Solutions de la série n°7

Solution de l'exercice 1 :

1. Nous considérons le langage $\mathcal{L}_0^+ = \mathcal{L}_0 \cup \{c\}$ où c est un nouveau symbole de constante. Pour tout $n \in \mathcal{N}$ non nul, on considère la formule $\psi_n : \exists x(x \underline{\times} \underline{n}) = c$. Considérons la \mathcal{L}_0^+ -théorie $T^+ = T \cup \{\psi_n : n \in \mathbb{N}\}$. Nous montrons que T^+ est finiment satisfaisable.

Soit $F \subseteq T^+$ une théorie finie, et posons $N = \max\{n \in \mathbb{N} : \psi_n \in F\}$ (existe car F fini!). Étendons la \mathcal{L}_0 -structure \mathcal{N} en une \mathcal{L}_0^+ -structure \mathcal{N}_N en posant $c^{\mathcal{N}_N} = \prod_{0 < i \leq N} i$. Nous affirmons que $\mathcal{N}_N \models F$. En effet, comme $\mathcal{N} \models T$, nous avons aussi $\mathcal{N}_N \models T$. De plus si $\psi_n \in F$, alors $n \leq N$ et donc n divise $\prod_{0 < i \leq N} i$, par conséquent $\mathcal{N}_N \models \psi_n$. Ainsi comme $F \subseteq T \cup \{\psi_n : 0 < n \leq M\}$, nous avons $\mathcal{N}_N \models F$.

Par le théorème de compacité, la théorie T^+ est donc satisfaisable, soit donc \mathcal{M}^+ une \mathcal{L}_0^+ -structure qui satisfait T^+ . Notons \mathcal{M} la \mathcal{L}_0 -structure obtenue de \mathcal{M}^+ en oubliant l'interprétation du symbole de constante c. La \mathcal{L}_0 -structure \mathcal{M} convient. En effet, $\mathcal{M}^+ \models T$ et donc $\mathcal{M} \models T$. De plus, pour $m = c^{\mathcal{M}^+} \in |\mathcal{M}|$ comme $\mathcal{M}^+ \models \psi_n$ pour tout $n \in \mathbb{N}$ non nul, nous avons bien que $\mathcal{M}_{y \to m} \models \exists x (x \times \underline{n}) = y$ pour tout $n \in \mathbb{N}$ non nul, ou autrement dit $n^{\mathcal{M}}$ « divise » m pour tout nombre naturel n non nul.

2. Soit \mathcal{M} une \mathcal{L}_0 -structure \mathcal{M} telle que $\mathcal{M} \models T$. Soit $p: \mathbb{N} \to |\mathcal{M}|$ une fonction. Si p est un plongement : $\mathcal{N} \to \mathcal{M}$, alors $p(0) = p(\underline{0}^{\mathcal{N}}) = \underline{0}^{\mathcal{M}}$. De plus, toujours par la définition de plongement, nous devons avoir pour tout $n \in N$ que $p(n+1) = p(\underline{S}^N(n)) = \underline{S}^{\mathcal{M}}(p(n))$. Ainsi nécessairement, si p est un plongement : $\mathcal{N} \to \mathcal{M}$, alors $p(n) = \underline{n}^{\mathcal{M}}$. Ceci montre l'unicité. Pour l'existence, il suffit de montrer que $p: n \mapsto \underline{n}^{\mathcal{M}}$ est un plongement. Pour voir que p est injective, observer que pour tous $n, m \in \mathbb{N}$ distincts, $\mathcal{N} \models \neg(\underline{n} = \underline{m})$, et donc comme $\mathcal{M} \models T$, $\mathcal{M} \models \neg(\underline{n} = \underline{m})$. De plus nous avons bien $p(\underline{0}^{\mathcal{N}}) = p(0) = \underline{0}^{\mathcal{M}}$, et pour tout $n \in |\mathcal{N}|$, $p(\underline{S}^{\mathcal{N}}(n)) = p(n+1) = \underline{n+1}^{\mathcal{M}} = \underline{S}^{\mathcal{M}}(\underline{n}^{\mathcal{M}}) = \underline{S}^{\mathcal{M}}(p(n))$. Finalement si $m, n \in \mathbb{N}$, nous avons $\mathcal{N} \models \underline{m} + \underline{n} = \underline{m+n}$ et donc $\mathcal{M} \models \underline{m} + \underline{n} = \underline{m+n}$ et donc pour tous $m, n \in |\mathcal{N}|$

$$p(m + {}^{\mathcal{N}} n) = \underline{m + n}^{\mathcal{M}} = \underline{m}^{\mathcal{M}} + {}^{\mathcal{M}} \underline{n}^{\mathcal{M}} = p(m) + {}^{\mathcal{M}} p(n).$$

Le cas du symbole de fonction binaire \times est tout à fait similaire.

Solution de l'exercice 2 :

- 1. Soit $(e_i)_{i\in\mathbb{N}}$ une chaîne infinie descendante dans un ordre total (E, <). L'ensemble non-vide $S = \{e_i : i \in \mathbb{N}\}$ n'a pas d'élément minimal. En effet, pour tout $e_i \in S$, on a $e_i > e_{i+1}$.
- 2. Soit $S \subseteq E$ non-vide sans élément minimal. Pour tout $s \in S$, notons $Pred(s) = \{x \in S : x < s\}$. Comme $Pred(s) = \emptyset$ si et seulement si s est minimal dans S, pour tout $s \in S$, on a Pred(s) non-vide. Par l'Axiome du Choix, on choisit, pour tout $s \in S$, $x_s \in Pred(s)$. Fixons $s_0 \in S$. Puis, on définit par récurrence $s_{n+1} = x_{s_n}$. Alors $(s_n)_{n \in \mathbb{N}}$ est une chaîne infinie descendante de (E, <).
- 3. Supposons que T est une \mathcal{L} -théorie qui axiomatise la classe des bons ordres. Considérons $\mathcal{L}' = \mathcal{L} \cup \{c_n : n \in \mathbb{N}\}$, où chaque c_n est un nouveau symbole de constante. Considérons la théorie $T' = T \cup \{c_{n+1} < c_n : n \in \mathbb{N}\}$. On montre que T' est finiment satisfaisable. Soit $F \subseteq T'$ un sous ensemble fini, et soit $N \in \mathbb{N}$ tel que $F \subseteq T \cup \{c_{n+1} < c_n : n \leq N\}$. Considérons le \mathcal{L}' -structure

$$\mathcal{N} = \left\langle \mathbb{N}, <_{\mathbb{N}}, c_n^{\mathcal{N}} = \begin{cases} N - n & \text{si } n \leq N, \\ 0 & \text{sinon.} \end{cases} \right\rangle$$

où $<_{\mathbb{N}}$ désigne l'ordre usuel sur \mathbb{N} . Il est clair que $\mathcal{N} \models F$. Ainsi, T' est finiment satisfaisable. Par le théorème de compacité, T' est satisfaisable. Soit donc \mathcal{M} un modèle de T'. La suite $(c_n^{\mathcal{M}})_{n\in\mathbb{N}}$ est une chaîne infinie descendante. Ce qui est une contradiction puisque $T\subseteq T'$ axiomatise les bons ordres.

Solution de l'exercice 3 :

- 1. (\Rightarrow) Par contraposition, supposons que F n'est pas un ultrafiltre. Il existe alors un sous-ensemble $X\subseteq E$ tel que ni $X\in F$ ni $E\backslash X\in F$. Montrons que la famille $B=\{X\cap A\mid A\in F\}\cup F$ est une base de filtre. Premièrement $\varnothing\notin B$: d'une part $\varnothing\notin F$ car F est un filtre et d'autre part si pour $A\in F$ nous avions $A\cap X=\varnothing$ alors $E\backslash X\supseteq A\in F$ et donc $E\backslash X\in F$ contredisant notre hypothèse. Deuxièmement, comme $(X\cap A)\cap (X\cap B)=X\cap (A\cap B)$ et que F est un filtre, B est clos par intersection. Ainsi B est une base de filtre et soit F' le filtre engendré par F. Nous avons alors $F\subsetneq F'$ montrant que F n'est pas maximal.
 - (⇐) Supposons que F est un ultrafiltre et soit $G \subseteq \mathcal{P}(E)$ avec $F \subsetneq G$. Il existe alors $X \in G \backslash F$. Puisque F est un ultrafiltre et que $X \notin F$,

nécessairement $E \setminus X \in F$ et donc $E \setminus X \in G$. Puisque $\emptyset = X \cap (E \setminus X)$, G ne peut pas être un filtre. Par conséquent F est maximal.

- 2. Soit F un filtre sur un ensemble E. Notons A l'ensemble des filtres sur E qui étendent F partiellement ordonnés par l'inclusion. Montrons que A est inductif. Soit $\mathcal{C} \subseteq A$ un sous-ensemble totalement ordonné de A. Nous montrons que $\bigcup \mathcal{C}$ est un filtre.
 - a) Puisque pour tout $F \in \mathcal{C}$ nous avons $\emptyset \notin F$, il s'ensuit que $\emptyset \notin \bigcup \mathcal{C}$;
 - b) Soient $A, B \in \bigcup \mathcal{C}$, alors il existe $F_A, F_B \in \mathcal{C}$ tels que $A \in F_A$ et $B \in F_B$. Puisque \mathcal{C} est totalement ordonné, nous pouvons supposer sans perte de généralité que $F_A \subseteq F_B$. Alors comme A et B appartiennent au filtre F_B , nous avons $A \cap B \in F_B$. Par conséquent $A \cap B \in \bigcup \mathcal{C}$;
 - c) Soient $A \in \bigcup \mathcal{C}$ et $B \subseteq E$ avec $A \subseteq B$. Il existe $F \in \mathcal{C}$ tel que $A \in F$. Puisque F est un filtre, nous avons $B \in F$ et donc $B \in \bigcup \mathcal{C}$.

Par le Lemme de Zorn, l'ensemble inductif (A, \subseteq) admet un élément maximal qui est un ultrafiltre par le point 1.

Solution de l'exercice 4 : Soit X un ensemble, et $A \subseteq \mathcal{P}(X)$ une famille de sous-ensembles de X. Dans cet exercice, nous utiliserons la notation suivante :

$$\bigcap \mathcal{A} = \bigcap_{x \in \mathcal{A}} x.$$

Montrons la caractérisation d'espaces compacts.

Proposition. Soit X un espace topologique. Les assertions suivantes sont équivalentes :

- 1. X est compact;
- 2. toute famille $(F_i)_{i\in I}$ de fermés de X dont l'intersection de toute sous-famille finie est non vide possède une intersection $\bigcap_{i\in I} F_i$ non-vide;
- 3. tout ultrafiltre U sur X est convergent (c'est à dire qu'il existe un point de X dont le filtre des voisinages est contenu dans U);

Démonstration. 1. \leftrightarrow 2. On passe d'un énoncé à l'autre par complémentation et la loi de De Morgan.

1. → 3. En vue d'une contradiction supposons qu'il existe un ultrafiltre U sur X qui ne converge pas. Alors pour tout point $x \in X$ on peut *choisir* un voisinage ouvert O_x de x qui n'appartient pas à l'ultrafiltre U. Puisque X est compact et que $\{O_x \mid x \in X\}$ est un recouvrement ouvert de X, il

existe un sous-ensemble fini F de X tel que $X = \bigcup_{x \in F} O_x$. En particulier, pour chaque $x \in F$, $O_x \notin U$ et donc $X \setminus O_x \in U$. Mais alors comme U est clos par intersection finie, on a $\emptyset = X \setminus (\bigcup_{x \in F} O_x) = \bigcap_{x \in F} X \setminus O_x \in U$, contredisant le fait que par la définition d'ultrafiltre $\emptyset \notin U$.

3. → 2. Soit \mathcal{C} une famille de fermés de X telle que l'intersection de toute sous-famille finie de \mathcal{C} est non vide. La famille de fermés

$$\mathcal{B} = \left\{ \bigcap F \mid F \text{ est un sous-ensemble fini de } \mathcal{C} \right\}$$

est une base de filtre, et il existe donc par le lemme de l'ultrafiltre (AC) un ultrafiltre U qui étend \mathcal{B} . Par 3., l'ultrafiltre U est convergent et il existe donc $x \in X$ tel que tout voisinage de x appartient à U. Considérons $C \in \mathcal{C}$. Comme U converge vers x, tous les voisinages de x intersectent C. Puisque C est fermé, $x \in C$. Ainsi,

$$x\in \bigcap_{C\in\mathcal{C}}C$$

et donc $\bigcap_{C \in \mathcal{C}} C$ est non vide comme désiré.

Montrons maintenant les différents points de l'exercice.

1. Remarquons que $\langle \forall x \ x = x \rangle = \mathfrak{X}$ et que $\langle \exists x \ \neg x = x \rangle = \emptyset$. En outre, la famille $\{\langle \varphi \rangle \mid \varphi \text{ formule close de } \mathcal{L}\}$ est close par intersection finie car $\langle \varphi \rangle \cap \langle \psi \rangle = \langle \varphi \wedge \psi \rangle$. En effet, pour tout $T \in \mathfrak{X}$, $T \models (\varphi \wedge \psi)$ si et seulement si $(T \models \varphi \text{ et } T \models \psi)$. Puisque tout $T \in \mathfrak{X}$ est close par conséquence sémantique, $T \models \Psi$ ssi $\Psi \in T$ et nous avons $\langle \varphi \wedge \psi \rangle = \langle \varphi \rangle \cap \langle \psi \rangle$.

Nous allons maintenant montrer le théorème suivant en trois étapes.

Théorème (Compacité de l'espace des théories complètes). L'espace \mathfrak{X} des théories complètes et closes par conséquence sémantique sur un langage \mathcal{L} est compact, séparé, et zéro dimensionnel.

- 2. Si $T, T' \in \mathfrak{X}$ sont distinctes, alors il existe φ une formule close avec $\varphi \in T$ et $\varphi \notin T'$. Puisque T' est complète et close par conséquence sémantique, $\neg \varphi \in T'$. On déduit de ce qui précède que $\langle \varphi \rangle$ et $\langle \neg \varphi \rangle$ sont des voisinages de T et T' respectivement.
- 3. Il suffit de voir que les membres de la base considérée $\{\langle \varphi \rangle \mid \varphi \text{ formule close de } \mathcal{L}\}$ sont aussi fermés. En effet, chaque $\langle \varphi \rangle = \mathfrak{X} \setminus \langle \neg \varphi \rangle$ est le complémentaire d'un ouvert de base.

4. Soit U un ultrafiltre sur \mathfrak{X} . Pour tout $T \in \mathfrak{X}$, choisir un modèle \mathcal{M}_T de T. Considérer la théorie T_U de la \mathcal{L} -structure donnée par l'ultraproduit $\mathcal{M} = \prod_{T \in \mathfrak{X}} \mathcal{M}_T / U$. Montrons que le filtre

$$\mathcal{V}(T_U) = \{ V \subseteq \mathfrak{X} \mid \text{il existe un ouvert } V' \text{ tel que } T_U \in V' \subseteq V \}$$

des voisinages de T_U est contenue dans U.

On a (\star) :

 $\varphi \in T_U$ ssi $\mathcal{M} \models \varphi$ ssi (par le Théorème de Łoś) $\{T \in \mathfrak{X} \mid \mathcal{M}_T \models \varphi\} \in U$ ssi $\{T \in \mathfrak{X} \mid \varphi \in T\} \in U$ ssi $\langle \varphi \rangle \in U$.

De plus, si $V \in \mathcal{V}(T_U)$, on a $T_U \in V' = \bigcup_{\langle \varphi \rangle \subseteq V'} \langle \varphi \rangle \subseteq V$. Donc il existe φ telle que $\langle \varphi \rangle \subseteq V$ et $T_U \in \langle \varphi \rangle$. Par (\star) :

$$\varphi \in T_U \text{ ssi } \langle \varphi \rangle \in U.$$

Et comme $\langle \varphi \rangle \subseteq V$ et que U est un ultrafiltre, on a finalement $V \in U$. Et donc $\mathcal{V}(T_U) \subseteq U$. On conclut par la caractérisation des espaces compacts que \mathfrak{X} muni de cette topologie est compact.

Nous allons maintenant montrer le théorème de compacité classique en deux étapes.

Corollaire (Théorème de compacité classique). Un ensemble de formules closes T admet un modèle si et seulement si tout sous-ensemble fini de T admet un modèle.

5. Tout fermé de \mathfrak{X} est de la forme

$$\mathfrak{X}\backslash\Big(\bigcup_{\varphi\in O}\langle\varphi\rangle\Big)=\bigcap_{\varphi\in O}(\mathfrak{X}\backslash\langle\varphi\rangle)=\bigcap_{\varphi\in O}\langle\neg\varphi\rangle$$

pour O un ensemble de formules closes de \mathcal{L} .

6. Soit T un ensemble de formule finiment satisfaisable. Considérons la famille de fermés de \mathfrak{X} donnée par $H = \{\langle \varphi \rangle \mid \varphi \in T\}$. Toute sous-famille finie de H est d'intersection non vide car nous avons que $\langle \bigwedge_{i=1}^n \varphi_i \rangle = \bigcap_{i=1}^n \langle \varphi_i \rangle$ et T est finiment satisfaisable. Par compacité, l'intersection $\bigcap_{\varphi \in T} \langle \varphi \rangle$ est non vide et contient donc une théorie complète X telle que $T \subseteq X$. Par conséquent T est satisfaisable.