Solutions de la série n°1

Solution de l'exercice 1 : Voici des bijections parmi d'autres qui établissent l'équipotence des ensembles proposés.

1. $\mathbb{N} \times \mathbb{N} \cong \mathbb{N}$: On peut considérer la fonction

$$f_0: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$$

$$(m,n) \longmapsto n + \sum_{i=0}^{m+n} i = n + \frac{(m+n)(m+n+1)}{2}$$

dont l'inverse est donné par

$$g_0: \mathbb{N} \longrightarrow \mathbb{N} \times \mathbb{N}$$

 $n \longmapsto \left(\mu(n) - \left(n - \frac{\mu(n)(\mu(n) + 1)}{2}\right), n - \frac{\mu(n)(\mu(n) + 1)}{2}\right)$

où
$$\mu(n) = \max\{i \le n \mid \frac{i(i+1)}{2} \le n\}.$$

2. $\mathbb{N} \cong \mathbb{Z}$: La fonction

$$f_1: \mathbb{Z} \longrightarrow \mathbb{N}$$

$$z \longmapsto \begin{cases} 2z & \text{si } z \ge 0 \\ -2z - 1 & \text{si } z < 0 \end{cases}$$

a pour inverse la fonction

$$g_1: \mathbb{N} \longrightarrow \mathbb{Z}$$

$$n \longmapsto \begin{cases} t & \text{si } n = 2t \\ -t & \text{si } n = 2t - 1. \end{cases}$$

3. $\mathbb{N} \cong \mathbb{Q}$: Observons tout d'abord que $\mathbb{N} \cong \mathbb{N}_+ = \mathbb{N} \setminus \{0\}$, car on peut prendre la fonction $n \mapsto n+1$. Ensuite, on a que $\mathbb{Z} \times \mathbb{N}_+ \cong \mathbb{N}$ en prenant la fonction $f_3(z,n) = f_0(f_1(z),n-1)$ pour tout $(z,n) \in \mathbb{Z} \times \mathbb{N}_+$, notons son inverse $h(n) = (h^1(n),h^2(n))$. Observons aussi que la fonction de $\mathbb{Z} \times \mathbb{N}_+$ vers \mathbb{Q} qui envoie (z,n) sur $\frac{z}{n}$ est une surjection, mais qu'elle n'est pas injective. On définit donc par induction la fonction de $\psi : \mathbb{N} \to \mathbb{Q}$ par

$$\psi(0) = 0$$

$$\psi(n+1) = \frac{h^1(\mu(n))}{h^2(\mu(n))}$$

où $\mu(n)=\min\{k\mid \frac{h^1(k)}{h^2(k)}\neq \psi(i) \text{ pour tout } i\leqslant n\}$. Il reste à montrer que ψ est bien définie et surjective, le premier point découle du fait que $\mathbb Q$ est infini et le second de la surjectivité de $(z,n)\mapsto \frac{z}{n}$. La fonction ψ est injective par définition.

Solution de l'exercice 2 : On montre à l'aide du théorème de Cantor-Schröder-Bernstein que les ensembles suivants sont équipotents à \mathbb{N} :

1. $\{0,1\}^{<\omega}$: On a d'une part une injection

$$i: \mathbb{N} \longrightarrow \{0, 1\}^{<\omega}$$

 $n \longmapsto \underbrace{(0, \dots, 0)}_{n \text{ fois}},$

et d'autre part une injection

$$j: \{0, 1\}^{<\omega} \longrightarrow \mathbb{N}$$
$$(s_0, s_1, \dots, s_n) \longmapsto 10^{n+1} + \sum_{i=0}^n s_i \cdot 10^{n-i},$$

il s'ensuit du théorème de Cantor-Schröder-Bernstein que \mathbb{N} et $\{0,1\}^{<\omega}$ sont équipotents.

2. $\mathbb{N}^{<\omega}$: Nous montrons que $\mathbb{N}^{<\omega}$ et $\{0,1\}^{<\omega}$ sont équipotents, il s'ensuivra que $\mathbb{N}^{<\omega}$ est équipotent à \mathbb{N} . D'une part, $\{0,1\}^{<\omega}$ est inclus dans $\mathbb{N}^{<\omega}$. D'autre part, nous pouvons par exemple considérer l'injection

$$j: \mathbb{N}^{<\omega} \longrightarrow \{0,1\}^{<\omega}$$

$$(n_0, n_1, \dots, n_k) \longmapsto (\underbrace{0, \dots, 0}_{n_0 \text{ fois}}, 1, \underbrace{0, \dots, 0}_{n_1 \text{ fois}}, 1, \dots, 1, \underbrace{0, \dots, 0}_{n_k \text{ fois}}, 1).$$

3. $A^{<\omega}$, avec A un ensemble dénombrable non vide : Pour $a \in A$ nous pouvons d'une part considérer l'injection $n\mapsto\underbrace{a,\ldots,a}_{n\text{ fois}}$. D'autre part, comme A est dénombrable, il existe une injection $i:A\to\mathbb{N}$ et nous pouvons

définir

$$j: A^{<\omega} \longrightarrow \mathbb{N}^{<\omega}$$

 $(a_0, \dots, a_k) \longmapsto (i(a_0), \dots, i(a_k)).$

Solution de l'exercice 3 :

1. Soit $\{A_i \mid i \in I\}$ une famille dénombrable d'ensembles dénombrables. Il existe donc une injection $j: I \to \mathbb{N}$. De plus, pour tout $i \in I$ notons $\mathcal{J}_i = \{f: A_i \to \mathbb{N} \mid f \text{ est une fonction injective}\}$. Par hypothèse, chaque \mathcal{J}_i est non vide. Par l'axiome du choix dénombrable, il existe une fonction $\gamma: I \to \bigcup_{i \in I} \mathcal{J}_i$ telle que pour tout $i \in I$, $\gamma_i = \gamma(i) \in \mathcal{J}_i$, i.e. $\gamma_i: A_i \to \mathbb{N}$ est une fonction injective. Nous définissons alors la fonction suivante

$$\psi: \bigcup_{i \in I} A_i \longrightarrow \mathbb{N}$$
$$a \longmapsto f(j(i_a), \gamma_{i_a}(a))$$

où $i_a = j^{-1}(\min\{j(i) \mid a \in A_i\})$ et où f est une injection de $\mathbb{N} \times \mathbb{N}$ dans \mathbb{N} (par exemple $f(m,n) = 2^m \cdot 3^n$). Il reste à argumenter (facile) que ψ est injective.

2. Puisque A est dénombrable et que $\mathbb{N} \times \mathbb{N} \cong \mathbb{N}$, on montre par récurrence que pour tout $n \in \mathbb{N}$, A^n est dénombrable. Il découle alors du point précédent que $A^{<\omega} = \bigcup_{n \in \mathbb{N}} A^n$ est dénombrable.

Solution de l'exercice 4: Puisque A est infini, il existe une injection $j:\mathbb{N}\to A$. Notons $C=j(\mathbb{N})$ le sous-ensemble de A équipotent à \mathbb{N} par le truchement de j. Puisque B est dénombrable par hypothèse et C est infini dénombrable, leur union est infinie dénombrable, i.e. équipotente à \mathbb{N} . Il existe donc une bijection $\varphi:C\cup B\to C$. On définit alors simplement la bijection suivante :

$$\psi:A\cup B\longrightarrow A$$

$$x\longmapsto \begin{cases} \varphi(x) & \text{si } x\in C\cup B\\ x & \text{sinon.} \end{cases}$$

Solution de l'exercice 5 :

1. Posons $S = \{X \subseteq E \mid X \subseteq G(X)\}$ et montrons que $M = \bigcup_{X \in S} X$ satisfait G(M) = M. Premièrement, pour tout $X \in S$, comme $X \subseteq M$, nous avons $G(X) \subseteq G(M)$ car G est monotone. Par conséquent,

$$M = \bigcup_{X \in S} X \subseteq \bigcup_{X \in S} G(X) \subseteq G(M).$$

Ainsi, $M \subseteq G(M)$. Deuxièmement, $M \subseteq G(M)$ implique $G(M) \subseteq G(G(M))$ et donc $G(M) \in S$. Il s'ensuit que $G(M) \subseteq M$. Nous avons donc obtenu que G(M) = M.

2. Considérons la fonction $G: \mathcal{P}(A) \longrightarrow \mathcal{P}(A)$ définie par

$$G(X) = A \backslash g(B \backslash f(X))$$

pour tout $X \subseteq A$. Cette fonction est monotone pour l'inclusion. En effet, si pour $X, Y \subseteq A$ nous avons $X \subseteq Y$, alors $f(X) \subseteq f(Y)$ et donc $B \setminus f(Y) \subseteq$ $B\backslash f(X)$. Il s'ensuit que $g(B\backslash f(Y))\subseteq g(B\backslash f(X))$ et donc finalement

$$A \backslash g(B \backslash f(X)) \subseteq A \backslash g(B \backslash f(Y)).$$

Le point précédent s'applique donc et nous assure l'existence d'un $M \subseteq A$ tel que $A \setminus g(B \setminus f(M)) = M$. En particulier, nous avons pour tout $a \in$ A que $a \notin M$ ssi $a \in g(B \setminus f(M))$. Il reste alors à vérifier (facile) que l'application $\psi: A \longrightarrow B$ définie par

$$\psi(a) = \begin{cases} f(a) & \text{si } a \in M \\ g^{-1}(a) & \text{si } a \in g(B \setminus f(M)) \end{cases}$$

est bien définie et bijective.