the sums of squares for pots and
pairs to the residual has resulted in a more sensitive analysis.

8.5.3 Orthogonality

The reduction in sum of squares when a term is added depends on the terms
already in the model. This can obscure the interpretation of an analysis of
variance, if a term that gives a large reduction early in a sequence of fits gives
a small reduction if fitted later in the sequence instead.

Suppose that a normal linear model (8.22) applies. The reductions in sum
of squares due to the terms Xr are unique only if the vector spaces spanned
by the columns of the Xr are all mutually orthogonal, that is, XT

r Xs = 0
when r ̸= s. Suppose that this is true, that in addition XT

r 1n = 0, and that

y = 1nβ0 + X1β1 + X2β2 + ε. (8.24)

Then the orthogonality of 1n, X1, and X2 implies that the least squares esti-
mators are

⎛

⎝
β̂0

β̂1

β̂2

⎞

⎠ =

⎛

⎝
1T1 0 0
0 XT

1 X1 0
0 0 XT

2 X2

⎞

⎠

−1

( 1 X1 X2 )T y,

so that β̂0 = y, β̂1 = (XT
1 X1)−1XT

1 y, and β̂2 = (XT
2 X2)−1XT

2 y, with residual
sum of squares

yTy − β̂TXTX β̂ = yTy − ny2 − β̂T
1 XT

1 X1β̂1 − β̂T
2 XT

2 X2β̂2. (8.25)
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For the simpler models

y = 1nβ0 + ε, y = 1nβ0 + X1β1 + ε y = 1nβ0 + X2β2 + ε,

a similar calculation gives residual sums of squares

yTy − ny2, yTy − ny2 − β̂T
1 XT

1 X1β̂1, yTy − ny2 − β̂T
2 XT

2 X2β̂2,

and comparison with (8.25) shows that the reductions due to X1 and X2 are
β̂T

1 XT
1 X1β̂1 and β̂T

2 XT
2 X2β̂2 whether or not the other has been included in the

design matrix. Consequently the reductions in sums of squares due to X1 and
X2 are unique. This argument readily extends to models with more than two
mutually orthogonal terms Xr. In fact (8.24) has three, as we see by writing
1n = X0.

Example 8.20 (Orthogonal polynomials) Consider a normal linear model
with design matrix

X = (1n, x1, x2, x3, x4) =

⎛

⎜⎜⎜⎜
⎝

1 −2 2 −1 1
1 −1 −1 2 −4
1 0 −2 0 6
1 1 −1 −2 −4
1 2 2 1 1

⎞

⎟⎟⎟⎟
⎠

,

the last four columns of which correspond to linear, quadratic, cubic, and
quartic polynomials in a covariate with five values equally spaced one unit
apart. The columns of X are mutually orthogonal, and it follows that the
reduction due to any of them does not depend on which of the others have
already been fitted.

If the values had been equally-spaced but δ units apart, the model would
be y = 1nβ0 + δx1β1 + · · · + δ4x4β4 + ε, and the orthogonality of the terms
would be unaffected.

The argument leading to (8.25) rarely applies directly, but it may do so if
an overall mean, corresponding to a column of ones in the design matrix, is
fitted first. Suppose that the matrices X1 and X2 in (8.24) are not mutually
orthogonal and are not orthogonal to 1n, but that we rewrite the model as

y = 1n(β0 + xT
1β1 + xT

2β2) + (X1 − 1nxT
1 )β1 + (X2 − 1nxT

2 )β2 + ε

= 1nγ0 + Z1β1 + Z2β2 + ε,

say, where xT
1 and xT

2 are the averages of the rows of X1 and X2. Then Z1

and Z2 are centred and ZT
1 1n = ZT

2 1n = 0. This rearrangement of the model
changes the intercept but leaves β1 and β2 unaffected. If the original matrices
X1 and X2 are such that ZT

1 Z2 = 0, we can apply the argument leading to
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(8.25) to our new model, to obtain the successive residual sums of squares

SS0 = yTy − ny2,

SS1 = yTy − ny2 − β̂T
1 ZT

1 Z1β̂1,

SS2 = yTy − ny2 − β̂T
1 ZT

1 Z1β̂1 − β̂T
2 ZT

2 Z2β̂2,

as the terms Z1 and Z2, or equivalently X1 and X2, are added to the design
matrix. Since Z1 is defined purely in terms of X1 and 1n, and Z2 is defined
purely in terms of X2 and 1n, the reduction in sum of squares due to adding
X1 after including the constant column 1n in the design matrix is the same
whether or not X2 is present. Hence provided the constant is fitted first, the
reductions in sum of squares due to X1 and X2 are independent of the order
in which they are included. This argument extends to models with more than
two Xr, provided that the centred matrices Zr are mutually orthogonal.

Example 8.21 (3 × 2 layout) In a 3 × 2 layout with no interaction the
observations and their means can be written

y11 y12

y21 y22

y31 y32

,
µ µ + α

µ + δ1 µ + δ1 + α
µ + δ2 µ + δ2 + α

.

In terms of the parameter vector (µ,α, δ2, δ3)T, the design matrix is

X =

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 0
1 0 0 1
1 1 0 1

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

with X1 the second column of X , and X2 the third and fourth columns of X .
Evidently X1 and X2 are not orthogonal and they are not orthogonal to the
constant. On the other hand Z1 and Z2 in the corresponding centred matrix,

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 − 1
2 − 1

3 − 1
3

1 1
2 − 1

3 − 1
3

1 − 1
2

2
3 − 1

3

1 1
2

2
3 − 1

3

1 − 1
2 − 1

3
2
3

1 1
2 − 1

3
2
3

⎞

⎟⎟⎟⎟⎟⎟
⎠

,

are orthogonal to the constant by construction and to each other because the
design is balanced: δ2 and δ3 each occur equally often with α and without
α. This balance has the consequence that provided that µ is fitted first, the
reductions in sums of squares due to X1 and X2, or equivalently Z1 and Z2,
are unique.
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A designed experiment such as Example 8.21 can often be balanced, so
that orthogonality is arranged, at least approximately, and the interpretation
of its analysis of variance is relatively clear-cut. Even if the terms are not
orthogonal, however, it may be possible to order them unambiguously. One
example is polynomial dependence of y on x, where terms of increasing degree
are added successively. Another example is when some terms represent clas-
sifications that are known to affect y but which are of secondary importance,
and others correspond to the question of primary interest. For instance, it
would be natural to assess the effects of different treatments on the incidence
of heart disease after taking into account the effects of classifying variables
such as age, sex, and previous medical history.

Exercises 8.5
1 Consider the cement data of Example 8.3, where n = 13. The residual sums of

squares for all models that include an intercept are given below.

Model SS Model SS Model SS

– – – – 2715.8 1 2 – – 57.9 1 2 3 – 48.11
1 – – – 1265.7 1 – 3 – 1227.1 1 2 – 4 47.97
– 2 – – 906.3 1 – – 4 74.8 1 – 3 4 50.84
– – 3 – 1939.4 – 2 3 – 415.4 – 2 3 4 73.81
– – – 4 883.9 – 2 – 4 868.9

– – 3 4 175.7 1 2 3 4 47.86

Compute the analysis of variance table when x4, x3, x2, and x1 are fitted in
that order, and test which of them should be included in the model. Are your
conclusions the same as in Example 8.18?

2 (a) Let A, B, C, and D represent p×p, p×q, q×q, and q×p matrices respectively.
Show that provided that the necessary inverses exist

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1.

(b) If the matrix A is partitioned as

A =
(

A11 A12

A21 A22

)
,

and the necessary inverses exist, show that the elements of the corresponding
partition of A−1 are

A11 = (A11 − A12A
−1
22 A21)

−1, A22 = (A22 − A21A
−1
11 A12)

−1,

A12 = −A−1
11 A12A

22, A21 = −A−1
22 A21A

11.

3 In (8.20), suppose that X1 and X2 have ranks q and p−q respectively, and define
H = X(XTX)−1XT, P = In − H , H1 = X1(X

T
1 X1)

−1XT
1 and P1 = In − H1.

Let ŷ = Hy, and ŷ1 = H1y.Use the previous
exercise.
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Table 8.9 Sums of
squares for models
fitted to maize data.Model SS Model SS Model SS Model SS

— — — 18780 — Po — 17726 F Po — 14440 F — Pa 9972
F — — 15493 — — Pa 13259 — Po Pa 13259 F Po Pa 9972

(a) Show that (y − ŷ)T(ŷ − ŷ1) = 0 if and only if HH1 = H1, and show
that H1H = HH1. Give a geometrical interpretation of the equations H1H =
HH1 = H1.
(b) Show that

(XT
1 P2X1)

−1 = (XT
1 X1)

−1 − H1X2(X
T
2 P1X2)

−1XT
2 X1(X

T
1 X1)

−1.

(c) Show that

H = X1(X
T
1 P2X1)

−1XT
1 − H1X2(X

T
2 P1X2)

−1XT
2 + X2(X

T
2 P1X2)

−1XT
2 P1.

(d) Use (b) and (c) to show that HH1 = H1.

4 Under what two circumstances might one of the reductions in residual sum of
squares SSr − SSr+1 in an analysis of variance table for a normal linear model
equal zero? Does the more probable of these occur when the columns of either
of the design matrices below are included successively in their models:

(a)

⎛

⎝
1 1 0 0
1 1 0 1
1 0 1 0
1 0 1 1

⎞

⎠ , (b)

⎛

⎝
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

⎞

⎠?

5 Suppose that the maize data consisted of three pots each containing two pairs
of plants, 12 plants in all. Using the parametrization in Example 8.19, write
out the 12× 11 design matrix whose first two columns are terms for the overall
mean and for cross-fertilization, whose next three columns are the pots term,
and whose last six columns are the pairs term. Say what the degrees of freedom
for the four models in Example 8.19 would then be, and hence give the degrees
of freedom in the analysis of variance table.

6 The residual sums of squares in Example 8.19 are given in Table 8.9. For which of
the terms are the reductions in residual sum of squares independent of the order
of fitting? Explain why adding the Pots term to a model that already contains
the Pairs term does not reduce the sum of squares, even if Fertilization is
not included.

7 Verify that the columns of the design matrix in Example 8.20 are orthogonal.
Use Gram–Schmidt orthogonalization to derive the corresponding matrices for
two, three, and four observations.

8 Verify that 1n, Z1, and Z2 in Example 8.21 are orthogonal. Show that if one of
the rows of the original design matrix is missing, the Zr are not orthogonal.
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8.6 Model Checking

8.6.1 Residuals

Discrepancies between data and a regression model may be isolated or sys-
tematic, or both. One type of isolated discrepancy is when there are outliers:
a few observations that are unusual relative to the rest. Systematic discrepan-
cies arise, for example, when a transformation of the response or a covariate is
needed, when correlated errors are supposed independent, or when a term is
incorrectly omitted. There are many techniques for detecting such problems.
Graphs are widely used, often supplemented by more formal methods that
sharpen their interpretation.

The assumptions underlying the linear regression model (8.1) are:

• linearity — the response depends linearly on each explanatory variable
and on the error, with no systematic dependence on any omitted terms;

• constant variance — the responses have equal variances, which in par-
ticular do not depend on the level of the response;

• independence — the errors are uncorrelated, and independent if normal;
and sometimes

• normality — in the normal linear model the errors are normally dis-
tributed.

Many graphical methods for checking these assumptions are based on the raw
residuals, e = y− ŷ. These are estimates of the unobserved errors ε, with mean
vector and variance matrix

E(e) = 0, var(e) = σ2(In −H),

where H is the hat matrix X(XTX)−1XT. The covariance of two different
residuals, ej and ek, equals −σ2hjk, so in general the residuals are correlated.

A difficulty in direct comparison of the ej is that their variances, σ2(1−hjj),
are usually unequal. We therefore construct standardized residuals

rj =
ej

s(1 − hjj)1/2
=

yj − xT
j β̂

s(1− hjj)1/2
, (8.26)

where xT
j β̂ = ŷj is the jth fitted value and s2 is the unbiased estimate of σ2

based on the model. The rj have means zero and approximately unit variances,
and hence are comparable with standard normal variables.

The simplest check on linearity is to plot the response vector y against
each column of the design matrix X . It is also useful to plot the standardized
residuals r against each variable, whether or not it has been used in the model.
Incorrect form of dependence on an explanatory variable, or omission of one,
will show as a pattern in the corresponding plot. More formal techniques
designed to detect wholesale nonlinearity are discussed below.
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Constancy of variance is usually checked by a plot of the rj or |rj | against
fitted values. A common failure of this assumption occurs when the error
variance increases with the level of the response; this shows as a trumpet-
shaped plot. Since the raw residuals e and the fitted values ŷ are uncorrelated,
we would expect random scatter if the model fitted adequately. This plot can
also help to detect a nonlinear relation between the response and fitted value,
as in Example 8.24 below.

Non-independence of the errors can be hard to detect and can have a serious
effect on the standard errors of estimates, but serial correlation of time-ordered
observations may show up in scatterplots of lagged rj , or in their correlogram.

Assumptions about the distribution of the errors can be checked by proba-
bility plots of the rj . In particular, normal scores plots are widely used.

Single outliers — maybe due to mistakes in data recording, transcription,
or entry — are likely to show up on any of the plots described above, while
multiple outliers may lead to masking where each outlier is concealed by the
presence of others.

Example 8.22 (Cycling data) Figure 8.4 shows plots of the rj for the
model that includes effects of seat height, dynamo and tyre pressure. The top
panels show the rj plotted against the day on which the run took place, and
the order of the run within each day. There is slight evidence of dependence
on these, but we must beware of spurious patterns when there are only sixteen
observations. To check whether these patterns might be genuine, we construct
the F statistic for inclusion of factors corresponding to day and run after
including seat height, dynamo, and tyre pressure in the model. Its value is
3.99, to be compared to F7,5(0.95) = 4.88. Any evidence of differences among
days and runs is weak, and we discount it.

The lower left panel of the figure shows residuals plotted against fitted
values. There is a slight suggestion that the error variance increases as the
fitted value does, but this is mostly due to the largest observation at the right
of the plot.

The lower right panel of the figure shows a normal probability plot of the
residuals. This is slightly upwardly curved, but not remarkably so in so small
a set of data.

Inspection of Table 8.3 shows that the largest residual is for the sixth setup,
of which the experimenter writes:

Its comparison run (setup 5) was only 54 seconds. This is the largest
amount of variation in the whole table. I suspect that the correct reading
for setup 6 was 55 seconds, that is, I glanced at my watch and thought
that it said 60 instead of 55 seconds. Since I am not sure, however, I
have not changed it for the analysis. The conclusions would be the same
in any case.
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Figure 8.4

Residual plots for
data on cycling up a
hill. The panels
showing residuals
plotted against levels
of day and run, and
against fitted values,
would show random
variation if the
model is adequate, as
seems to be the case.
The normal scores
plot shows that the
errors appear close
to normal.
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One reason that the conclusions would be unchanged is that a well-designed
experiment like this is relatively robust to a single bad value.

To sum up: the linear model (8.2) seems to fit these data adequately.

8.6.2 Nonlinearity

Linearity is usually a convenient fiction for describing how a response depends
on the explanatory variables, and there are many ways it can fail. For exam-
ple, a linear model may be appropriate for a transformation of the original
response, so that a(y) = xTβ+ε for some function a(·); then y = a−1(xTβ+ε)
and error is not additive on the original scale. Another possibility is that
the response is a nonlinear function of xTβ but the error is additive, that is,
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y = b(xTβ)+ε for some b(·). More generally we could put a(y) = b(xTβ)+c(ε)
for fairly arbitrary functions a(·), b(·) and c(·). Such models can be fitted, but
they are beyond our scope.

For a simpler approach, we consider parametric transformation of the re-
sponse, in which we assume that for some family of transformations a(·) in-
dexed by a parameter λ, there is a transformation such that a(y) = xTβ + ε.
In principle we might consider many possible transformations, but practical
experience suggests that power and logarithmic transformations are among
the most fruitful. The following example gives a general approach.

Example 8.23 (Box–Cox transformation) Suppose that a normal lin- Suggested by Box
and Cox (1964).
George E. P. Box
(1919–) was
educated at London
University and has
held posts in
industry and at
Princeton and the
University of
Wisconsin. He has
made important
contributions to
robust and Bayesian
statistics,
experimental design,
time series, and to
industrial statistics.
Sir David Roxbee
Cox (1924–) was
born in Birmingham
and educated in
Cambridge and
Leeds. He has held
posts at Imperial
College London,
Cambridge, and
Oxford where he
nows works. He has
made highly
influential
contributions across
the whole of
statistical theory and
methods. See
DeGroot (1987a) and
Reid (1994).

ear model applies not to y, but to

y(λ) =

{
yλ−1
λ , λ ̸= 0,

log y, λ = 0.

As λ varies in the range (−2, 2) this encompasses the inverse transformation
(λ = −1), log (λ = 0), cube and square roots (λ = 1

3 , 1
2 ), and the original scale

(λ = 1), as well as the square transformation (λ = 2). We assume below that
all the yj are positive. If not, the transformation must be applied to yj + ξ,
with ξ chosen large enough to make all the yj + ξ positive.

Now let y(λ) denote the n× 1 vector of transformed responses, and assume
that a normal linear model

y(λ) = Xβ + ε

applies for some values of λ, β, and error variance σ2. We assume that the
design matrix contains a column of ones, so that using y(λ) rather than yλ

leaves the fit unchanged; it merely changes the intercept and rescales β.
To obtain the likelihood for β, σ2, and λ, note that on taking into account

the Jacobian of the transformation from y(λ) to y, the density of yj is

f(yj;β,σ2,λ) =
yλ−1

j

(2πσ2)1/2
exp

{
− 1

2σ2
(y(λ)

j − xT
j β)2

}
.

Consequently the log likelihood based on independent y1, . . . , yn is

ℓ(β,σ2,λ) ≡ − 1
2

⎧
⎨

⎩
n log σ2 +

1

σ2

n∑

j=1

(y(λ)
j − xT

j β)2

⎫
⎬

⎭
+ (λ− 1)

n∑

j=1

log yj.

If λ is regarded as fixed, the maximum likelihood estimates of β and σ2 are
β̂λ = (XTX)−1XTy(λ) and SS(β̂λ)/n, where SS(β̂λ) is the residual sum of
squares for the regression of y(λ) on the columns of X . Thus the profile log
likelihood for λ is

ℓp(λ) = max
β,σ2

ℓ(β,σ2,λ) ≡ −n

2

{
log SS(β̂λ)− log g2(λ−1)

}
,
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where g = (
∏

yj)1/n is the geometric average of y1, . . . , yn. Equivalently ℓp(λ)
equals − 1

2n log SSg(β̂λ), where SSg(β̂λ) is the residual sum of squares for the
regression of y(λ)/g on the columns of X . Exercise 8.6.3 invites you to provide
the details.

A plot of the profile log likelihood ℓp(λ) summarizes the information con-
cerning λ; a (1 − 2α) confidence interval is the set for which ℓp(λ) ≥ ℓp(λ̂)−
1
2c1(1−2α). The exact maximum likelihood estimate of λ is rarely used, sincecν(α) is the α

quantile of the χ2
ν

distribution.
a nearby value is usually more easily interpreted.

A different approach is to consider whether the model y = b(xTβ)+ε might
apply. This cannot be linearized by a response transformation and if there
is evidence that b(·) is substantially nonlinear but the variance is constant
it may be necessary to fit a nonlinear normal model. The following example
gives one method for detecting this sort of nonlinearity.

Example 8.24 (Non-additivity) Suppose that it is feared that y = b(xTβ)+
ε, where b(·) is a smooth nonlinear function. Taylor series expansion of b(·)
about a typical value of xTβ, η, say, gives

y
.
= b(η) + b′(η)(xTβ − η) + 1

2b′′(η)(xTβ − η)2 + ε.

If the model contains a constant, so that xTβ = β0 + x1β1 + · · ·, then y
.
=

xTγ+ δ(xTγ)2 + ε, where γ is just a reparametrization of β, and δ ∝ b′′(η). A
large value of δ corresponds to strong nonlinear dependence of y on xTβ.

Let us fit the model y = Xβ + ε, giving fitted values xT
j β̂ and residual sum

of squares SS(β̂). Then as y−xTγ
.
= δ(xTγ)2 + ε, non-additivity should show

up as curvature in a plot of standardized residuals against fitted values.
A formal test for non-zero δ is based on refitting the model with the column

(xT
j β̂)2 added to the design matrix. Although the residual sum of squares for

this model, SSδ, depends upon the fitted values for the previous fit, the F
statistic for inclusion of (xT

j β̂)2,

SS(β̂)− SSδ
SSδ/(n− p− 1)

, (8.27)

has an F1,n−p−1 distribution; this is known as Tukey’s one degree of freedomSee Tukey (1949).

for non-additivity.

Covariates that are artificially created to help assess model fit, such as
(xT

j β̂)2 in Example 8.24, are known as constructed variables.

Example 8.25 (Poisons data) Table 8.10 contains data from a completely
randomized experiment on the survival times of 48 animals. The animals were
divided at random into groups of size four, and then each group was given one
of three poisons and one of four treatments. Thus there are two factors, one
with three and the other with four levels. The lower part of Table 8.10 and the
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Table 8.10 Poison
data (Box and Cox,
1964). Survival times
in 10-hour units of
animals in a 3 × 4
factorial experiment
with four replicates.
The table
underneath gives
average (standard
deviation) for the
poison × treatment
combinations.

Treatment Poison 1 Poison 2 Poison 3

A 0.31, 0.45, 0.46, 0.43 0.36, 0.29, 0.40, 0.23 0.22, 0.21, 0.18, 0.23
B 0.82, 1.10, 0.88, 0.72 0.92, 0.61, 0.49, 1.24 0.30, 0.37, 0.38, 0.29
C 0.43, 0.45, 0.63, 0.76 0.44, 0.35, 0.31, 0.40 0.23, 0.25, 0.24, 0.22
D 0.45, 0.71, 0.66, 0.62 0.56, 1.02, 0.71, 0.38 0.30, 0.36, 0.31, 0.33

Treatment Poison 1 Poison 2 Poison 3 Average

A 0.41 (0.07) 0.32 (0.08) 0.21 (0.02) 0.31
B 0.88 (0.16) 0.82 (0.34) 0.34 (0.05) 0.68
C 0.57 (0.16) 0.38 (0.06) 0.24 (0.01) 0.39
D 0.61 (0.11) 0.67 (0.27) 0.33 (0.03) 0.53

Average 0.62 0.55 0.28 0.48

upper panels of Figure 8.5 both show strong effects of treatment and poison:
poison 3 is most potent, and treatments B and D are more efficacious than A
and C. There is also evidence that the response variance depends on the mean:
the standard deviations are smaller for poison × treatment combinations with
smaller average response.

One model for these data is

ytpj = µ + αt + βp + εtpj , t = 1, 2, 3, 4, p = 1, 2, 3, j = 1, 2, 3, 4. (8.28)

Here µ represents a baseline average response in the absence of treatments
or poisons, αt represents the effect of the tth treatment, βp the effect of the
pth poison and εtpj is the unobserved error for the jth replicate given the
tth treatment and pth poison. We assess the fit of (8.28) initially through the
plot of standardized residuals against fitted values in the upper left panel of
Figure 8.6, which shows a striking increase of error variance with the mean
response. The model underpredicts for the lowest responses, where rj > 0
and therefore yj > ŷj , and overpredicts for the middle responses, where the
residuals are mostly negative. Following Example 8.24, this suggests that the
poison and treatment effects are not additive. The neighbouring panel shows
that the errors are somewhat positively skewed relative to the normal distri-
bution. The model fits the data poorly, not owing to a few bad observations,
but in a systematic way, as was also suggested by the lower left panel of
Figure 8.5.

Ignoring for a moment the nonconstancy of variance, we explore whether
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Figure 8.5 Poison
data. The upper
panels show how the
responses depend on
the factor levels. The
lower left panel
shows a χ2

3
probability plots of
the 3s2

pt, where s2
pt

is the sample
variance of the four
replicates yptj given
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tth treatment. The
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the explanatory variables act additively. The F statistic for non-additivity,
(8.27), equals 14.03. This is large compared with the 0.95 quantile of the F1,41

distribution and gives strong evidence of non-additivity.

The lower right panel of Figure 8.6 shows the profile log likelihood for the
transformation parameter, λ. There is strong evidence that the original scale
(λ = 1) is poor; log transformation (λ = 0) also seems inappropriate. The
most readily interpretable value of λ in the 95% confidence interval seems to
be −1, corresponding to fitting a linear model to the inverse response 1/y.
This can be interpreted in terms of the rate of dying, whose units are time−1.
The lower left panel of the figure suggests that the evidence for non-additivity
has gone, and that the inverse transformation has roughly equalized the error
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Figure 8.6

Diagnostic plots for
the two-way layout
model for the
poisons data. The
upper left panel a
plot of standardized
residuals for the fit
of the two-way
layout model to the
original data against
the fitted value,
while its neighbour
shows the normal
probability plot of
these residuals. The
lower right panel
shows the profile log
likelihood for the
Box–Cox parameter
λ and suggests that
a linear model
should be fitted to
the inverse response,
1/y. The lower left
panel shows the
residuals for the
two-way layout
model with response
1/y plotted against
its fitted values; this
does not display the
non-linearity and
systematic increase
of variance of the
panel above.
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variances. A probability plot shows that the residuals on this scale are close
to normal.

To sum up, the model y−1 = µ + αt + βp + εtpj seems to fit the data
adequately, and has a direct interpretation as a linear model for the effect of
poisons and treatments on the speed of dying.

We return to these data in Examples 9.6 and 9.8.

8.6.3 Leverage, influence, and case deletion

We call the explanatory and response variables (xj , yj) the jth case. We have
already seen how an odd yj can arise, but there can also be effects due to
unusual explanatory variables. To see how, recall that var(yj−xT

j β̂) = σ2(1−
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hjj), and notice that if hjj is close to one the jth fitted value must lie very
close to yj itself. Indeed, if hjj = 1, the model is constrained so that xT

j β̂ = yj .
This is undesirable because in effect a degree of freedom, the equivalent of one
parameter, is used to fit one response value exactly. The effect on β̂ could be
catastrophic if yj were outlying.

The quantity hjj is called the leverage of the jth case. Other things being
equal, the argument above suggests that low leverage is good. But tr(H) =∑

hjj = p (Exercise 8.2.5), so the average leverage cannot be reduced below
p/n. Approximate equalization of leverage is one attribute of good design. In
the factorial experiment in Table 8.3, for example, hjj = 1

4 for each case. A
general guideline is that cases for which hjj > 2p/n deserve closer inspection;
it may be worthwhile to repeat an analysis without them in order to assess
their effect on both the values and the precision of the estimates. In itself,
however, high leverage is not sufficient reason to delete a case, which if not
outlying may be very informative.

Example 8.26 (Straight-line regression) The matrix formulation of

yj = γ0 + (xj − x)γ1 + εj , j = 1, . . . , n,

is given in Example 8.6, and it is easily deduced that the jth leverage is

hjj =
1

n
+

(xj − x)2∑
k(xk − x)2

.

When the constant is dropped the leverage is (xj − x)2/
∑

k(xk − x)2, and
when the covariate xj is dropped the leverage is n−1. Thus hjj can be in-
terpreted as a sum of contributions for each parameter. As the contribution
corresponding to γ1 is quadratic in xj − x, responses with large values of
|xj − x| will strongly affect the slope of the fitted line. All the responses have
equal weight in estimating the intercept. These effects do not depend on the
response values and depend purely on the design matrix.

Having seen that an individual case may substantially affect least squares
estimates, it is natural to ask how to measure this. One overall influence
measure for the jth case is Cook’s distance, defined asAfter Cook (1977).

R. Dennis Cook is a
professor of statistics
at the University of
Minnesota.

Cj =
1

ps2
(ŷ − ŷ−j)

T(ŷ − ŷ−j),

where ŷ−j = X β̂−j, and subscript −j denotes a quantity calculated with the
jth case deleted from the model. Cook’s distance measures the overall change
in the fitted values when the jth case is deleted from the model, standardized
by the dimension of β and the estimate of σ2. It can be revealing to refit a
model without the cases whose values of Cj are largest.
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To gain some insight into Cj , note that the least squares estimate of β
calculated without the jth case is

β̂−j = (XTX − xjx
T
j )−1(XTy − xjyj).

Some linear algebra shows that

β̂−j = β̂ − (XTX)−1xj
yj − ŷj

1− hjj
, (8.29)

and it follows that (Exercise 8.6.5)

Cj =
r2
j hjj

p(1− hjj)
, (8.30)

where rj is the standardized residual. Therefore large values of Cj arise if a
case has high leverage or a large standardized residual, or both. A plot of Cj

against hjj/(1− hjj) helps to distinguish between these possibilities. A crude
rule is that as a residual with |rj | > 2 or a case with leverage hjj > 2p/n
deserve attention, a value of Cj greater than 8/(n−2p) is worth a closer look.
It is possible for the model to depend on a case whose Cook’s distance is zero
(Exercise 8.6.6), however, and there is no substitute for careful inspection of
the data, residuals, and leverages.

As an observation with a large standardized residual can have a big effect on
a fitted model, it is natural to ask whether an outlier is more easily detected
by comparing yj with its predicted value based on the other observations,
xT

j β̂−j . After all, if the model is correct and yj is not an outlier, we expect

that E(β̂) = E(β̂−j) = xT
j β, although of course β̂−j will be a less precise

estimate of β than β̂. On the other hand, an outlying response yj does not
affect xT

j β̂−j, so any discrepancy between them should be more obvious. There
is a close connection to the idea of cross-validation. Now (8.29) implies that

yk − xT
k β̂−j = yk − ŷk + xT

k (XTX)−1xj
yj − ŷj

1− hjj
,

and since xT
k (XTX)−1xj = hjk, we find that var(yj − xT

j β̂−j) = σ2/(1− hjj).
This suggests that deletion residuals be defined as

r′j =
yj − xT

j β̂−j

var(yj − xT
j β̂−j)1/2

=
yj − ŷ−j,j

s−j(1 − hjj)1/2
,

where ŷ−j,j is the jth element of the vector ŷ−j and the estimate of σ2 based
on the data with the jth case deleted equals

s2
−j =

1

n− 1− p

[

(y − ŷ−j)
T(y − ŷ−j)−

{
yj − ŷj +

hjj(yj − ŷj)

1− hjj

}2
]

.
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Table 8.11

Simulated data and
case diagnostics. Case x1 x2 y ŷ r r′ h C

1 0.02 –6.31 0.95 0.41 1.16 1.20 0.88 3.28
2 0.36 0.39 0.44 0.53 –0.08 –0.07 0.13 0.00
3 7.12 –0.64 0.27 0.38 –0.14 –0.13 0.68 0.01
4 –1.54 1.13 0.09 0.59 –0.45 –0.42 0.29 0.03
5 0.24 –1.90 –0.82 0.49 –1.07 –1.08 0.15 0.07
6 0.26 –0.06 0.03 0.53 –0.40 –0.37 0.12 0.01
7 –0.16 0.13 –0.22 0.54 –0.61 –0.59 0.14 0.02
8 0.43 0.80 0.13 0.54 –0.33 –0.31 0.15 0.01
9 –0.02 0.59 3.57 0.55 2.47 6.31 0.15 0.37

10 4.58 0.29 0.57 0.45 0.11 0.10 0.31 0.00

Yet more algebra shows that the deletion residual can be expressed as

r′j =

(
n− p− 1

n− p− r2
j

)1/2

rj ,

which is a monotonic function of rj that exaggerates values for which |rj | > 1.
As their derivation suggests, deletion residuals for outlying observations are
more prominent than are the corresponding rj .

Example 8.27 (Cycling data) Table 8.3 gives standardized residuals,
deletion residuals, and measures of leverage and influence for the model with
an intercept and three main effects fitted to these data. The design is balanced,
and since (XTX)−1 = 1

16I4, all the leverages equal 1
4 ; consequently the stan-

dardized residuals are a simple multiple of the raw residuals. As remarked in
Example 8.22, the only unusual residual is for setup 6, whose deletion residual
is strikingly large: there is strong evidence that this is an outlier. The cor-
responding Cook statistic, 0.56, is by far the largest, but it is unremarkable
relative to 8/(n− 2p) = 1. The belt-and-braces statistician might repeat the
analysis without this datum, but it makes little difference.

Exercises 8.6
1 Show that the standardized residuals rj have means zero and variances (n −

p)/(n − p − 2). What can you say about their joint distribution?

2 Table 8.11 shows simulated data on the dependence of y = β0 +β1x1 +β2x2 + ε
on covariates x1 and x2. The residual sum of squares was 12.43.
(a) Choose a case and check the relationships between ŷ, r, r′, h, and C.
(b) Discuss the fit. If it is not adequate, explain what further steps you would
take in analyzing the data.

3 Provide the details for Example 8.23.
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4 Compute and interpret the leverages for Examples 8.9 and 8.20.

5 Use Exercise 8.5.2(a) with C = −1 to show that

(XTX − xjx
T
j )−1 = (XTX)−1 + (1 − hjj)

−1(XTX)−1xjx
T
j (XTX)−1;

it may help to note that hjj = xT
j (XTX)−1xj . Hence show that

β̂−j = (XTX − xjx
T
j )−1(XTy − xjyj) = β̂ − (1 − hjj)

−1(XTX)−1xj(yj − ŷj),

deduce that ŷ − ŷ−j = (1 − hjj)
−1X(XTX)−1xj(yj − ŷj), and finally that

Cj =
(ŷ − ŷ−j)T(ŷ − ŷ−j)

ps2
=

r2
j hjj

p(1 − hjj)
.

6 Suppose that the straight-line regression model y = β0 + β1x + ε is fitted to
data in which x1 = · · · = xn−1 = −a and xn = (n − 1)a, for some positive a.
Show that although yn completely determines the estimate of β1, Cn = 0. Is
Cook’s distance an effective measure of influence in this situation?

8.7 Model Building

8.7.1 General

Once the context for a regression problem is known and the data have been
scrutinized for outliers, missing values, and so forth, a model must be built.
Related investigations will often suggest a form for it, the main initial ques-
tions concerning the choice of response and explanatory variables.

The purpose of the analysis determines one or perhaps more responses,
which may combine several of the original variables. Once it is chosen, ques-
tions arise about whether individual responses are correlated, and if their
variance is constant. If not, it may be necessary to use weighted or general-
ized least squares (Section 8.2.4), or to consider transformations. These may
also be suggested by constraints, for example that the response is positive,
but it is then also good to consider more general classes of models discussed
in Chapter 10.

Scatterplots of the response against potential explanatory variables and of
these variables against each another are needed to screen out bad data, to
suggest which covariates are likely to be important, and perhaps also to indi-
cate suitable transformations. Dimensional considerations or subject-matter
arguments, for example that certain regression coefficients should be positive,
may suggest fruitful combinations of covariates or particular relations between
them and the response.

It may be clear that the response depends on a few variables, and that
possible models can be fitted and compared using F and related tests. Once
some suitable models have been found, the techniques of model checking out-
lined in Section 8.6 can be applied. Often unexpected discrepancies between
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a fitted model and data will lead to further thought, and then to more cy-
cles of model-fitting, checking, and interpretation, iterated until a broadly
satisfactory model has been found.

If p is much larger than n, then the design matrix must be cut down to size.
One possibility is to use principal components regression. The basis of this is
the spectral decomposition, which enables us to write XTX = UDUT, where
D is the diagonal matrix diag(d1, . . . , dp) containing the ordered eigenvalues
dp ≥ · · · ≥ d1 ≥ 0 of XTX , and the columns of U are the corresponding
eigenvectors. The matrix U can be chosen so that UUT = UTU = I. The idea
is to form the design matrix from the columns of Z = XU , which are called
principal components. The first principal component, z1, is the linear combi-
nation z = Xu of the columns of X for which zTz is largest, the next, z2, is
the linear combination that maximizes zT

2 z2 subject to zT
1 z2 = 0, the third,

z3, maximizes zT
3 z3 subject to zT

1 z2 = zT
1 z2 = 0, and so forth. The hope is that

much of the dependence of the response on the columns of X will be concen-
trated in these first few zrs, in which case a good low-dimensional regression
model may be obtainable. Sometimes it is useful to centre the columns of X
by subtracting their averages, or to scale them by dividing centred columns
by their standard deviations. The resulting principal components do not equal
those for X .

Principal components and corresponding parameter estimates may be un-
interpretable in terms of the original covariates, though this drawback is less
critical when the goal of analysis is prediction.

8.7.2 Collinearity

If there is a nonzero vector c such that Xc = 0, the columns of the design
matrix are said to be collinear. Then X has rank less than p and XTX has no
unique inverse. The simplest example of this arises in straight-line regression:
if all the xj are equal, it is impossible to find unique parameter estimates (Ex-
ample 8.6). This difficulty arises more generally, because linear dependence
among the columns of the design matrix means that some combinations of
parameters cannot be estimated from the data; collinearity leads to inde-
terminable estimates with infinite variances. Related difficulties arise if the
columns of X are almost collinear.

The matrix XTX is invertible only if all its eigenvalues dp ≥ · · · ≥ d1 ≥ 0
are positive. Even if XTX is invertible, however, the estimators can be very
poor. The squared distance between β̂ and β is expressible as

(β̂ − β)T(β̂ − β)
D
= σ2

p∑

r=1

Z2
r /dr, where Z1, . . . , Zp

iid∼ N(0, 1).
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Thus (β̂ − β)T(β̂ − β) has mean and variance

σ2
p∑

r=1

d−1
r , 2σ4

p∑

r=1

d−2
r ,

bounded below respectively by σ2/d1 and 2σ4/d2
1, and β̂ may be far distant

from β for small d1. The practical implication is that parameter estimates
from different but related datasets may vary greatly, giving apparently con-
tradictory interpretations of the same phenomenon.

Diagnostics to warn of collinearity can be based on functions of the dr such
as the condition number (dp/d1)1/2, but its statistical interpretation is not
clear-cut. The condition number is sometimes reduced by replacing X with
the matrix obtained on dropping the column of ones if any and centering the
remaining columns, or by using the corresponding correlation matrix.

The most straightforward solution to collinearity or near collinearity is to
drop columns from the design matrix until the estimates are better behaved.

A more systematic approach to dealing with weak design matrices is ridge
regression, which starts by rewriting the original model y = 1β0 +X1β1 +ε as
y = 1β0 +Zγ+ε, where ZT1 = 0 and the diagonal of ZTZ consists of ns. This
involves centring each column of X1 by subtracting its average, then dividing
by its standard deviation, and multiplying by n1/2. This centring and rescaling
ensures that the elements of γ and of β have the same interpretations apart
from a change of scale, unlike with principal components regression. Then
the least squares estimates are β̂0 = y and γ̂ = (ZTZ)−1ZTy. The idea is to
replace ZTZ by ZTZ + λIp−1, where λ ≥ 0 is called the ridge parameter. The
corresponding estimates, γ̂λ = (ZTZ +λIp−1)−1ZTy, are biased unless λ = 0,
when they are the least squares estimates of γ. Large values of λ increase the
bias by shrinking the estimates towards the origin, but this decreases their
variance. The value of λ is chosen empirically by minimization of a criterion
such as the cross-validation sum of squares

CV(λ) =
n∑

j=1

(yj − ŷ−
j )2,

where ŷ−
j is the fitted value for yj predicted from the ridge regression model

obtained when the jth case is deleted. Cross-validation, introduced in Sec-
tion 7.1.2, is here used to assess how well the ridge regression fit would predict
a new set of independent data like the original observations. A variant ap-
proach chooses λ to minimize the generalized cross-validation sum of squares,

GCV(λ) =
n∑

j=1

(yj − ŷj)2

{1− tr(Hλ)/n}2 ,
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Table 8.12

Parameter estimates
and their standard
errors for the full
model and a reduced
model fitted to the
cement data.

Full model Reduced model
Parameter Estimate Standard error Estimate Standard error

β0 62.41 70.07 71.64 14.14
β1 1.55 0.74 1.45 0.12
β2 0.51 0.72 0.42 0.19
β3 0.10 0.75
β4 –0.14 0.71 –0.24 0.17

where Hλ = n−11n1T
n +Z(ZTZ +λIp−1)−1ZT is the hat matrix corresponding

to the ridge regression, and the vector of fitted values ŷ = Hλy depends on λ.
We discuss these in more detail on page 585, though in another context.

Estimates such as γ̂λ that shrink towards a common value, here γ = 0, may
also be derived by Bayesian arguments (Chapter 11).

Example 8.28 (Cement data) The astute reader will have realized that
if the middle four columns of Table 8.1 are percentages, they may sum to 100.
In fact they sum to (99, 97, 95, 97, 98, 97, 97, 98, 96, 98, 98, 98, 98). As there is
a column of ones in the design matrix for the full model, its columns are
nearly dependent: estimation of five parameters is almost impossible. This is
reflected by the standard errors in Table 8.12. The standard error for β̂0 is
vastly inflated by inclusion of x3 because β0 is almost impossible to estimate,
whereas the other estimates are less badly affected.

The residual sum of squares for model without x3 is 47.97, only slightly
larger than that for the full model, 47.86. Thus inclusion of x3 changes the fit
of the model very little, but has a drastic effect on the precision of parameter
estimation.

The eigenvalues of XTX with all five columns of X are 44676, 5965.4,
810.0, 105.4 and 0.00012. The condition number of 6056 indicates strong ill-
conditioning, and

∑
d−1

r = 821 seems very large.

The left panel of Figure 8.7 shows how the parameter estimates γ̂λ depend
on the ridge parameter λ. All change fairly sharply as λ increases from zero,
and are more stable for λ > 0.2. The right panel shows that GCV(λ) decreases
sharply when λ increases from zero, and is minimized when λ

.
= 0.3. The

dotted lines show that when x3 is dropped both the γ̂λ and GCV(λ) depend
much less on λ, consistent with the discussion above.

8.7.3 Automatic variable selection

The screening and selection of many explanatory variables may be onerous.
With p covariates, each to be included or not, at least 2p possible design ma-
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Figure 8.7 Ridge
regression analysis of
cement data. Left:
variation of elements
of γ̂λ as a function of
λ, for models with
all four covariates
(solid) and with x1,
x2, and x4 only
(dots). Right:
generalized
cross-validation
criterion GCV(λ) for
these models.
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trices must be fitted even before accounting for transformations, combinations
of covariates, and so forth. Consequently automatic procedures for variable
selection are widely used if p is large. While valuable as screening procedures,
they are no substitute for careful model-building incorporating knowledge of
the system under study and should be treated as a backstop; their output
should always be considered critically.

Stepwise methods

Forward selection takes as baseline the model with an intercept only. Each
term is added separately to this, and the base model for the next stage is
taken to be the model with the intercept and the term that most reduces the
sum of squares. Each of the remaining terms is added to the new base model,
and the process continued, stopping if at any stage the F statistic for the
largest reduction in sum of squares is not significant or if the design matrix is
rank deficient.

Backward elimination starts from the model containing all terms, and then
successively drops the least significant term at each stage. It stops when no
term can be deleted without increasing the sum of squares significantly.

Backward elimination is generally the preferable of the two because its
initial estimate of σ2 will usually be better than that for forward selection,
though at the possible expense of an unstable initial model. They may yield
different final models.

In stepwise regression four options are considered at each stage: add a term,
delete a term, swap a term in the model for one not in the model, or stop.
This algorithm is often used in practice.

These three procedures have been shown to fit complicated models to com-
pletely random data, and although widely used they have no theoretical basis.
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Table 8.13 Data
on light water
reactors (LWR)
constructed in the
USA (Cox and Snell,
1981, p. 81). The
covariates are date
(date construction
permit issued), T1
(time between
application for and
issue of permit), T2
(time between issue
of operating license
and construction
permit), capacity
(power plant
capacity in MWe), PR
(=1 if LWR already
present on site), NE
(=1 if constructed in
north-east region of
USA), CT (=1 if
cooling tower used),
BW (=1 if nuclear
steam supply system
manufactured by
Babcock–Wilcox), N
(cumulative number
of power plants
constructed by each
architect-engineer),
PT (=1 if partial
turnkey plant).

cost date T1 T2 capacity PR NE CT BW N PT

1 460.05 68.58 14 46 687 0 1 0 0 14 0
2 452.99 67.33 10 73 1065 0 0 1 0 1 0
3 443.22 67.33 10 85 1065 1 0 1 0 1 0
4 652.32 68.00 11 67 1065 0 1 1 0 12 0
5 642.23 68.00 11 78 1065 1 1 1 0 12 0
6 345.39 67.92 13 51 514 0 1 1 0 3 0
7 272.37 68.17 12 50 822 0 0 0 0 5 0
8 317.21 68.42 14 59 457 0 0 0 0 1 0
9 457.12 68.42 15 55 822 1 0 0 0 5 0

10 690.19 68.33 12 71 792 0 1 1 1 2 0
11 350.63 68.58 12 64 560 0 0 0 0 3 0
12 402.59 68.75 13 47 790 0 1 0 0 6 0
13 412.18 68.42 15 62 530 0 0 1 0 2 0
14 495.58 68.92 17 52 1050 0 0 0 0 7 0
15 394.36 68.92 13 65 850 0 0 0 1 16 0
16 423.32 68.42 11 67 778 0 0 0 0 3 0
17 712.27 69.50 18 60 845 0 1 0 0 17 0
18 289.66 68.42 15 76 530 1 0 1 0 2 0
19 881.24 69.17 15 67 1090 0 0 0 0 1 0
20 490.88 68.92 16 59 1050 1 0 0 0 8 0
21 567.79 68.75 11 70 913 0 0 1 1 15 0
22 665.99 70.92 22 57 828 1 1 0 0 20 0
23 621.45 69.67 16 59 786 0 0 1 0 18 0
24 608.80 70.08 19 58 821 1 0 0 0 3 0
25 473.64 70.42 19 44 538 0 0 1 0 19 0
26 697.14 71.08 20 57 1130 0 0 1 0 21 0
27 207.51 67.25 13 63 745 0 0 0 0 8 1
28 288.48 67.17 9 48 821 0 0 1 0 7 1
29 284.88 67.83 12 63 886 0 0 0 1 11 1
30 280.36 67.83 12 71 886 1 0 0 1 11 1
31 217.38 67.25 13 72 745 1 0 0 0 8 1
32 270.71 67.83 7 80 886 1 0 0 1 11 1

This arbitrariness is reflected in rules for deciding which terms to include, some
of which use tables of the F or t distributions. Others simply drop a term from
the model if its F statistic is less than a number such as 4, and otherwise in-
clude the term. Sometimes a theoretically-motivated criterion such as AIC is
used.

Example 8.29 (Nuclear plant data) Table 8.13 contains data on the
cost of 32 light water reactors. The cost (in dollars ×10−6 adjusted to a 1976
base) is the quantity of interest, and the others are explanatory variables.

Costs are typically relative. Moreover large costs are likely to vary more
than small ones, so it seems sensible to take log(cost) as the response y. For
consistency we also take logs of the other quantitative covariates, fitting linear
models using date, log(T1), log(T2), log(capacity), PR, NE, CT, log(N), and
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able 8.14

arameter estimates
and standard errors
for linear models
fitted to nuclear
plants data; forward
and backward
indicate models
fitted by forward
selection and
backward
elimination.

Full model Backward Forward
Est (SE) t Est (SE) t Est (SE) t

Constant −14.24 (4.229) −3.37 −13.26 (3.140) −4.22 −7.627 (2.875) −2.66
date 0.209 (0.065) 3.21 0.212 (0.043) 4.91 0.136 (0.040) 3.38
log(T1) 0.092 (0.244) 0.38
log(T2) 0.290 (0.273) 1.05
log(cap) 0.694 (0.136) 5.10 0.723 (0.119) 6.09 0.671 (0.141) 4.75
PR −0.092 (0.077) −1.20
NE 0.258 (0.077) 3.35 0.249 (0.074) 3.36
CT 0.120 (0.066) 1.82 0.140 (0.060) 2.32
BW 0.033 (0.101) 0.33
log(N) −0.080 (0.046) −1.74 −0.088 (0.042) −2.11
PT −0.224 (0.123) −1.83 −0.226 (0.114) −1.99 −0.490 (0.103) −4.77

Residual SE (df) 0.164 (21) 0.159 (25) 0.195 (28)

PT. The last of these indicates six plants for which there were partial turnkey
guarantees, and some subsidies may be hidden in their costs.

Estimates and standard errors for the full model and those found by back-
ward elimination and forward selection are given in Table 8.14. Backward
elimination starts by refitting the model without BW and then considering the
t statistics for the remaining variables, dropping the next least significant, here
log(T1), and so forth. The effects for the variables retained are strengthened;
most are highly significant. Forward selection chooses a smaller model with
larger residual sum of squares, and this results in smaller t statistics. Step-
wise selection starting from this model yields the model chosen by backward
elimination. Examination of residuals for this suggests no difficulty, and we
are left with a model in which cost increases with capacity, though not pro-
portionally, with presence of a cooling tower, with date, and in the north-east
region of the USA, but is decreased by a partial turnkey guarantee, and with
architect’s experience.

Likelihood criteria

A more satisfactory approach is to fit all reasonable models and adopt the
one that minimizes some overall measure of discrepancy. One such measure
is the residual sum of squares, but this continues to decrease as the number
of parameters increases and always yields the model with all possible terms.
This suggests that model complexity be penalized by balancing it against a
measure of fit. We now discuss one approach to this.

Suppose that the data were generated by a true model g under which the
responses Yj are independent normal variables with means µj and variances
σ2 and let Eg(·) denote expectation with respect to this model. Following the
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discussion in Section 4.7, our ideal would be to choose the candidate model
f(y; θ) to minimize the loss when predicting a new sample like the old one,The scaling factor 2

is included for
comparability with
AIC.

Eg

⎛

⎝E+
g

⎡

⎣2
n∑

j=1

log

{
g(Y +

j )

f(Y +
j ; θ̂)

}⎤

⎦

⎞

⎠ . (8.31)

Here Y +
1 , . . . , Y +

n is another sample independent of Y1, . . . , Yn but with the
same distribution, E+

g denotes expectation over Y +
1 , . . . , Y +

n , and θ̂ is the
maximum likelihood estimator of θ based on Y1, . . . , Yn.

If the candidate model is normal, then θ comprises the mean responses
µ1, . . . , µn and σ2, with maximum likelihood estimators µ̂1, . . . , µ̂n and σ̂2.
Then the sum in (8.31) equals

1
2

n∑

j=1

{

log σ̂2 +
(Y +

j − µ̂j)2

σ̂2
− log σ2 −

(Y +
j − µj)2

σ2

}

,

and hence the inner expectation is

n∑

j=1

{
log σ̂2 +

σ2

σ̂2
+

(µj − µ̂j)2

σ̂2
− log σ2 − 1

}
.

Suppose that in our earlier terminology a candidate linear model with full-
rank n×p design matrix X is correct, that is, the true model is nested within
it. Then the vector µ = (µ1, . . . , µn)T of true means lies in the column space
of X and there is a p×1 vector β such that µ = Xβ. Hence µ̂ = (µ̂1, . . . , µ̂n)T

is normal with mean µ, from which it follows that
∑

(µj− µ̂j)2 = (µ̂−µ)T(µ̂−
µ) ∼ σ2χ2

p independent of nσ̂2 ∼ σ2χ2
n−p. Now the expected values of a χ2

ν

variable and of its inverse are ν and (ν − 2)−1, provided ν > 2, and so (8.31)
equals

nEg

(
log σ̂2

)
+

n2

n− p− 2
+

np

n− p− 2
− n log σ2 − n,

or equivalently for our purposes,

nEg

(
log σ̂2

)
+

n(n + p)

n− p− 2
.

This is estimated unbiasedly by the corrected information criterion

AICc = n log σ̂2 + n
1 + p/n

1− (p + 2)/n
,

and the ‘best’ candidate model is taken to be that which minimizes this.
Taylor expansion gives AICc

.
= n log σ̂2 +n+2(p+1)+O(p2/n), and for large

n and fixed p this will select the same model as AIC = n log σ̂2 + 2p. When p
is comparable with n, AICc penalizes model dimension more severely.
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Table 8.15

Number of times
models were selected
using various model
selection criteria in
50 repetitions using
simulated normal
data for each of 20
design matrices. The
true model has
p = 3.

n Number of covariates
1 2 3 4 5 6 7

10 Cp 131 504 91 63 83 128
BIC 72 373 97 83 109 266
AIC 52 329 97 91 125 306
AICc 15 398 565 18 4

20 Cp 4 673 121 88 61 53
BIC 6 781 104 52 30 27
AIC 2 577 144 104 76 97
AICc 8 859 94 30 8 1

40 Cp 712 107 73 66 42
BIC 904 56 20 15 5
AIC 673 114 90 69 54
AICc 786 105 52 41 16

A widely used related criterion is

Cp =
SSp

s2
+ 2p− n,

where SSp is the residual sum of squares for the fitted model and s2 is an
estimate of σ2; Cp can be derived as an approximation to AIC (Problem 8.16),
though its original motivation was different. In some cases σ2 can be estimated
from the full model, but care is needed because the choice of s2 is critical to
successful use of Cp.

Example 8.30 (Simulation study) Twenty different n×7 design matrices
X were constructed using standard normal variables, centered and scaled so
that each column of X had mean zero and unit variance. The parameter
vector was β = (3, 2, 1, 0, 0, 0, 0)T, so the true model had three covariates, and
the errors were taken to be independent standard normal variables. Then the
models with the first p columns of X were fitted for p = 1, . . . , 7, and the best
of these was selected using AIC, AICc, the Bayesian criterion BIC, and Cp.
This procedure was performed 50 times for each design matrix.

Table 8.15 shows the results of this experiment. For n = 10 and 20, AICc

has the highest chance of selecting the true model, and moreover the models
selected using it are the least dispersed because of the stronger penalty ap-
plied, at least for p comparable with n. For n = 40 the consistent criterion
BIC is most likely to select the true model. In practice, however, the true
model would rarely be among those fitted, and so AICc seems the best of the
criteria considered, particularly when p is comparable with n.
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Example 8.31 (Nuclear plant data) When AICc is computed for the 210

possible models in Example 8.29, the model chosen by backward elimination is
selected, with AICc = −71.24. Two nearby models have AICc within 2 of the
minimum, namely those without log(N) and without PT, but dropping these
covariates together increases AICc sharply. The interpretation and overall fit
are changed little by dropping them singly, so we retain them.

Plots of the contributions to these criteria from individual observations
can be useful in diagnosing whether particular cases strongly influence model
choice.

There may be several different models whose values of AICc are similarly
low. If a single model is needed the choice among them should if possible be
based on subject-matter considerations. If there are several equally plausible
models with quite different interpretations, then it is important to say so.

Inference after model selection

One reason that automatic variable selection should if possible be avoided is
its consequence for subsequent inference. To illustrate this, consider a straight-
line regression model y = β0 + xβ1 + ε, based on n pairs (xj , yj) with

∑
xj =

0 and independent normal errors with mean zero and known variance σ2.
Then the least squares estimate β̂1 is normally distributed with mean β1 and
variance v = σ2/

∑
xj , and following the discussion in Section 8.3.2 we would

base inference for β1 on Z = (β̂1 − β1)/v1/2, whose distribution is standard
normal when model selection is not taken into account. Suppose, however,
that before attempting to construct a confidence interval for β1, we test for
inclusion of the covariate x in the model, declaring that it should be included
if |β̂1/v1/2| > z1−α. If not, we declare that β1 = 0 and use the simpler modelz1−α is the 1 − α

quantile of the
standard normal
distribution.

y = β0 + ε. Now as β̂1 = β1 + v1/2Z, post-model selection inference for β1

given that x has been included will be based on the conditional density of Z
given that |Z + β1/v1/2| > z1−α, which is

φδ(z) =
φ(z) {H(z < zα − δ) + 1−H(z < −zα − δ)}

Φ(zα − δ) + Φ(zα + δ)
, −∞ < z <∞,

where δ = β1/v1/2 is the standardized slope. Figure 8.8 displays φδ(z) forH(u) is the
Heaviside function. δ = 0, 1, . . . , 5 and α = 0.025, corresponding to two-sided testing at the 5%

level. When β1 = 0, for example, Z considered conditionally takes values in
the tails of the standard normal distribution but not in its centre. Conditional
on variable selection, Z is clearly far from pivotal unless |δ| ≫ 0. Hence it is
only a sensible basis for inference on β1 if the regression on x is very strong.

In practice there are three complications: the error variance σ2 is unknown,
there are typically many covariates, and the true model is not among those
fitted. However the broad conclusion applies: if variables are selected automat-
ically, the only covariates for which subsequent inference using the standard
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Figure 8.8

Distribution of the
supposed pivot Z for
inference on the
slope parameter in a
straight-line
regression model,
conditional on
inclusion of slope in
the model, for

= 0, 1, . . . , 5 (left
right) and testing

for inclusion at the
5% level. Conditional
on inclusion, Z is
near-pivotal only if
| ≫ 0.
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confidence intervals is reliable are those for which the evidence for inclusion
is overwhelming, that is, for which it is clear that |δ| ≫ 0. Other covariates
should be considered in the light of previous knowledge and the context of
the model.

Model uncertainty

Inference is often performed after comparing different competing models, and
the questions arise if, when, and how one should allow for this. Consider for
example the quantity β0 in the two models M0 and M1 in which y = β0 + ε
and y = β0 + xβ1 + ε, where E(ε) = 0. It is sometimes suggested that one
should somehow average the variances of the estimators β̂0 across the models,
but this is inappropriate because the interpretation of β0 is model-dependent.
Although the same symbol is used, β0 represents the unconditional response
mean E(Y ) under M0, while under M1 it represents the conditional mean
E(Y | x = 0). Hence the meaning of β0 depends on the context and inference
for it must be conditioned on the model in which it appears: averaging is
meaningless unless the quantity of interest has the same interpretation for all
models considered. In particular, the interpretation of regression coefficients
typically depends on the model in which they appear. Having said this, one
situation in which the quantity of interest has a model-free interpretation is
prediction, and below we treat the simplest example of this.

Consider using the fits of M0 and M1 to estimate the mean µ+ = β0 +
x+β1 of a future variable Y+ with covariate x+ ̸= 0, assuming the error ε
to be normal with mean zero and known variance σ2; note that µ+ has the
same interpretation under both models. Suppose that n independent pairs
(xj , yj) are available and that

∑
xj = 0, so that β̂0 = y with variance σ2/n

under either model, independent of the slope estimate β̂1 with variance v =
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σ2/
∑

x2
j . The estimators of µ+ and their biases, variances, and mean squared

errors are

Model Estimator Bias Variance MSE
M0 : µ̂0

+ = β̂0, x+β1, σ2/n, σ2/n + x2
+β

2
1 ,

M1 : µ̂1
+ = β̂0 + x+β̂1, 0, σ2/n + x2

+v, σ2/n + x2
+v,

so µ̂0
+ improves on µ̂1

+ if |δ| < 1, where δ = β1/v1/2 is the standardized slope.
This suggests that it may be possible to construct a better estimator of µ+

by choosing µ̂0
+ if an estimator of δ is close enough to zero, and otherwise

taking µ̂1
+. If we decide between the models on the basis that M1 is indicated

when |β̂1|/v1/2 > z1−α, corresponding to a two-sided test of the hypothesis
that β1 = 0 at level (1− 2α), then the overall estimator isI(·) is the indicator

random variable of
its event. µ̂+ = β̂0 + x+β̂1

{
I
(
β̂1/v1/2 < −z1−α

)
+ I

(
β̂1/v1/2 > z1−α

)}

= β̂0 + x+v1/2(δ + Z) {I (Z < zα − δ) + I (Z > z1−α − δ)} ,

where we have written β̂1 = v1/2(δ+ Z), with Z = (β̂1 − β1)/v1/2 a standard
normal variable; note that −z1−α = zα. The bias and variance of µ̂+ are

E (µ̂+ − µ+) = x+v1/2 E(Q), var (µ̂+) =
σ2

n
+ x2

+v var(Q),

where Q = (δ+ Z) {I(Z < zα − δ) + I(Z > z1−α − δ)}− δ. As v = σ2/
∑

x2
j ,

the bias is O(n−1/2) and the variance is O(n−1), while the mean squared error
is σ2/n + x2

+v
{
E(Q)2 + var(Q)

}
. Elementary calculations give the functions

E(Q), var(Q), and E(Q)2 + var(Q), which are shown in the upper right panel
of Figure 8.9 for α = 0.025, corresponding to choosing between the models at
the two-sided 95% level. As we might have anticipated, µ̂+ is generally biased
towards zero because of the possibility of using the simpler estimator µ̂0

+ even
if β1 ̸= 0; its bias tends to zero when |δ| ≫ 0. The variance of µ̂+ is largest
when |δ| .

= 2, and then decreases to the limit corresponding to use of µ̂1
+.

One difficulty with µ̂+ is that the indicator variables badly inflate its bias
and variance. A simple way to avoid this is to use a weighted combination of
µ̂0

+ and µ̂1
+. Take for example the estimator

µ̂w
+ = (1 −W )µ̂0

+ + Wµ̂1
+ = (1 −W )β̂0 + W

(
β̂0 + x+β̂1

)
,

where the weight

W =
exp(−AIC1/2)

exp(−AIC1/2) + exp(−AIC0/2)

depends on the information criteria AIC0 and AIC1 for the two models. If
AIC1 ≪ AIC0, then W

.
= 1, the data give a strong preference for M1, and

µ̂w
+

.
= µ̂1

+. If on the other hand β1 = 0, then W slightly favours M0 but the
estimators under both models are unbiased.
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Figure 8.9

Properties of
estimators of
β0 + x+β1 in the
straight-line
regression model.
Left: bias (dots),
variance (solid) and
mean squared error
(dashes) for weighted

estimator µ̂w
+. Right:

corresponding
quantities for
model-choice
estimator µ̂+. The
weighted estimator
improves
considerably on the
model-choice
estimator. The upper
panels are for
theoretical
calculations, and the
lower ones for the
simulation
experiment described
in Example 8.32.
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Under our simplifying assumptions, AIC0−AIC1 = β̂2
1/v−2 = (δ+Z)2−2,

and as µ̂w
+ = β̂0 + x+W β̂1, the quantity that corresponds to Q above is

Qw = (δ + Z)G
{
(δ + Z)2/2− 1

}
− δ, where G(u) = exp(u)/ {1 + exp(u)}.

The bias and variance of µ̂w
+ depend on those of Qw, which are shown in the

upper left panel of Figure 8.9. Both are smaller than the values for µ̂+, and
the mean squared error is considerably reduced. Evidently µ̂w

+ improves on µ̂1
+

over a wide range of values of δ, while its mean squared error is smaller than
that of µ̂+. The weighted estimator µ̂w

+ clearly improves on the model-choice
estimator µ̂+.

Example 8.32 (Simulation study) To assess how this approach performs
in a slightly more realistic setting, we performed a small simulation study with
linear model data simulated in the same way as in Example 8.30, now with
n = 15 and βT = τ(0, 4, 3, 2, 1, 1, 0, 0); thus p = 8 including a constant vector.
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We then fitted the eight models with a constant only, constant plus the first
covariate, constant plus first and second covariates, and so forth, and combined
the corresponding estimators and AIC-based weights, to obtain a weighted
estimator θ̂ of θ = 1T

8β. We compared this with the estimator θ̂+ obtained
from the ‘best’ model, this being chosen as the model minimizing −2ℓ̂q +
3.84q, where ℓ̂q is the log likelihood obtained when fitting the model with
q parameters. This information criterion is constructed to give probability
0.05 of selecting the more complex of two nested models differing by one
parameter, when in fact the simpler model is correct. This criterion is intended
to mimic hypothesis testing procedures for model selection, such as backward
elimination.

This experiment was repeated with 20 different response vectors for each
of 250 design matrices: 5000 datasets, for τ = 0, 0.05, 0.1, 0.2, 0.4, . . . , 1.2. The
lower panels of Figure 8.9 show the bias, variance, and mean squared error
of θ̂ and θ̂+. The results bear out the preceding toy analysis: the weighted
estimator has lower mean squared error except when the regression effects are
small.

Although we have only considered the simplest situation, our broad con-
clusion generalizes to more complex settings: sharp choices among estimators
from different models tends to give worse predictions than do estimators in-
terpolating smoothly among them.

Exercises 8.7
1 Consider the cement data of Example 8.3, where n = 13. The residual sums of

squares for all models that include an intercept are given in Exercise 8.5.1.
(a) Use forward selection, backward elimination, and stepwise selection to select
models for these data, including variables significant at the 5% level.
(b) Use Cp to select a model for these data.

2 Another criterion for model selection is to choose the covariates that minimize
the cross-validated sum of squares

∑
(yj−xT

j β̂−j)
2, where β̂−j is the estimate of

β obtained when the jth case is deleted. Show this is equivalent to minimizing∑
(yj − xT

j β̂)2/(1−hjj)
2, and compare computational aspects of this approach

with those based on AIC.

8.8 Bibliographic Notes

There are books on all aspects of the linear model. Seber (1977) and Searle
(1971) give a thorough discussion of the theory, while Draper and Smith
(1981), Weisberg (1985), Wetherill (1986) and Rawlings (1988) have somwhat
more practical emphases; see also Sen and Srivastava (1990) and Jørgensen
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(1997a). Most of these books cover the central topics of this chapter in more
detail. Scheffé (1959) is a classic account of the analysis of variance.

Robust approaches to regression are described by Li (1985), and in more
detail in Huber (1981), Hampel et al. (1986), and Rousseeuw and Leroy (1987).

Davison and Hinkley (1997) and Efron and Tibshirani (1993) give accounts
of bootstrap methods, which are simulation approaches to finding standard
errors, confidence limits and so forth, for use with awkward estimators.

The formal analysis of transformations was discussed by Box and Cox (1964)
and further developed by many others; for book-length discussions see Atkin-
son (1985) and Carroll and Ruppert (1988). The test for non-additivity was
suggested by Tukey (1949); see also Hinkley (1985). Books on general regres-
sion diagnostics include Cook and Weisberg (1982), Belsley et al. (1980) and
Chatterjee and Hadi (1988). Belsley (1991) focuses on problems of collinearity.
Shorter accounts of aspects of model-checking are Davison and Snell (1991)
and Davison and Tsai (1992). Atkinson and Riani (2000) describe how diag-
nostic procedures may be used to give reliable strategies for data analysis.

Stone and Brooks (1990) and their discussants give numerous references and
comparison of various approaches to regression situations with fewer obser-
vations than covariates, such as principal components regression and partial
least squares. Perhaps the most widespread of these is ridge regression (Ho-
erl and Kennard, 1970a,b; Hoerl et al., 1985). Brown (1993) is a book-length
treatment of these and related methods.

Variable selection for the linear model has been intensively studied. Linhart
and Zucchini (1986) and Miller (1990) give useful surveys, now somewhat
dated owing to the considerable amount of work in the 1990s. Model selection
based on AIC was suggested by Akaike (1973) in a much-cited paper, though
related criteria such as Cp were already in use (Mallows, 1973). Schwartz
(1978) proposed use of BIC, and Hurvich and Tsai (1989, 1991) derive the
modified AIC with improved small-sample properties. McQuarrie and Tsai
(1998) give a comprehensive discussion of these and related criteria. Pötscher
(1991) and Hurvich and Tsai (1990) give theoretical and numerical results on
inference after model selection in linear models. More general discussion and
many further references may be found in Chatfield (1995) and Burnham and
Anderson (2002).

8.9 Problems

1 Consider Table 8.16. Formulate the design matrix X for the model in which
E(Yield) = βi + β3(z − 2), estimate the parameters and test whether β1 = β2.

2 Suppose that random variables Ygj , j = 1, . . . , ng , g = 1, . . . , G, are independent
and that they satisfy the normal linear model Ygj = xT

g β+ εgj . Write down the
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Table 8.16

Rescaled yields
(tonnes/Ha) when
two varieties of corn
were treated with
five levels of
fertiliser.

Variety Level of fertilizer, z
0 1 2 3 4

1 0.2 0.6 0.5 0.8 0.9
2 0.1 0.2 0.4 0.6 0.7

covariate matrix for this model, and show that the least squares estimates can
be written as (XT

1 WX1)−1XT
1 WZ, where W = diag{n1, . . . , nG}, and the gth

element of Z is n−1
g

∑
j
Ygj . Hence show that weighted least squares based on Z

and unweighted least squares based on Y give the same parameter estimates and
confidence intervals, when σ2 is known. Why do they differ if σ2 is unknown,
unless ng ≡ 1?
Discuss how the residuals for the two setups differ, and say which is preferable
for model-checking.

3 Let Y1, . . . , Yn and Z1, . . . , Zm be two independent random samples from the
N(µ1,σ

2
1) and N(µ2,σ

2
2) distributions respectively. Consider comparison of the

model in which σ2
1 = σ2

2 and the model in which no restriction is placed on
the variances, with no restriction on the means in either case. Show that the
likelihood ratio statistic Wp to compare these models is large when the ratio
T =

∑
(Yj − Y )2/

∑
(Zj − Z)2 is large or small. Show that T is proportional

to a random variable with the F distribution, and discuss whether the model
of equal variances is plausible for the maize data of Example 1.1.

4 Find the expected information matrix for the parameters (β0,β1,σ2) of the
normal straight-line regression model (5.2).

5 The usual linear model y = Xβ + ε is thought to apply to a set of data, and
it is assumed that the εj are independent with means zero and variances σ2,
so that the data are summarized in terms of the usual least squares estimates
and estimate of σ2, β̂ and S2. Unknown to the unfortunate investigator, in fact
var(εj) = vjσ

2, and v1, . . . , vn are unequal. Show that β̂ remains unbiased for
β and find its actual covariance matrix.

6 Suppose that y satisfies a quadratic regression, that is,

y = β0 + xβ1 + x2β2 + ε,

and that we can control the values of x. It is decided to choose x = ±a r times
each and x = 0 n − 2r times.
(a) Derive explicit expressions for the least squares estimates. Are they uncor-
related? If not, can they easily be made so?
(b) What value of r is best if we intend to test for the adequacy of a linear
regression?
(c) What value of r is best if we intend to predict y at x = a/2?

7 By rewriting y − Xβ as e + Xβ̂ − Xβ and that eTX = 0, show that

(y − Xβ)T(y − Xβ) = SS(β̂) + (β̂ − β)TXTX(β̂ − β).
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Hence show that that the likelihood for the normal linear model equals

1

(2π)n/2σn
exp

{
−SS(β̂)

2σ2
− 1

2σ2
(β̂ − β)TXTX(β̂ − β)

}
,

and use the factorization criterion to establish that (β̂, SS(β̂)) is a minimal
sufficient statistic for (β,σ2). The sample size n and the covariate matrix X are
also needed to calculate the likelihood, so why are they not regarded as part of
the minimal sufficient statistic?

8 Consider a normal linear regression y = β0 + β1x + ε in which the parameter
of interest is ψ = β0/β1, to be estimated by ψ̂ = β̂0/β̂1; let var(β̂0) = σ2v00,

cov(β̂0, β̂1) = σ2v01 and var(β̂1) = σ2v11.
(a) Show that

β̂0 − ψβ̂1

{s2 (v00 − 2ψv01 + ψ2v11)}1/2
∼ tn−p,

and hence deduce that a (1 − 2α) confidence interval for ψ is the set of values
of ψ satisfying the inequality

β̂2
0 − s2t2n−p(α)v00 + 2ψ

{
s2t2n−p(α)v01 − β0β1

}
+ψ2

{
β̂2

1 − s2t2n−p(α)v11

}
≤ 0.

How would this change if the value of σ was known?
(b) By considering the coefficients on the left-hand-side of the inequality in (a),
show that the confidence set can be empty, a finite interval, semi-infinite inter-
vals stretching to ±∞, the entire real line, two disjoint semi-infinite intervals —
six possibilities in all. In each case illustrate how the set could arise by sketching
a set of data that might have given rise to it.
(c) A government Department of Fisheries needed to estimate how many of a
certain species of fish there were in the sea, in order to know whether to continue
to license commercial fishing. Each year an extensive sampling exercise was
based on the numbers of fish caught, and this resulted in three numbers, y, x,
and a standard deviation for y, σ. A simple model of fish population dynamics
suggested that y = β0 + β1x + ε, where the errors ε are independent, and the
original population size was ψ = β0/β1. To simplify the calculations, suppose
that in each year σ equalled 25. If the values of y and x had been

y : 160 150 100 80 100
x : 140 170 200 230 260

after five years, give a 95% confidence interval for ψ. Do you find it plausible
that σ = 25? If not, give an appropriate interval for ψ.

9 Over a period of 2m + 1 years the quarterly gas consumption of a particular
household may be represented by the model

Yij = βi + γj + εij , i = 1, . . . , 4, j = −m,−m + 1, . . . , m − 1, m,

where the parameters βi and γ are unknown, and εij
iid∼ N(0, σ2). Find the

least squares estimators and show that they are independent with variances
(2m + 1)−1σ2 and σ2/

(
8
∑m

i=1
i2
)
.
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Show also that

(8m − 1)−1

[
4∑

i=1

m∑

j=−m

Y 2
ij − (2m + 1)

4∑

i=1

Y
2
i· −

2
∑m

j=−m
jY

2
.j∑m

i=1
i2

]

is unbiased for σ2, where Y i· = (2m + 1)−1
∑m

j=−m
Yij and Y ·j = 1

4

∑4

i=1
Yij .

10 A statistician travels regularly from A to B by one of four possible routes, each
route crossing a river bridge at R. The times taken for the possible segments
of the journey are independent random variables with means as shown in the
figure, each having variance σ2/2.

A

R

B

β2

β1α1

α2

He times the complete journey once by each route, obtaining observations yij

distributed as random variables Yij having means E(Yij) = αi+βj , for i, j = 1, 2.
Why it is not possible to estimate all the parameters from these observations?
Now define µ = α1 + β1, γ = α2 − α1 and δ = β2 − β1. Obtain expressions for
the least squares estimates of µ, γ and δ and also for their variance matrix.
If the observed vector of times is (y11, y21, y12, y22) = (124, 120, 128, 136) min-
utes, determine which route has the smallest estimated mean time. Obtain a
90% confidence interval for the mean on the assumption that the times are
normally distributed.

11 Suppose that we wish to construct the likelihood ratio statistic for comparison
of the two linear models y = X1β1 + ε and y = X1β1 + X2β2 + ε, where the
components of ε are independent normal variables with mean zero and variance
σ2; call the corresponding residual sums of squares SS1 and SS on ν1 and ν
degrees of freedom.
(a) Show that the maximum value of the log likelihood is − 1

2n(log SS+1−log n)
for a model whose residual sum of squares is SS, and deduce that the likelihood
ratio statistic for comparison of the models above is W = n log(SS1/SS).
(b) By writing SS1 = SS + (SS1 − SS), show that W is a monotonic function
of the F statistic for comparison of the models.
(c) Show that W

.
= (ν1 − ν)F when n is large and ν is close to n, and say why

F would usually be preferred to W .

12 Suppose that the denominator in the F statistic was replaced by SS(β̂1)/(n−q),
giving F ′, say. Use the geometry of least squares to explain why F ′ does not have
an F distribution, even if the simpler model is correct so that SS(β̂1) ∼ σ2χ2

n−q .
Show that F ′ is a monotone increasing function of F , that tends to be less than
F if the simpler model is not adequate.

13 Table 8.17 gives results from n = 10 runs of a computer experiment to assess
the accuracy of a hydrological model. The response y is the relative accuracy
of predictions, and the covariates x1, x2, x3, and x4 represent parameters input
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able 8.17

Residual sums of
squares for fits of
linear models to
output from n = 10
runs of a
ydrological model.

Model SS Model SS Model SS

- - - - 11.06 1 2 - - 5.56 1 2 3 - 4.75
1 - - - 5.96 1 - 3 - 4.78 1 2 - 4 0.74
- 2 - - 10.19 1 - - 4 1.34 1 - 3 4 0.83
- - 3 - 9.96 - 2 3 - 8.09 - 2 3 4 3.05
- - - 4 9.09 - 2 - 4 7.94

- - 3 4 6.51 1 2 3 4 0.69

to the model. The table gives the residual sums of squares for all normal linear
models that include an intercept and the xj .
Taking the level of significance to be 5%, select models for the data using (a) for-
ward selection, (b) backward elimination, (c) stepwise model selection starting
from the full model, and (d) Cp. Comment briefly.

14 In the normal straight-line regression model it is thought that a power trans-
formation of the covariate may be needed, that is, the model

y = β0 + β1x
(λ) + ε

may be suitable, where x(λ) is the power transformation

x(λ) =

{
xλ−1
λ , λ ̸= 0,

log x, λ = 0.

(a) Show by Taylor series expansion of x(λ) at λ = 1 that a test for power trans-
formation can be based on the reduction in sum of squares when the constructed
variable x log x is added to the model with linear predictor β0 + β1x.
(b) Show that the profile log likelihood for λ is equivalent to ℓp(λ) ≡ −n

2 log SS(β̂λ),

where SS(β̂λ) is the residual sum of squares for regression of y on the n × 2

design matrix with a column of ones and the column consisting of the x(λ)
j .

Why is a Jacobian for the transformation not needed in this case, unlike in
Example 8.23?
(Box and Tidwell, 1962)

15 Consider model y = X1β1 + X2β2 + ε, which leads to least squares estimates
(
β̂1

β̂2

)
=
(

XT
1 X1 XT

1 X2

XT
2 X1 XT

2 X2

)−1 (XT
1 y

XT
2 y

)
.

Let H1 = X1(X
T
1 X1)

−1XT
1 , P1 = In − H1, and define H2 and P2 similarly;

notice that these projection matrices are symmetric and idempotent.
(a) Show that β̂2 can be expressed as

(XT
2 P1X2)

−1XT
2 y − (XT

2 X2)
−1XT

2 X1(X
T
1 P2X1)

−1XT
1 y,

and use the result from Exercise 8.5.3 to deduce that β̂2 = (XT
2 P1X2)

−1XT
2 P1y,

with variance matrix σ2(XT
2 P1X2)

−1. Note that β̂2 is the parameter estimate
from the regression of P1y on the columns of P1X2.
(b) Use the geometry of least squares to show that the residual sums of squares
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for regression of y on X1 and X2 is the same as for the regression of P1y on X1

and X2.
(c) Suppose that in a normal linear model, X2 is a single column that depends
on y only through the fitted values from regression of y on X1, so that X2

is itself random. Noting that the residuals P1y are independent of the fitted
values, H1y, and arguing conditionally on H1y, show that the t statistic for
β̂2 has a distribution that is independent of X2. Hence give the unconditional
distribution of (8.27).

Recall that a model
is called correct if it
contains all
covariates with
non-zero coefficients,
and called true if it
contains precisely
these covariates.

16 (a) Show that AIC for a normal linear model with n responses, p covariates
and unknown σ2 may be written as n log σ̂2 + 2p, where σ̂2 = SSp/n is the
maximum likelihood estimate of σ2. If σ̂2

0 is the unbiased estimate under some
fixed correct model with q covariates, show that use of AIC is equivalent to use
of n log{1+(σ̂2−σ̂2

0)/σ̂
2
0}+2p, and that this is roughly equal to n(σ̂2/σ̂2

0−1)+2p.
Deduce that model selection using Cp approximates that using AIC.
(b) Show that Cp = (q−p)(F −1)+p, where F is the F statistic for comparison
of the models with p and q > p covariates, and deduce that if the model with p
covariates is correct, then E(Cp)

.
= q, but that otherwise E(Cp) > q.

17 Consider the straight-line regression model yj = α + βxj + σεj , j = 1, . . . , n.
Suppose that

∑
xj = 0 and that the εj are independent with means zero,

variances ε, and common density f(·).
(a) Write down the variance of the least squares estimate of β.
(b) Show that if σ is known, the log likelihood for the data is

ℓ(α,β) = −n log σ +

n∑

j=1

log f
(

yj − α− βxj

σ

)
,

derive the expected information matrix for α and β, and show that the asymp-
totic variance of the maximum likelihood estimate of β can be written as
σ2/(i

∑
x2

j), where

i = E

{
−d2 log f(ε)

dε2

}
.

Hence show that the the least squares estimate of β has asymptotic relative
efficiency i/v × 100%.
(c) Show that the cumulant-generating function of the Gumbel distribution,
f(u) = exp{−u − exp(−u)}, −∞ < u < ∞, is log Γ(1 − t), and deduce thatWith Γ(t) =∫∞

0
ut−1e−u du,

Γ′′(1) − Γ′(1)2
.
=

1.64493.

its variance is roughly 1.65. Find i for this distribution, and show that the
asymptotic relative efficiency of least squares is about 61%.

18 Over a period of 90 days a study was carried out on 1500 women. Its purpose
was to investigate the relation between obstetrical practices and the time spent
in the delivery suite by women giving birth. One thing that greatly affects this
time is whether or not a woman has previously given birth. Unfortunately this
vital information was lost, giving the researchers three options: (a) abandon the
study; (b) go back to the medical records and find which women had previously
given birth (very time-consuming); or (c) for each day check how many women
had previously given birth (relatively quick). The statistical question arising was
whether (c) would recover enough information about the parameter of interest.
Suppose that a linear model is appropriate for log time in delivery suite, and
that the log time for a first delivery is normally distributed with mean µ + α
and variance σ2, whereas for subsequent deliveries the mean time is µ. Suppose
that the times for all the women are independent, and that for each there is
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a probability π that the labour is her first, independent of the others. Further
suppose that the women are divided into k groups corresponding to days and
that each group has size m; the overall number is n = mk. Under (c), show that
the average log time on day j, Zj , is normally distributed with mean µ+Rjα/m
and variance σ2/m, where Rj is binomial with probability π and denominator
m. Hence show that the overall log likelihood is

ℓ(µ,α) = − 1
2k log

(
2πσ2/m

)
− m

2σ2

k∑

j=1

(zj − µ − rjα/m)2,

where zj and rj are the observed values of Zj and Rj and we take π and σ2 to
be known. If Rj has mean mπ and variance mτ 2, show that the inverse expected
information matrix is

I(µ,α)−1 =
σ2

nτ 2

(
mπ2 + τ 2 −mπ
−mπ m

)
.

(i) If m = 1, τ 2 = π(1 − π), and π = n1/n, where n = n0 + n1, show that
I(µ,α)−1 equals the variance matrix for the two-sample regression model. Ex-
plain why.
(ii) If τ 2 = 0, show that neither µ nor α is estimable; explain why.
(iii) If τ 2 = π(1 − π), show that µ is not estimable when π = 1, and that α is
not estimable when π = 0 or π = 1. Explain why the conditions for these two
parameters to be estimable differ in form.
(iv) Show that the effect of grouping, (m > 1), is that var(α̂) is increased by a
factor m regardless of π and σ2.
(v) It was known that σ2 .

= 0.2, m
.
= 1500/90, π

.
= 0.3. Calculate the standard

error for α̂.
It was known from other studies that first deliveries are typically 20–25% longer
than subsequent ones. Show that an effect of size α = log(1.25) would be very
likely to be detected based on the grouped data, but that an effect of size
α = log(1.20) would be less certain to be detected, and discuss the implications.

19 Suppose that model y = Xβ+Zγ+ε holds, but that model y = Xβ+ε is fitted,
giving β̂ = (XTX)−1XTy with hat matrix H = X(XTX)−1XT and residuals

e = y − Xβ̂.
(a) Show that

e = (I − H)y = (I − H)Zγ + (I − H)ε,

and hence that E(e) = (I−H)Zγ. What happens if Z lies in the space spanned
by the columns of X?
(b) Now suppose that Z is a single column z. Explain how an added variable
plot of the residuals from the regression of y on X against the residuals from
the regression of z on X can help in deciding whether or not to add z to the
design matrix.
(c) Discuss the interpretation of the added variable plots in Figure 8.10, bearing
in mind the possibility of outliers and of a need to transform z before including
it in the design matrix.

20 Figure 8.11 shows standardized residuals plotted against fitted values for linear
models fitted to four different sets of data. In each case discuss the fit and
explain briefly how you would try to remedy any deficiencies.

21 Data (x1, y1), . . . , (xn, yn) satisfy the straight-line regression model (5.3). In a
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Figure 8.10 Added
variable plots for
four normal linear
models.
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calibration problem the value y+ of a new response independent of the existing
data has been observed, and inference is required for the unknown corresponding
value x+ of x.
(a) Let s2

x =
∑

(xj − x)2 and let S2 be the unbiased estimator of the error
variance σ2. Show that

T (x+) =
Y+ − γ̂0 − γ̂1(x+ − x)

[S2 {1 + n−1 + (x+ − x)2/s2
x}]1/2

is a pivot, and explain why the set

X1−2α = {x+ : tn−2(α) ≤ T (x+) ≤ tn−2(1 − α)}

contains x+ with probability 1 − 2α.
(b) Show that the function g(u) = (a + bu)/(c + u2)1/2, c > 0, a, b ̸= 0, has
exactly one stationary point, at ũ = −bc/a, that sign g(ũ) = sign a, that
g(ũ) is a local maximum if a > 0 and a local minimum if a < 0, and that
limu→±∞ g(u) = ∓b. Hence sketch g(u) in the four possible cases a, b < 0,
a, b > 0, a < 0 < b and b < 0 < a.
(c) By setting u = S(x+ −x)/sx, show that T (x+) can be written in form g(u).
Deduce that X1−2α can be a finite interval, two semi-infinite intervals or the
entire real line. Discuss.
(d) Show that if in fact γ1 = 0, X1−2α has infinite length with probability 1−2α.
(e) A different approach considers x+ to be an unknown parameter, and con-
structs the likelihood for β, σ2 and x+ based on the pairs (xj , yj) and y+. Does
the resulting profile log likelihood ℓp(x+) result in confidence sets such as those
in (c)?
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Figure 8.11

Standardized
residuals plotted
against fitted values
for four normal
linear models.•
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