Solutions de la série n°3

Solution de l'exercice 1 :

1. Par exemple,

a) $\varphi_1 : \exists x \exists y \neg x = y;$

b) $\varphi_2 : \exists x \forall y x = y;$

c) $\varphi_3 : \exists x \exists y (\neg x = y \land \forall z (z = x \lor z = y));$

2. Pour tout $n \in \mathbb{N}$ définissons la formule

$$\psi_n = \exists x_0 \exists x_1 \cdots \exists x_n \left(\bigwedge_{\substack{0 \le i, j \le n \\ i \ne j}} \neg x_i = x_j \right).$$

Il suffit alors de poser $T = \{\psi_n \mid n \in \mathbb{N}\}.$

3. Non, $\{\varphi_1\} \not\models \varphi_3$ car la \mathcal{L} -structure $3 = \langle \{0, 1, 2\} \rangle$ est telle que $3 \models \varphi_1$ mais $3 \not\models \varphi_3$.

Oui, $\{\neg \varphi_1\} \models \varphi_3$ car toute \mathcal{L} -structure qui n'a pas au moins deux éléments n'en possède qu'un seul et donc satisfait φ_2 .

4. La relation $T \models \varphi_i$ n'est vérifiée que lorsque i = 1.

Solution de l'exercice 2 :

1. Par exemple, la \mathcal{L} -structure donnée par

satisfait $\exists x \forall y R(x, y)$, mais ne satisfait pas $\forall x \exists y R(x, y)$;

2. Par exemple, la \mathcal{L} -structure donnée par

satisfait $\exists x \forall y \neg R(y, x)$ (considérer a), mais ne satisfait pas $\forall x \neg \forall y R(y, x)$ (considérer b).

3. Nous pouvons par exemple considérer les formules suivantes

$$\varphi_1 : \forall x \, R(x, x)$$

$$\varphi_2 : \forall x \, \forall y \, (R(x, y) \to \neg R(y, x))$$

$$\varphi_3 : \forall x \, \forall y \, (R(x, y) \to R(y, x))$$

$$\varphi_4 : \exists x \, \forall y \, R(x, y)$$

Solution de l'exercice 3 :

- 1. Par exemple, $\psi_{\leq}(x,y): \exists z(\neg z \simeq 0 \land y \simeq (x+z)).$
- 2. Par exemple,

$$\psi_{\mathtt{prime}}(x): \Big(\psi_{<}(\underline{1},x) \, \wedge \, \neg \exists y \exists z \big((x \simeq (y \cdot \underline{z})) \, \wedge \, \neg (y \simeq \underline{1}) \, \wedge \, \neg (z \simeq \underline{1})\big)\Big).$$

3. Par exemple,

$$\varphi_{\text{Goldbach}} : \forall x \Big(\exists y (\psi_{<}(\underline{1}, y) \land x \simeq (\underline{1} + \underline{1}) \underline{\cdot} y \Big) \rightarrow \\ \exists z_1 \exists z_2 \Big(\psi_{\texttt{prime}}(z_1) \land \psi_{\texttt{prime}}(z_2) \land x \simeq z_1 \underline{+} z_2 \Big) \Big).$$

Solution de l'exercice 4 :

- 1. a) Considérons le langage du premier ordre \mathcal{L} contenant
 - deux symboles de constante 0 et p,
 - un symbole de relation binaire R,
 - un symbole de fonction unaire Vabs,
 - un symbole de fonction unaire f,
 - un symbole de fonction binaire Soustr.

Dans ce langage du premier ordre, nous pouvons écrire la formule

$$\varphi_{\mathrm{CP}}: \ \forall x \Big(R(0,x) \to \exists y \big(R(0,y) \land \forall z (R(\mathtt{Vabs}(\mathtt{Soustr}(p,z)),y) \\ \to R(\mathtt{Vabs}(\mathtt{Soustr}(f(p),f(z))),x) \big) \Big)$$

qui est une façon d'écrire la continuité de la fonction $f: \mathbb{R} \to \mathbb{R}$ au point $p \in \mathbb{R}$, généralement écrite

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in \mathbb{R}(|p - x| < \delta \rightarrow |f(p) - f(x)| < \varepsilon)$$

lorsque le champ des quantificateurs est sous-entendu.

- b) Soit, par exemple, la \mathcal{L} -structure \mathcal{M}_1 avec $|\mathcal{M}_1| = \mathbb{R}$ où l'on fait les interprétations $0^{\mathcal{M}_1} = 0$, $p^{\mathcal{M}_1} = \frac{\pi}{2} R^{\mathcal{M}_1} = \{(x,y) \in \mathbb{R}^2 \mid x < y\}$, $\mathsf{Vabs}^{\mathcal{M}_1}$ est la valeur absolue $|\cdot| : \mathbb{R} \to \mathbb{R}$, $f^{\mathcal{M}_1}(x) = \sin(x)$ pour tout $x \in \mathbb{R}$, et $\mathsf{Soustr}^{\mathcal{M}_1}$ est la soustraction usuelle $\mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto x y$. Alors, on $\mathcal{M}_1 \models \varphi_{\mathrm{CP}}$.
- c) Soit, par exemple, la \mathcal{L} -structure \mathcal{M}_2 avec $|\mathcal{M}_2| = \mathbb{N}$ où l'on fait les interprétations $0^{\mathcal{M}_2} = 0$, $p^{\mathcal{M}_2} = 10^5 \ R^{\mathcal{M}_2} = \{(x,y) \in \mathbb{N}^2 \mid x < y\}$, $\mathsf{Vabs}^{\mathcal{M}_2}$ est l'identité sur \mathbb{N} , $f^{\mathcal{M}_2}(n) = 2n$ pour tout $n \in \mathbb{N}$, et $\mathsf{Soustr}^{\mathcal{M}_2}$ est la fonction constante égale à 0. Alors, on $\mathcal{M}_2 \models \varphi_{\mathrm{CP}}$.
- 2. a) Nous pouvons considérer la formule

$$\varphi_{\mathbf{C}} : \forall z_1 \forall x \Big(R(0, x) \to \exists y \big(R(0, y) \land \forall z_2 (R(\mathtt{Vabs}(\mathtt{Soustr}(z_1, z_2)), y) \\ \to R(\mathtt{Vabs}(\mathtt{Soustr}(f(z_1), f(z_2))), x) \Big) \Big).$$

b) Pour les \mathcal{L} -structure \mathcal{M}_1 et \mathcal{M}_2 définies au point précédent, nous avons $\mathcal{M}_1 \models \varphi_{\mathbf{C}}$ et $\mathcal{M}_2 \models \varphi_{\mathbf{C}}$.

Solution de l'exercice 5 :

- 1. Considérer par exemple les formules suivantes
 - a) $\varphi_1: (\forall x f(f(x)) = g(x) \land \exists y \forall x g(x) = y).$
 - b) $\varphi_2 : \forall x \exists y f(x) = g(y)$.
 - c) $\varphi_3 : \exists x \Big(\big(f(x) = x \land \forall y (f(y) = y \to x = y) \big) \land \exists y g(y) = x \Big).$
 - d) $\varphi_4: (\forall x \forall y (f(x) = f(y) \to x = y) \land \forall y \exists x (g(x) = y)).$
- 2. Nous choisissons pour domaine de chacune des \mathcal{L} -structures l'ensemble \mathbb{N} et nous interprétons les symboles de fonction unaire f et g comme suit :
 - a) $f^{\mathcal{M}_1} = q^{\mathcal{M}_1} : n \mapsto n + 1$:
 - b) $f^{\mathcal{M}_2}: n \mapsto n+1 \text{ et } q^{\mathcal{M}_2}=\mathrm{id}_{\mathbb{N}};$
 - c) $f^{\mathcal{M}_3} = \mathrm{id}_{\mathbb{N}} \text{ et } q^{\mathcal{M}_3} : n \mapsto 0$;
 - d) $f^{\mathcal{M}_4}: n \mapsto 2n \text{ et } g^{\mathcal{M}_4}: n \mapsto n^2$;

e) $f^{\mathcal{M}_5}: n \mapsto 2n \text{ et } g^{\mathcal{M}_5}: n \mapsto 2n+1.$

Solution de l'exercice 6 :

- 1. $\mathcal{M} \not\models \phi_1$, car $\mathcal{M} \models R(\emptyset, \emptyset)$;
- 2. $\mathcal{M} \models \phi_2$ car pour tout $E \subseteq \mathbb{N}$ si $E \neq \emptyset$ alors $\neg R(E, E)$;
- 3. $\mathcal{M} \models \forall x \forall y \forall z \ ((\Omega(x) \land \Omega(y) \land I(x, z) \land I(z, y)) \rightarrow \Omega(z))$, car si $E, F, E^{\complement}, F^{\complement} \subseteq \mathbb{N}$ sont infinis et $E \subseteq G \subseteq F$, alors d'une part $E \subseteq G$ implique G infini, et d'autre part, $G \subseteq F$ implique $F^{\complement} \subseteq G^{\complement}$ et donc G^{\complement} est infini.
- 4. $\mathcal{M} \models \forall x \forall y \forall z \ ((\Omega(x) \land \Omega(y) \land \Omega(z) \land R(x,y) \land R(y,z)) \rightarrow R(x,z))$. En effet, si $E \subseteq F \subseteq G$ et $F \backslash E$ infini et $G \backslash F$ infini, alors $E \subseteq G$ et comme $G \backslash F \subseteq G \backslash E$, $G \backslash E$ est infini.
- 5. $\mathcal{M} \models \forall x \forall y \ ((\Omega(x) \land \Omega(y)) \rightarrow (\neg R(x,y) \lor \neg R(y,x)))$. Car de façon générale, si $E, F \subseteq \mathbb{N}$ sont non vides alors R(E,F) implique $\neg R(F,E)$.
- 6. $\mathcal{M} \not\models \forall x \forall y \ ((\Omega(x) \land R(x,y)) \to \Omega(y))$. Penser à l'inclusion des nombres pairs dans les nombres naturels.
- 7. $\mathcal{M} \models \forall x \forall y \ ((\Omega(x) \land R(y,x)) \to \Omega(y))$. En effet, soit $E, F \subseteq \mathbb{N}$ avec F et F^{\complement} infinis, et $E \subseteq F$, et $\operatorname{Card}(F \backslash E) = \operatorname{Card}(E)$. Comme $F^{\complement} \subseteq E^{\complement}$, E^{\complement} est infini. De plus, supposons E est fini, alors $F \backslash E$ est fini et donc $F = E \cup F \backslash E$ est fini, ce qui est une contradiction puisque F est infini. Donc E est infini.
- 8. $\mathcal{M} \not\models \forall x \exists y \exists z \ (R(y,x) \land R(x,z))$, car pour tout $E \subseteq \mathbb{N}$ fini non vide de cardinalité impaire, nous avons que pour tout $F \subseteq \mathbb{N}$, $\neg R(F,E)$.