Série n°8

Exercice 1 : Pour chacun des ordinaux α suivants, décrire un bon ordre sur l'ensemble \mathbb{N} des naturels de type d'ordre α .

- 1. ω ;
- 5. $\omega \cdot 3$;
- 9. $\omega \cdot 4 + 7$;

- 2. $\omega + 1$;
- 6. ω^2 ;
- 10. ω^3 ;

- 3. $\omega + \omega$;
- 7. $\omega^2 + \omega \cdot 3 + 5$; 11. $\omega^3 + \omega \cdot 4 + 7$;
- 4. $\omega + \omega + 17$;
- 8. $\omega \cdot 4$;
- 12. ω^{ω} .

Exercice 2:

Calculer les expressions suivantes :

1. $3 + \omega$

- 9. $(\omega + 3) \cdot 4$

2. $\omega + 3$

- 10. $4 \cdot (\omega + 3)$
- 3. $\omega + 15 + \omega + 9 + 3 + \omega$
- 11. $(\omega + 3) \cdot \omega$

 $4. \omega \cdot 3$

12. $\omega \cdot (\omega + 3)$

5. $3 \cdot \omega$

6. $(\omega \cdot 3) \cdot (\omega \cdot 5)$

13. $10 \cdot \omega \cdot 7 \cdot 3 \cdot \omega$

7. $\omega^2 \cdot \omega$ 8. $\omega \cdot \omega^2$

14. $\omega^3 \cdot \omega^2 \cdot 9 \cdot \omega + 7 \cdot \omega^4 + 3 \cdot (\omega + 2)$ 15. $2 \cdot \omega^3 \cdot 3 + \omega^6 + (\omega + 3) \cdot 12$

Exercice 3:

Soient $\mathfrak{A} = (A, <_A), \mathfrak{B} = (B, <_B)$ et $\mathfrak{C} = (C, <_C)$ trois bons ordres.

1. Nous définissons la somme $\mathfrak{A} \oplus \mathfrak{B}$ de \mathfrak{A} et \mathfrak{B} comme l'ensemble $(A \times \{0\}) \cup (B \times \{1\})$ muni de la relation

$$(x,i) <_{\mathfrak{A} \oplus \mathfrak{B}} (y,j)$$
 ssi
$$\begin{cases} i = j = 0 \text{ et } x <_{A} y, \text{ ou} \\ i = j = 1 \text{ et } x <_{B} y, \text{ ou} \\ i = 0 \text{ et } j = 1. \end{cases}$$

Montrer que $\mathfrak{A} \oplus \mathfrak{B}$ est un bon ordre. Donner un isomorphisme entre $(\mathfrak{A} \oplus \mathfrak{B}) \oplus \mathfrak{C}$ et $\mathfrak{A} \oplus (\mathfrak{B} \oplus \mathfrak{C})$.

2. Nous définissons le produit $\mathfrak{A}\otimes\mathfrak{B}$ de \mathfrak{A} et \mathfrak{B} comme l'ensemble $A\times B$ muni de la relation

$$(a,b) <_{\mathfrak{A} \otimes \mathfrak{B}} (a',b') \text{ ssi } \begin{cases} b <_B b', \text{ ou} \\ b = b' \text{ et } a <_A a' \end{cases}$$

Montrer que $\mathfrak{A} \otimes \mathfrak{B}$ est un bon ordre. Donner un isomorphisme entre $\mathfrak{A} \otimes (\mathfrak{B} \oplus \mathfrak{C})$ et $(\mathfrak{A} \otimes \mathfrak{B}) \oplus (\mathfrak{A} \otimes \mathfrak{C})$.

3. Soient (A, <) un bon ordre et $(B_a, <_a)$ un bon ordre pour tout $a \in A$. Nous définissons la somme $\sum_{(A, <)} (B_a, <_a)$ des $(B_a, <_a)$ le long de (A, <) comme l'ensemble

$$S = \bigcup_{a \in A} B_a \times \{a\}$$

muni de la relation

$$(b,a) <_S (b',a')$$
 ssi
$$\begin{cases} a < a', \text{ ou} \\ a = a' \text{ et } b <_a b'. \end{cases}$$

Montrer que $\sum_{(A,<)} (B_a, <_a) = (S, <_S)$ est un bon ordre. Donner un isomorphisme entre $\mathfrak{B} \otimes \mathfrak{A}$ et $\sum_{\mathfrak{A}} \mathfrak{B}$.

Remarque. On peut montrer que pour tous ordinaux α et β

- 1. la somme ordinale $\alpha + \beta$ est l'unique ordinal isomorphe à $(\alpha, \in) \oplus (\beta, \in)$;
- 2. le produit ordinal $\alpha \cdot \beta$ est l'unique ordinal isomorphe à

$$(\alpha, \in) \otimes (\beta, \in) \cong \sum_{\xi < \beta} \alpha.$$