Série n°5

Exercice 1: Soit f_1, f_2 les fonctions suivantes :

$$f_1: \mathbb{N} \to \mathbb{N}$$
 et $f_2: \mathbb{N} \to \mathbb{N}$ $0 \text{ si } n = 0$ $f_1: \mathbb{N} \to \mathbb{N}$

- 1. Soit $\mathcal{N}_1 := (\mathbb{N}, s, <)$ et $\mathcal{N}_2 := (\mathbb{N} \setminus \{0\}, s, <)$ les structures où s est la fonction successeur usuelle et < l'ordre naturel sur \mathbb{N} . Vérifier que f_1 est un isomorphisme de \mathcal{N}_1 sur \mathcal{N}_2 . Si l'on rajoute un symbole de constante au langage, interprété par 0 dans la première structure, quelle doit être son interprétation dans la deuxième pour que f_1 reste un isomorphisme?
- 2. f_2 est-il un plongement de $(\mathbb{N}, <)$ dans $(\mathbb{N}, <)$? Et de (\mathbb{N}, s) dans (\mathbb{N}, s) ?
- 3. Existe-il un plongement de $(\mathbb{N}, <)$ dans $(\mathbb{Z}, <)$? Et réciproquement?

Exercice 2 : Soit $\mathcal{L} = \{f\}$ un langage égalitaire où f est un symbole de fonction unaire. Considérons la formule

$$\phi = \forall x \ (\neg x \simeq f(x) \land x \simeq f(f(f(x)))).$$

- 1. Donner un modèle de ϕ dont le domaine est de cardinalité 3.
- 2. Soit également la formule suivante :

$$\psi = \forall x (\neg x \simeq f(f(x)) \land \neg f(x) \simeq f(f(x))).$$

Montrer que $\{\phi\} \models \psi$ mais que $\phi \not\equiv \psi$.

- 3. Montrer que tout les modèles de ϕ dont le domaine est de cardinalité 3 sont isomorphes.
- 4. Donner un modèle infini dénombrable de ϕ .
- 5. Montrer que tous les modèles infinis dénombrables de ϕ sont isomorphes.

Indication: Etant donné \mathcal{M} un modèle quelconque de ϕ , on peut définir une relation d'équivalence sur le domaine de \mathcal{M} à l'aide de $f^{\mathcal{M}}$. Utiliser cette relation d'équivalence pour établir un isomorphisme entre un modèle infini dénombrable et le modèle que vous avez donné au point précédent.

Exercice 3: Soit \mathcal{L} un langage égalitaire. Pour toute \mathcal{L} -théorie T, on note Csq(T) l'ensemble des \mathcal{L} -formules (closes) qui sont conséquences sémantiques de T, i.e.

$$\operatorname{Csq}(T) = \{ \phi : \phi \text{ formule close de } \mathcal{L} \text{ et } T \models \phi \}.$$

Soient T_1 et T_2 deux \mathcal{L} -théories, telles que $Csq(T_1) \subseteq Csq(T_2)$. Parmis les cas suivants, lesquels impliquent $Csq(T_1) = Csq(T_2)$? (Justifier votre réponse).

- 1. T_1 est complète,
- 2. T_2 est satisfaisable,
- 3. T_1 est complète et T_2 est satisfaisable.

Exercice 4: Soient c et d des symboles de constante, R un symbole de relation, \oplus et \otimes des symboles de fonction binaire. Dans chacun des cas suivants, un langage égalitaire \mathcal{L} est spécifié et deux \mathcal{L} -structures \mathcal{M} et \mathcal{N} sont proposées. Exhiber lorsque c'est possible une formule close ψ de \mathcal{L} telle que $\mathcal{M} \models \psi$ et $\mathcal{N} \not\models \psi$.

- 1. $\mathcal{L} = \{R\}, \, \mathcal{M} = \langle \mathbb{N}, \leqslant \rangle, \, \mathcal{N} = \langle \mathbb{Z}, \leqslant \rangle;$
- 2. $\mathcal{L} = \{R\}, \ \mathcal{M} = \langle \mathbb{N}, = \rangle, \ \mathcal{N} = \langle \mathbb{Z}, = \rangle;$
- 3. $\mathcal{L} = \{ \otimes \}, \ \mathcal{M} = \langle \mathbb{N}, \times \rangle, \ \mathcal{N} = \langle \mathcal{P}(\mathbb{N}), \cap \rangle;$
- 4. $\mathcal{L} = \{c, \otimes\}, \ \mathcal{M} = \langle \mathbb{N}, 1, \times \rangle, \ \mathcal{N} = \langle \mathbb{Z}, 1, \times \rangle;$
- 5. $\mathcal{L} = \{c, d, \oplus, \otimes\}, \mathcal{M} = \langle \mathbb{R}, 0, 1, +, \times \rangle, \mathcal{N} = \langle \mathbb{Q}, 0, 1, +, \times \rangle;$
- 6. $\mathcal{L} = \{c, \otimes, R\}, \mathcal{M} = \langle \mathbb{R}, 0, \times, \leqslant \rangle, \mathcal{N} = \langle \mathbb{Q}, 0, \times, \leqslant \rangle.$

À méditer : même question pour $\mathcal{L} = \{R\}, \ \mathcal{M} = \langle \mathbb{Q}, \leqslant \rangle, \ \mathcal{N} = \langle \mathbb{R}, \leqslant \rangle.$

Exercice 5 (facultatif): Soit E un espace topologique non-vide.

Un ultrafiltre sur E est un ensemble $\mathcal{U} \subseteq \mathcal{P}(E)$ tel que :

- 1. $\varnothing \notin \mathcal{U}$;
- 2. si $A, B \in \mathcal{U}$, alors $A \cap B \in \mathcal{U}$;
- 3. si $A \in \mathcal{U}$ et $A \subseteq B$, alors $B \in \mathcal{U}$;
- 4. pour tout $A \subseteq E$, on a $A \in \mathcal{U}$ ou $E \setminus A \in \mathcal{U}$.

L'espace topologique E est de Hausdorff (ou T_2 ou $s\acute{e}par\acute{e}$) si pour tout $x,y\in E$, il existe des ouverts U_x,U_y tels que $x\in U_x,y\in U_y$ et $U_x\cap U_y=\varnothing$. L'espace topologique E est compact si on peut extraire un sous-recouvrement fini de tout recouvrement ouvert de E. Le filtre des voisinages de $x\in E$ est le filtre :

$$\mathcal{V}(x) = \{ A \subseteq E \mid \text{ il existe un ouvert } U \text{ tel que } x \in U \subseteq A \}.$$

On dit que l'ultrafiltre \mathcal{U} converge vers $x \in E$ si $\mathcal{V}(x) \subseteq \mathcal{U}$.

- 1. Montrer que pour tout $x \in E$, $\mathcal{V}(x)$ est effectivement un filtre.
- 2. Montrer que E est un espace topologique de Hausdorff si et seulement si tout ultrafiltre \mathcal{U} sur E converge vers au plus un point.
- 3. Montrer que E est un espace topologique compact si et seulement si tout ultrafiltre \mathcal{U} sur E converge vers au moins un point.