Solutions de la série n°5

Solution de l'exercice 1 :

- 1. La fonction f_1 est une bijection de \mathbb{N} dans $\mathbb{N}\setminus\{0\}$. De plus, pour tout $n \in \mathbb{N}$, nous avons $f_1(s(n)) = f_1(n+1) = n+2 = s(n+1) = s(f_1(n))$. Finalement, pour tous $n, m \in \mathbb{N}, n < m \text{ ssi } n+1 < m+1 \text{ ssi } f_1(n) < f_1(m)$. Par conséquent, f_1 est un isomorphisme.
 - Si nous ajoutons un symbole de constante c au langage et que $c^{\mathcal{N}_1} = 0$, alors nécéssairement $c^{\mathcal{N}_2} = f_1(c^{\mathcal{N}_1}) = f_1(0) = 1$.
- 2. La fonction f_2 est injective. De plus, on vérifie que pour tous $m, n \in \mathbb{N}$, m < n ssi $f_2(m) < f_2(n)$. La fonction f_2 est donc un plongement de $(\mathbb{N}, <)$ dans $(\mathbb{N}, <)$. Toutefois, f_2 n'est pas un plongement de (\mathbb{N}, s) dans (\mathbb{N}, s) car ce n'est alors même pas un homomorphisme de \mathcal{L} -structure. En effet, $s(f_2(0)) = 1 \neq 2 = f_2(s(0))$.
- 3. L'inclusion de $(\mathbb{N}, <)$ dans $(\mathbb{Z}, <)$ est un plongement. Cependant, il n'existe pas de plongement de $(\mathbb{Z}, <)$ dans $(\mathbb{N}, <)$. Pour voir ceci, supposons qu'un tel plongement $f: \mathbb{Z} \to \mathbb{N}$ existe. Soit $n_0 = \min f[\mathbb{Z}]$ l'élément minimal de l'image de \mathbb{Z} et soit $x \in \mathbb{Z}$ avec $f(x) = n_0$. Puisque f est un plongement, x 1 < x implique $f(x 1) < f(x) = n_0$, contredisant la minimalité de n_0 .

Solution de l'exercice 2 :

- 1. Soit \mathcal{M} de domaine $\mathbb{Z}/3\mathbb{Z}$ avec $f^{\mathcal{M}}(n) = n+1$ pour tout $n \in \mathbb{Z}/3\mathbb{Z}$. On vérifie que $\mathcal{M} \models \phi$.
- 2. Nous nous proposons de montrer que pour toute \mathcal{L} -structure \mathcal{M} : si $\mathcal{M} \not\models \psi$ alors $\mathcal{M} \not\models \phi$, autrement dit, si $\mathcal{M} \models \neg \psi$ alors $\mathcal{M} \models \neg \phi$. Soit $\mathcal{M} = \langle M, f^{\mathcal{M}} \rangle$ une \mathcal{L} -structure telle que $\mathcal{M} \models \neg \psi$. Deux cas se présentent.
 - (i) Il existe $m \in M$ tel que $m = f^{\mathcal{M}}(f^{\mathcal{M}}(m))$. Alors en appliquant $f^{\mathcal{M}}$, on obtient que $f^{\mathcal{M}}(m) = f^{\mathcal{M}}(f^{\mathcal{M}}(f^{\mathcal{M}}(m)))$. Par conséquent, $m = f^{\mathcal{M}}(m)$ ssi $m = f^{\mathcal{M}}(f^{\mathcal{M}}(f^{\mathcal{M}}(m)))$. C'est à dire que $m = f^{\mathcal{M}}(m)$ ou $m \neq f^{\mathcal{M}}(f^{\mathcal{M}}(f^{\mathcal{M}}(m)))$ et donc $\mathcal{M} \models \neg \phi$.
 - (ii) Il existe $m \in M$ tel que $f^{\mathcal{M}}(m) = f^{\mathcal{M}}(f^{\mathcal{M}}(m))$. Il suffit de considérer l'élément $f^{\mathcal{M}}(m) \in M$ pour conclure que $\mathcal{M} \models \neg \phi$.

Pour voir que $\phi \neq \psi$, nous montrons qu'il existe un modèle de ψ qui satisfait $\neg \phi$. Nous pouvons par exemple prendre $\mathcal{S} = \langle \mathbb{N}, \text{succ} \rangle$ où succ : $\mathbb{N} \to \mathbb{N}$ est la fonction successeur $n \mapsto n+1$.

- 3. Soient $3 = \{0, 1, 2\}$ et une fonction $g: 3 \to 3$ tel que $\langle 3, g \rangle \models \phi$. Nous montrons que $\langle 3, g \rangle$ est isomorphe au modèle \mathcal{M} du point 1. de cet exercice. Observons tout d'abord que $\langle 3, g \rangle \models \{\phi, \psi\}$ (point (2) de cet exercice) assure que 0, g(0) et g(g(0)) sont distincts deux à deux et que 0 = g(g(g(0))). Nous pouvons donc définir $h: 3 \to \mathbb{Z}/3\mathbb{Z}$ par h(0) = 0, h(g(0)) = 1, et h(g(g(0))) = 2. C'est un isomorphisme de \mathcal{L} -structure. En effet, c'est une bijection et pour tout $i \in 3, h(g(i)) = h(i) + 1$.
- 4. Soit $\mathcal{N} = \langle \mathbb{N} \times \mathbb{Z}/3\mathbb{Z}, f^{\mathcal{N}} \rangle$ où $f^{\mathcal{N}} : \mathbb{N} \times \mathbb{Z}/3\mathbb{Z} \to \mathbb{N} \times \mathbb{Z}/3\mathbb{Z}, (n, i) \mapsto (n, i+1)$. Nous avons bien que $|\mathcal{N}|$ est dénombrable et que $\mathcal{N} \models \phi$.
- 5. Nous montrons que toute \mathcal{L} -structure infinie dénombrable $\mathcal{M} = \langle M, f^{\mathcal{M}} \rangle$ qui satisfait ϕ est isomorphe au modèle \mathcal{N} du point précédent. Soit donc \mathcal{M} une \mathcal{L} -structure infinie dénombrable satisfaisant ϕ . On peut définir sur le domaine de \mathcal{M} la relation suivante, pour $m, n \in M$,

$$m \sim n$$
 ssi $(f^{\mathcal{M}}(m) = n \vee f^{\mathcal{M}}(f^{\mathcal{M}}(m)) = n \vee m = n)$

La réfléxivité, la transitivité et la symétrie de \sim découlent du fait que $\mathcal{M} \models \phi$ et que ainsi pour tout $m \in M$ $f^{\mathcal{M}}(f^{\mathcal{M}}(f^{\mathcal{M}}(m))) = m$. C'est donc une relation d'équivalence et ces classes d'équivalence sont les « orbites » $\{m, f^{\mathcal{M}}(m), f^{\mathcal{M}}(f^{\mathcal{M}}(m))\}$ de f qui ont toutes cardinalité 3. Il y a donc nécessairement un nombre infini dénombrable de classes d'équivalence et nous pouvons choisir un unique représentant pour chacune d'elles sous la forme d'une famille $\{m_j \mid j \in \mathbb{N}\}$. Nous pouvons alors définir un isomorphisme $h: M \to \mathbb{N} \times \mathbb{Z}/3\mathbb{Z}$ par $h(m_j) = (j,0), h(f^{\mathcal{M}}(m_j)) = (j,1)$ et $h(f^{\mathcal{M}}(f^{\mathcal{M}}(m_j))) = (j,2)$ pour tout $j \in \mathbb{N}$. Il est clair que h est une bijection. En outre, pour tout m_j , la restriction de h à la sous-structure dont le domaine est la classe d'équivalence de m_j est un isomorphisme vers la sous-structure de domaine $\{(j,i) \mid i \in \mathbb{Z}/3\mathbb{Z}\}$ par le point (3) de cet exercice. Il s'ensuit que h est un isomorphisme.

Solution de l'exercice 3 :

Nous supposons dans chaque cas que $Csq(T_1) \subseteq Csq(T_2)$.

- 1. Si T_1 est complète, nous n'avons pas nécessairement $\operatorname{Csq}(T_1) = \operatorname{Csq}(T_2)$. En effet, prenons par exemple $T_1 = \operatorname{Th}(\mathcal{M})$ la théorie d'une \mathcal{L} -structure \mathcal{M} et T_2 l'ensemble des formules closes de \mathcal{L} . Nous avons alors que T_1 est complète et que $\forall x \neg x = x \notin T_1 = \operatorname{Csq}(T_1)$ et $\forall x \neg x = x \in T_2 = \operatorname{Csq}(T_2)$.
- 2. Si T_2 est satisfaisable, nous n'avons pas nécessairement $\operatorname{Csq}(T_1) = \operatorname{Csq}(T_2)$. En effet, considérons les formules closes $\varphi_1 : \exists x \exists y \neg x = y$ qui exprime qu'il existe au moins deux éléments distincts, et $\varphi_2 : \exists x \exists y \forall z (z = x \lor z = y)$

qui exprime qu'il y a au plus 2 éléments distincts. Alors pour $T_1 = \{\varphi_1\}$ et $T_2 = \{\varphi_1, \varphi_2\}$ nous avons que T_2 est satisfaisable, car $\{1, 2\} \models T_2$, et que $\varphi_2 \in \text{Csq}(T_2) \backslash \text{Csq}(T_1)$, car $\{1, 2, 3\} \models \varphi_1 \land \neg \varphi_2$.

3. Si T_1 est complète et T_2 est satisfaisable, alors $Csq(T_1) = Csq(T_2)$. Nous montrons que $Csq(T_2) \subseteq Csq(T_1)$.

Soit $\varphi \in \operatorname{Csq}(T_2)$. Puisque T_2 est satisfaisable, alors il existe une \mathcal{L} structure \mathcal{M} avec $\mathcal{M} \models T_2$. Comme $\operatorname{Csq}(T_1) \subseteq \operatorname{Csq}(T_2)$, il s'ensuit que $\mathcal{M} \models T_1$. Soit \mathcal{N} une \mathcal{L} -structure satisfaisant $\mathcal{N} \models T_1$. Comme T_1 est complète, tous les modèles de T_1 sont élémentairement équivalents. En particulier, $\mathcal{N} \models \varphi$ si et seulement si $\mathcal{M} \models \varphi$. Or $\mathcal{M} \models \varphi$, il s'ensuit que $\varphi \in \operatorname{Csq}(T_1)$.

Solution de l'exercice 4 :

- 1. Par exemple $\varphi_1: \exists x \forall y (R(y, x) \rightarrow y = x)$;
- 2. Toute bijection d'un ensemble A vers un ensemble B est un isomorphisme de structures égalitaires de $\langle A, = \rangle$ dans $\langle B, = \rangle$. Nous avons vu que $\mathbb N$ est $\mathbb Z$ sont équipotents. Ils sont donc isomorphes en tant que structure égalitaire et donc élémentairement équivalents. Toute formule vraie dans l'un est vraie dans l'autre;
- 3. Par exemple $\varphi_3 : \exists x \neg (x \otimes x = x)$;
- 4. Par exemple $\varphi_4: \forall x \forall y (x \otimes x = y \otimes y \rightarrow x = y)$;
- 5. Par exemple $\varphi_5 : \exists x (x \otimes x = d \oplus d)$;
- 6. Par exemple $\varphi_6: \forall x(Rcx \to \exists y(y \otimes y = x))$.

Solution de l'exercice 5 :

- 1. Soit $x \in E$. Il est clair que $\varnothing \notin \mathcal{V}(x)$. Si $A, B \in \mathcal{V}(x)$, alors il existe des ouverts U_A, U_B tels que $x \in U_A \subseteq A$ et $x \in U_B \subseteq B$. Comme $U_A \cap U_B$ est ouvert et $x \in U_A \cap U_B \subseteq A \cap B$, on obtient $A \cap B \in \mathcal{V}(x)$. Finalement, il est clair que si $A \in \mathcal{V}(x)$ et $A \subseteq B$, alors $B \in \mathcal{V}(x)$. Ainsi, nous avons montré que le filtre des voisinages $\mathcal{V}(x)$ de tout élément $x \in E$ d'un espace topologique est un filtre.
- 2. Supposons tout d'abord que E est de Hausdorff. Par l'absurde, supposons qu'il existe un ultrafiltre \mathcal{U} qui converge vers $x \in E$ et vers $y \in E$, où $x \neq y$. Comme E est de Hausdorff, il existe des voisinages ouverts U_x et U_y de x et y dont l'intersection est vide. Comme \mathcal{U} converge vers x, on a $U_x \in \mathcal{V}(x) \subseteq \mathcal{U}$. De même, on obtient $U_y \in \mathcal{U}$. Ainsi, $\emptyset = U_x \cap U_y \in \mathcal{U}$, ce

qui est une contradiction.

Pour montrer l'implication inverse, supposons que E n'est pas de Hausdorff. Ainsi, il existe $x,y\in E$ qui ne peuvent pas être séparés par des ouverts disjoints. Considérons l'ensemble

$$\mathcal{B} = \{ A_x \cap A_y \mid A_x \in \mathcal{V}(x), A_y \in \mathcal{V}(y) \}.$$

Comme x, y ne peuvent pas être séparés par des ouverts disjoints, $\emptyset \notin \mathcal{B}$. De plus, si $A_x, A'_x \in \mathcal{V}(x)$ et $A_y, A'_y \in \mathcal{V}(y)$, on a $(A_x \cap A_y) \cap (A'_x \cap A'_y) = (A_x \cap A'_x) \cap (A_y \cap A'_y) \in \mathcal{B}$. Ainsi, on a montré que \mathcal{B} est une base de filtre. Par l'axiome de l'ultrafiltre, on étend le filtre engendré par \mathcal{B} en un ultrafiltre \mathcal{U} . On montre que $\mathcal{V}(x) \subseteq \mathcal{U}$. Soit $A \in \mathcal{V}(x)$, alors on a $A = A \cap E \in \mathcal{B} \subseteq \mathcal{U}$. De même, on obtient $\mathcal{V}(y) \subseteq \mathcal{U}$, ce qui prouve qu'il existe un ultrafiltre \mathcal{U} qui converge vers au moins 2 éléments.

3. Supposons tout d'abord que E est compact et qu'il existe un ultrafiltre \mathcal{U} qui ne converge vers aucun point de E. Ainsi, pour tout $x \in E$, il existe $A_x \in \mathcal{V}(x)$ tel que $A_x \notin \mathcal{U}$. Soit U_x un ouvert tel que $x \in U_x \subseteq A_x$. On a $U_x^{\mathbb{C}} \in \mathcal{U}$, car sinon $U_x \subseteq A_x \in \mathcal{U}$. Ainsi, l'ensemble $\{U_x \mid x \in E\}$ est un recouvrement ouvert de E. Comme E est compact, il existe un sousrecouvrement fini $\{U_i \mid i \leq k\}$. On obtient $\emptyset = (\bigcup_{i < k} U_i)^{\mathbb{C}} = \bigcap_{i < k} U_i^{\mathbb{C}} \in \mathcal{U}$, qui est une contradiction.

Supposons maintenant que E n'est pas compact, ainsi, il existe un recouvrement ouvert $\{U_i \mid i \in I\}$ qui n'admet pas de sous-recouvrement fini. Considérons l'ensemble

$$\mathcal{B} = \left\{ \left(\bigcup_{j \in J} U_j \right)^{\complement} \mid \ J \text{ un sous-ensemble fini de } I \right\}.$$

On a $\emptyset \notin \mathcal{B}$, car sinon il existe un sous-recouvrement fini de $\{U_i \mid i \in I\}$. De même, si $J, J' \subseteq I$ sont des sous-ensembles finis, on a

$$\left(\bigcup_{j\in J}U_j\right)^{\complement}\cap\left(\bigcup_{j\in J'}U_j\right)^{\complement}=\bigcap_{j\in J}U_j^{\complement}\cap\bigcap_{j\in J'}U_j^{\complement}=\bigcap_{j\in J\cup J'}U_j^{\complement}=\left(\bigcup_{j\in J\cup J'}U_j\right)^{\complement}.$$

Ainsi, \mathcal{B} est une base de filtre. Par l'axiome de l'ultrafiltre, il existe un ultrafiltre \mathcal{U} qui étend le filtre engendré par \mathcal{B} . Pour tout $x \in E$, on a $x \in U_x \in \mathcal{V}(x)$. Comme $U_x^{\complement} \in \mathcal{B} \subseteq \mathcal{U}$, on obtient $\mathcal{V}(x) \nsubseteq \mathcal{U}$, et ainsi il existe un ultrafiltre qui ne converge vers aucun élément de E.