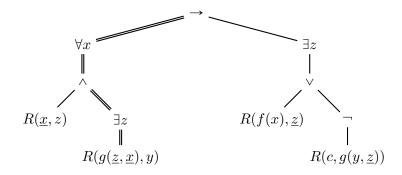
Solutions de la série n°2

Solution de l'exercice 1 : L'arbre de décomposition de φ est le suivant. Une branche de longueur maximale est indiquée par les doubles lignes. Les occurrences liées des variables de φ sont soulignées.



Afin d'effectuer les substitutions demandées, nous commençons par substituer aux occurrences liées des variables de φ des variables n'apparaissant pas dans le terme u:

$$\varphi = \Big(\forall x_1 \big(R(x_1, z) \land \exists z_1 R(g(z_1, x_1), y) \big) \to \exists z_1 \big(R(f(x), z_1) \lor \neg R(c, g(y, z_1)) \big) \Big)$$

Nous pouvons alors substituer le terme u:

$$\varphi_{[u/x]}: \Big(\forall x_1 \big(R(x_1, z) \land \exists z_1 R(g(z_1, x_1), y) \big) \rightarrow \\ \exists z_1 \big(R(f(g(f(x), g(z, c))), z_1) \lor \neg R(c, g(y, z_1)) \big) \Big)$$

$$\varphi_{[u/y]}: \Big(\forall x_1 \big(R(x_1, z) \land \exists z_1 R(g(z_1, x_1), g(f(x), g(z, c))) \big) \rightarrow \\ \exists z_1 \big(R(f(x), z_1) \lor \neg R(c, g(g(f(x), g(z, c)), z_1)) \big) \Big)$$

$$\varphi_{[u/z]}: \Big(\forall x_1 \big(R(x_1, g(f(x), g(z, c))) \land \exists z_1 R(g(z_1, x_1), y)\big) \rightarrow \\ \exists z_1 \big(R(f(x), z_1) \lor \neg R(c, g(y, z_1))\big)\Big)$$

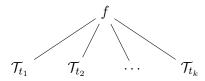
Solution de l'exercice 2 : Soit \mathcal{L} un langage du premier ordre. On définit pour tout terme t de \mathcal{L} l'arbre de décomposition \mathcal{T}_t de t par induction sur la hauteur de t de sorte que la hauteur de t égale la longueur de la plus longue branche de son arbre de décomposition.

— si t est de hauteur nulle, alors t est une variable ou une constante. Nous définissons T_t par

t

La longueur de la plus longue branche est bien nulle comme la hauteur de t.

— si t est de hauteur n > 0, alors il existe un naturel k, il existe un symbole de fonction $f \in \mathcal{L}$ d'arité k et il existe des termes t_1, \ldots, t_k de hauteur respectivement $h_1, \ldots, h_k < n$ de sorte que $t = f(t_1, \ldots, t_k)$ (par définition d'un terme de hauteur k > 0). Nous définissons alors T_t par



Par hypothèse d'induction, nous avons que la hauteur de t_i égale la longueur de la plus longue branche de \mathcal{T}_{t_i} et ceci pour chaque $i=1,\ldots,k$. Il s'ensuit que la hauteur de t qui égale $1+\max\{h_i\mid i=1,\ldots,k\}$ est égale à la plus longue branche de \mathcal{T}_t .

Solution de l'exercice 3 : Soit \mathcal{L} un langage du premier ordre. Notons P le sous-ensemble de $\mathcal{L}^{<\omega}$ des mots sur \mathcal{L} possèdant autant de parenthèses ouvrantes que de parenthèses fermantes.

Nous commençons par montrer par induction sur la hauteur des termes, que l'ensemble des termes de \mathcal{L} est inclus dans P. Si t est un terme de hauteur nulle, alors t ne contient pas de parenthèses. Si t est de hauteur non nulle, alors il existe un naturel n, un symbole de fonction $f \in \mathcal{L}$ d'arité n, et t_1, \ldots, t_n des termes de hauteur strictement inférieure à la hauteur de t avec $t = f(t_1, \ldots, t_n)$. Par hypothèse d'induction, $t_1, \ldots, t_n \in P$ et donc $t \in P$.

Nous montrons maintenant par induction sur la hauteur d'une formule, que l'ensemble des formules de \mathcal{L} est inclus dans P. Si φ est de hauteur nulle, alors il existe un naturel n, un symbole de relation $R \in \mathcal{L}$ d'arité n, et t_1, \ldots, t_n des termes de \mathcal{L} avec $\varphi = R(t_1, \ldots, t_n)$. Par ce qui précède, $t_1, \ldots, t_n \in P$. Il en

découle que $\varphi \in P$. Si φ est de hauteur non nulle h, alors nous sommes dans l'un des trois cas suivants :

- $\varphi = (\psi_1 \star \psi_2)$ avec $\star \in \{\land, \lor, \neg, \rightarrow, \leftrightarrow\}$ et ψ_1, ψ_2 des formules de hauteur strictement inférieure à h. Par hypothèse d'induction, $\psi_1, \psi_2 \in P$ et donc $\varphi \in P$.
- $\varphi = \neg \psi$ avec ψ de hauteur strictement inférieure à h. Alors, par hypothèse d'induction $\varphi \in P$.
- $\varphi = Qx\psi$ avec ψ de hauteur strictement inférieure à h. Alors, par hypothèse d'induction $\varphi \in P$.

Solution de l'exercice 4 : Dans les notations de la Série 1, nous avons $\mathcal{F} \subseteq \mathcal{L}^{<\omega}$. Ainsi, par les résultats de la Série 1 il s'ensuit qu'il existe un injection de \mathcal{F} dans \mathbb{N} . Puisque \mathcal{L} est un langage égalitaire, il contient le symbole d'égalité =. Pour chaque $n \in \mathbb{N}$ nous avons la formule suivante

$$\varphi_n = \underbrace{\exists x \cdots \exists x}_{n+1 fois} (x = x) \in \mathcal{F}.$$

L'application $n \mapsto \varphi_n$ est un injection de \mathbb{N} dans \mathcal{F} . On conclut par le théorème de Cantor-Schröder-Bernstein.

Solution de l'exercice 5 :

1. Notons [r] la partie entière d'un nombre réel r. L'ensemble des nombres réels \mathbb{R} est en bijection avec $\mathbb{Z} \times [0,1[$ via $r \mapsto ([r],r-[r])$. De plus, nous avons vu dans la série 1 que $\mathbb{N} \times \mathbb{Z}$ est en bijection avec \mathbb{Z} . Ainsi,

$$\mathbb{N} \times \mathbb{R} \cong \mathbb{N} \times (\mathbb{Z} \times [0,1[) \cong (\mathbb{N} \times \mathbb{Z}) \times [0,1[\cong \mathbb{Z} \times [0,1[\cong \mathbb{R}.$$

2. Supposons par l'absurde que $n \mapsto x_n$ est un bijection entre \mathbb{N} et $2^{\mathbb{N}}$. Définissons alors la suite diagonale $y \in 2^{\mathbb{N}}$ par $y(n) = 1 - x_n(n)$. Nous avons alors pour chaque $n \in \mathbb{N}$ que $y \neq x_n$ et donc l'application $n \mapsto x_n$ n'est pas surjective contrairement à l'hypothèse.