Série n°3

Exercice 1: On considère un langage égalitaire dont la signature $\mathcal{L} = \{=\}$ consiste en le seul symbole d'égalité.

- 1. Écrire des formules φ_1 , φ_2 et φ_3 telles que pour toute \mathcal{L} -structure $\mathcal{M} = \langle M \rangle$:
 - a) $\mathcal{M} \models \varphi_1$ ssi M possède au moins deux éléments;
 - b) $\mathcal{M} \models \varphi_2$ ssi M possède au plus un élément;
 - c) $\mathcal{M} \models \varphi_3$ ssi M possède exactement deux éléments;
- 2. Écrire une théorie T telle que pour toute \mathcal{L} -structure $\mathcal{M} = \langle M \rangle$

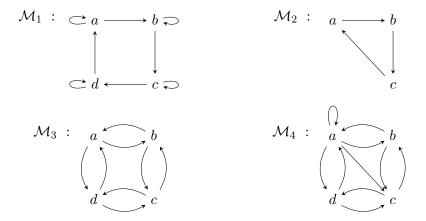
 $\mathcal{M} \models T$ ssi M possède un nombre infini d'éléments.

Question à méditer : existe-t-il une théorie dont les modèles sont exactement les structures avec un nombre fini d'éléments?

- 3. Est-ce que $\{\varphi_1\} \models \varphi_3$? Est-ce que $\{\neg \varphi_1\} \models \varphi_2$?
- 4. Pour quels i parmi $\{1, 2, 3\}$ avons-nous $T \models \varphi_i$?

Exercice 2: On considère le langage du premier ordre \mathcal{L} comprenant comme unique symbole non logique un symbole de relation binaire R. Nous représentons une \mathcal{L} -structures \mathcal{M} comme un graphe orienté : le domaine est l'ensemble des sommets et l'interprétation de R est figurée par des flèches entre les sommets, i.e. $R^{\mathcal{M}}(a,b)$ ssi il y a une flèche $a \to b$.

- 1. Pour chacun des points suivants, donner une \mathcal{L} -structure ne satisfaisant qu'une seule des deux formules proposées :
 - a) $\exists x \forall y R(x, y)$ et $\forall x \exists y R(x, y)$;
 - b) $\exists x \forall y \neg R(y, x)$ et $\forall x \neg \forall y R(y, x)$;
- 2. Écrire des formules $\varphi_1, \ldots, \varphi_4$ de \mathcal{L} de sorte que pour tous $i, j \in \{1, 2, 3, 4\}$, $\mathcal{M}_j \models \varphi_i$ si et seulement si i = j.



Exercice 3: Le but de cet exercice est d'écrire une formule du premier ordre correspondant à la conjecture de Goldbach 1 , à savoir :

Tout nombre entier pair strictement supérieur à 2 peut être écrit comme la somme de deux nombres premiers.

On considère le langage égalitaire du premier ordre \mathcal{L} comprenant deux symboles de constante $\underline{0}$ et $\underline{1}$, deux symboles de fonction binaire $\underline{+}$ et $\underline{\cdot}$. On note $\mathcal{N} = \langle \mathbb{N}, 0, 1, +, \cdot \rangle$ la \mathcal{L} -structure des naturels avec l'interprétation usuelle des symboles.

1. Écrire une formule $\psi_{<}(x,y)$ de \mathcal{L} de sorte que pour tous $m,n\in\mathbb{N}$

$$\mathcal{N}, m/x, n/y \models \psi_{\leq}(x, y) \text{ ssi } m < n,$$

où < dénote l'ordre strict usuel sur les entiers.

2. Écrire une formule $\psi_{prime}(x)$ de \mathcal{L} de sorte que pour tous $n \in \mathbb{N}$

$$\mathcal{N}, n/x \models \psi_{\mathtt{prime}}(x) \text{ ssi } n \text{ est premier.}$$

3. Écrire une formule close $\varphi_{\text{Goldbach}}$ de \mathcal{L} de sorte que

 $\mathcal{N} \models \varphi_{\text{Goldbach}}$ ssi la conjecture de Goldbach est vraie.

^{1.} En 1742, Christian Goldbach formule dans une correspondance à Leonhard Euler la conjecture suivante : « Tout nombre plus grand que 2 peut être écrit comme une somme de trois nombres premiers » (il admet ici 1 comme nombre premier). Dans sa réponse Euler fait remarquer que cette conjecture découle de la suivante : « tout nombre pair peut être écrit comme somme de deux nombres premiers ». Ces conjectures sont à ce jour encore ouvertes.

Exercice 4:

- 1. On considère la notion de ε - δ -continuité pour une fonction des nombres réels vers les nombres réels en un point donné.
 - a) Écrire une formule du premier ordre φ_{CP} correspondant à cette notion en précisant le langage du premier ordre \mathcal{L} considéré.
 - b) Donner une \mathcal{L} -structure \mathcal{M} avec $|\mathcal{M}| = \mathbb{R}$ qui satisfait φ_{CP} .
 - c) Donner une \mathcal{L} -structure \mathcal{M} avec $|\mathcal{M}| = \mathbb{N}$ qui satisfait φ_{CP} .
- 2. On considère maintenant la notion de ε - δ -continuité pour une fonction des nombres réels vers les nombres réels sur son domaine.
 - a) Écrire une formule du premier ordre φ_{C} correspondant à cette notion dans le langage du premier ordre \mathcal{L} considéré précédemment.
 - b) Donner une \mathcal{L} -structure \mathcal{M} avec $|\mathcal{M}| = \mathbb{R}$ qui satisfait $\varphi_{\mathbb{C}}$.
 - c) Donner une \mathcal{L} -structure \mathcal{M} avec $|\mathcal{M}| = \mathbb{N}$ qui satisfait $\varphi_{\mathbb{C}}$.

Exercice 5:

- 1. On considère un langage égalitaire \mathcal{L} comportant deux symboles de fonction unaire f et g. Écrire des formules closes φ_1 , φ_2 , φ_3 et φ_4 telles que pour toute \mathcal{L} -structure $\langle \mathcal{M}, f^{\mathcal{M}}, g^{\mathcal{M}} \rangle$
 - a) $\mathcal{M} \models \varphi_1$ ssi $f^{\mathcal{M}} \circ f^{\mathcal{M}} = g^{\mathcal{M}}$ et $g^{\mathcal{M}}$ est une application constante;
 - b) $\mathcal{M} \models \varphi_2 \text{ ssi } \operatorname{Im}(f^{\mathcal{M}}) \subseteq \operatorname{Im}(g^{\mathcal{M}});$
 - c) $\mathcal{M} \models \varphi_3$ ssi $f^{\mathcal{M}}$ possède un unique point fixe et celui-ci appartient à $\operatorname{Im}(g^{\mathcal{M}})$;
 - d) $\mathcal{M} \models \varphi_4$ ssi $f^{\mathcal{M}}$ est injective et $g^{\mathcal{M}}$ est surjective.
- 2. On considère les formules suivantes du langage \mathcal{L} .

 $F_1: \quad \forall x \ fx \simeq gx;$

 $F_2: \quad \forall x \ \forall y \ fx \simeq qy;$

 $F_3: \quad \forall x \; \exists y \; fx \simeq qy;$

 $F_4: \exists x \ \forall y \ fx \simeq gy;$

 $F_5: \exists x \exists y \ fx \simeq gy.$

Définir des \mathcal{L} -structure \mathcal{M}_i pour $i = 1, \ldots, 5$ satisfaisant

- a) $\mathcal{M}_1 \models F_1 \land \neg F_2$;
- b) $\mathcal{M}_2 \models \neg F_1 \wedge F_3$;

- c) $\mathcal{M}_3 \models \neg F_1 \wedge F_4$;
- d) $\mathcal{M}_4 \models \neg F_3 \wedge \neg F_4 \wedge F_5$;
- e) $\mathcal{M}_5 \models \neg F_5$.

Exercice 6: Soit \mathcal{L} le langage du premier ordre constitué d'un symbole de relation unaire Ω , et de deux symboles de relation binaire I et R. On considère la \mathcal{L} -structure $\mathcal{M} = \langle M, \Omega^{\mathcal{M}}, I^{\mathcal{M}}, R^{\mathcal{M}} \rangle$ définie par :

- $M = \mathcal{P}(\mathbb{N}),$
- $\Omega^{\mathcal{M}}(x)$ ssi x et x^c sont tous deux infinis,
- $I^{\mathcal{M}}(x,y)$ ssi $x \subseteq y$,
- $R^{\mathcal{M}}(x,y)$ ssi $x \subseteq y$ et $Card(x) = Card(y \setminus x)$.

Pour chacune des formules suivantes, indiquer si elle est satisfaite ou non dans la structure \mathcal{M} .

- 1. $\phi_1 = \forall x \ \neg R(x, x)$
- 2. $\phi_2 = \forall x \ (\Omega(x) \to \neg R(x, x))$
- 3. $\phi_3 = \forall x \forall y \forall z \ ((\Omega(x) \land \Omega(y) \land I(x,z) \land I(z,y)) \rightarrow \Omega(z))$
- 4. $\phi_4 = \forall x \forall y \forall z \ ((\Omega(x) \land \Omega(y) \land \Omega(z) \land R(x,y) \land R(y,z)) \rightarrow R(x,z))$
- 5. $\phi_5 = \forall x \forall y \ ((\Omega(x) \land \Omega(y)) \rightarrow (\neg R(x,y) \lor \neg R(y,x)))$
- 6. $\phi_6 = \forall x \forall y \ ((\Omega(x) \land R(x,y)) \rightarrow \Omega(y))$
- 7. $\phi_7 = \forall x \forall y \ ((\Omega(x) \land R(y, x)) \to \Omega(y))$
- 8. $\phi_8 = \forall x \exists y \exists z \ (R(y,x) \land R(x,z))$