Série n°6

Exercice 1: Soient \mathcal{L} un langage égalitaire et C une classe de \mathcal{L} -structures. On dit que la classe C est axiomatisable s'il existe une théorie T de \mathcal{L} telle que, pour toute \mathcal{L} -structure \mathcal{M} , on ait :

 $\mathcal{M} \in C$ si et seulement si $\mathcal{M} \models T$.

La classe C est dite finiment axiomatisable s'il existe une théorie finie T de \mathcal{L} telle que, pour toute \mathcal{L} -structure \mathcal{M} , on ait :

 $\mathcal{M} \in C$ si et seulement si $\mathcal{M} \models T$.

- 1. Soient \mathcal{L} le langage égalitaire consistant en le seul symbole d'égalité et C la classe des \mathcal{L} -structures finies. La classe C est-elle axiomatisable? Est-elle finiment axiomatisable?
 - Indication: Raisonner par l'absurde, en utilisant le théorème compacité et des énoncés signifiant "il existe au moins n éléments distincts".
- 2. Soit \mathcal{L} un langage du premier ordre. Montrer que si une classe C est finiment axiomatisable, alors la classe complémentaire de C l'est aussi.
- 3. Soit \mathcal{L} le langage égalitaire consistant en le seul symbole d'égalité. Est-ce que la classe des \mathcal{L} -structures infinies est axiomatisable? finiment axiomatisable?

Exercice 2: Soit \mathcal{L}_0 le langage (égalitaire) du premier ordre de l'arithmétique $\{\underline{0}, \underline{S}, \underline{+}, \underline{\times}\}$. Pour le modèle standard $\mathcal{N} = \langle \mathbb{N}, 0, S, +, \times \rangle$ nous posons $T = \text{Th}(\mathcal{N})$ la \mathcal{L} -théorie de \mathbb{N} , i.e.

 $Th(\mathcal{N}) = \{ \varphi \mid \varphi \text{ est une } \mathcal{L}\text{-formule close telle que } \mathcal{N} \models \varphi \}.$

Nous définissons par induction le terme \underline{n} pour $n \in \mathbb{N}$ comme $\underline{0} = \underline{0}$ et $\underline{n+1} = \underline{S(\underline{n})}$.

- 1. Montrer qu'il existe un modèle \mathcal{M} de T dans lequel il existe un élément $m \in |\mathcal{M}|$ tel que pour tout $n \in \mathbb{N}$ non nul, $\underline{n}^{\mathcal{M}}$ est un diviseur de m.
- 2. Montrer que pour tout modèle \mathcal{M} de la théorie T il existe un unique plongement $p: \mathcal{N} \to \mathcal{M}$.

Exercice 3: Soit \mathcal{L} un langage du premier ordre. Nous rappelons :

Théorème (Compacité). Une théorie \mathcal{T} est satisfaisable si et seulement si tout sous-ensemble fini T' de T est satisfaisable.

et nous considérons l'énoncé suivant :

Corollaire. On a $T \models \varphi$ si et seulement si il existe un sous-ensemble fini T' de T tel que $T' \models \varphi$.

- 1. Montrer l'équivalence entre le théorème de compacité et le corollaire.
- 2. Montrer qu'une théorie T est contradictoire si et seulement si il existe un sous-ensemble fini T' de T tel que T' est contradictoire.

Exercice 4 : Soient \mathcal{L} un langage égalitaire et \mathbf{C} une classe de \mathcal{L} -structures axiomatisée par la théorie T_C .

- 1. Montrer que \mathbf{C} est finiment axiomatisable si et seulement si il existe un sous-ensemble fini T de T_C telle que \mathbf{C} est axiomatisée par T.
 - Indication: Utiliser le corollaire du théorème de compacité donné à l'Exercice 3.
- 2. Donner un nouvel argument pour le point 3. de l'Exercice 1 à la lumière du point précédent.