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1. Show that if G = (AU B, E) is a bipartite graph such that |[N(S)| > |S| — d holds for
some integer d > 0 and every S C A, then G has a matching with at least |A| — d edges.

Solution. Add d new vertices to B, each connected to all vertices in A; let G’ be the
new graph. Then G’ has [Ng/(S)| > |S| for every S C A (S has at least |S| — d neighbors
from G, and is connected to the d new vertices). By Hall’s Theorem, G’ has a matching
for A, which has |A| edges. At most d of these edges contain a new vertex of G, which
leaves at least |A| — d edges from G.

2. The edges of K11 are colored red or blue such that every edge gets exactly one color. Show
that the graph of the red edges and the graph of the blue edges cannot both be planar.

Solution. We know that any planar graph on 11 vertices has at most 3 - 11 — 6 = 27

edges. Since K7, has (121) = 55 edges, then either red or blue graph will have at least 28

edges, and thus cannot be planar.

3. Prove that for t > 3 the Ramsey number of K, satisfies R(K,, K;) > 2!/2.

Solution. Color the edges of K,, randomly and independently of each other into red and
blue (both possibilities have probability 1/2). Then the probability that on a given set

of t vertices we got either a red or a blue clique is 91=(5). Therefore, by the linearity of
expectation, the expected number of monochromatic cliques is

X = CZ) 91-(2),

There exists a graph G which has at most X monochromatic cliques.

If we have X < 1, then, since the number of monochromatic cliques is integer, it must be
equal to 0 in G.

We wish to choose n = n(t), so that 91-(2) (?) < 1. Let us make some estimates:

n nt< nt
¢ < 4= 914t/2”

where the last inequality holds for ¢ > 3. Then

91-(3) <”) < Ql-t(t=1)/2=1t/2 )t _ o—t2/2)t
t

This is smaller than 1 if n < 2%/2, which implies that R(K;, K;) > 2!/2.
4. Prove that for every k > 2, there is an integer N such that whenever the numbers

{1,..., N} are colored with k colors, three are three numbers 1 < a,b,c < N satisfy-
1mg ab = ¢ that have the same color.



Solution. We assume that a,b,c¢ > 2 (otherwise, a = b = ¢ = 1 is a trivial solution).
According to Schur’s theorem, there is a K such that every coloring of [K] with & colors
contains three numbers z, y, z satisfying z +y = z. Now let N = 2¥ and take an arbitrary
k-coloring ¢ of [N]. Let d be a coloring of [K] defined by d(i) = ¢(2"). By Schur’s theorem,
there are z,y, z such that x +y = z and d(z) = d(y) = d(z). But then 2% .2V = 271V = 2?
and d(z) = ¢(2%) = ¢(2Y) = ¢(27), which is what we wanted.

. State the Gale-Shapley algorithm and prove that it outputs a stable matching.

Consider a bipartite graph G with parts A, B, where |A| = |B| = n, and in which each
vertex has a (strict) order of preferences for all the vertices of the other part. We say
that a perfect matching is stable, if there is no pair a € A,b € B, such that both of them
would prefer the other to the vertex they are currently matched to.

Below we present an algorithm of Gale and Shapley, which allows to construct such a
stable matching.

The Gale-Shapley Algorithm to find a stable matching M in a complete bipartite
graph G with bipartition V(G) = AU B, |A| = |B|
(1) Set M = (;
(2) Iterate:
(a) Take an unmatched vertex a € A and let b € B be the vertex that a prefers
among the ones a has not tried yet.

(b) a “proposes” to b: If b is unmatched or b is matched to a’, but prefers a over
a’, then “accept” a and “reject” a’: put M := M — a’b + ab. Otherwise,
“reject”: leave M unchanged;

(c) If there is no more unmatched vertices in A that have someone left on the
list, then go to (3);

(3) Return M.

Proposition 1. The matching M that the algorithm outputs is stable.

Proof. First we show that M is perfect. Indeed, if there is a pair of verticesa € A,b € B,
such that both are not in the matching, then a must have proposed to b at some point.
However, if a vertex b € B is in M at some step of the algorithm, then it stays in M.

Next, we show that the matching is stable. Assume that ab ¢ M. Upon completion of
the algorithm, it is not possible for both a and b to prefer each other over their current
match. If a prefers b to its match, then a must have proposed to b before its current
match. If b accepted its proposal, but is matched to another vertex at the end, then b
prefers the current match of b over a. If b rejected the proposal of a, then b was already
matched to a vertex that is better for b. O]

. Let G be a connected graph having an even number of edges such that all the degrees are
even. Prove that the edges of G can be colored by red and blue in such a way that every
vertex has the same number of red and blue edges touching it.

Solution. Since the graph is connected, and all the degrees are even, the graph contains
an Euler tour. Since the number of edges in the graph is even, the length of the Euler



tour, being equal to the total number of edges, is even, and so we can color the edges
along the tour in red and blue so that the colors alternate. Then if a vertex v has degree
2d, then it is visited d times by the Euler tour, and each such visit involves two edges of
different colors. Hence every vertex has the same number of red and blue edges.

. Let G be a k-connected graph for some k > 2. Show that for any k vertices in G, there is
a cycle in G that passes through all of them.

Solution. We use (without proof) the following proposition, which follows from Menger’s
theorem and was shown on the lectures:

Proposition 2. Let G be a k-connected graph. For every x € V(G) and U C V(G) with
|U| > k, there are k paths from x to U that are disjoint aside from x, with each path
having exactly one vertex from U.

We use induction on k. The case k = 2 follows directly from the case k = 2 of Menger’s
Theorem: two internally vertex disjoint paths between two vertices give a cycle.

Assume k > 2 and pick any « € K. By induction, G has a cycle C containing K\{x}. If
z € V(C), we are done, so we can assume that z & V(C).

Suppose that |V (C)| = k—1. By Proposition ?? and the fact that G is (k — 1)-connected,
there are k — 1 paths from x to C' that are disjoint aside from x, each containing exactly
one vertex of C'. We can use any two of the paths from x that end at adjacent vertices
y,z € V(C) to obtain a cycle containing = as well as K\{z}: Remove the edge yz from
C, and replace it by the path that goes from y to x and then from z to z. Since these
paths were disjoint aside from x, and also contain no other vertices from C', this indeed
gives a cycle.

. Let G be a graph on n > 3 vertices with at least a(G) vertices of degree n — 1. Show that
G contains a Hamilton cycle.

Solution. There are several solutions to the problem. A direct proof using maximal
cycles and then rotating and prolonging the cycle was given in the exercise sheets. A
simple way is as follows. On the lectures we proved that if K(G) > «a(G), then the graph
has a Hamilton cycle. We just need to verify the condition x(G) > «a(G). Clearly, the
graph contains more than «(G) vertices. Moreover, deleting at most a(G) — 1 vertices
doesn’t disconnect the graph, since every pair of vertices is connected via (at least) one
vertex of degree n — 1, which was not deleted. Therefore, K(G) > a(G).

(a) Let G and H be two graphs on the same vertex set. Prove that x(GUH) < x(G)x(H).

(b) Let k> 1 andn > 2% +1 be integers, and suppose that K, = G1U---UG), for some
graphs Gy, ..., Gy. Prove that for some i € {1,...,k}, G; is not bipartite.

Solution. Denote the common vertex set of the graphs by V.

(a) Consider the proper colorings ¢; : V. — {1,...,x(G)},c2 : V = {1,...,x(H)} of G
and H, respectively. Color v € V into the color (¢;(v),ca(v)). Then, if the two vertices
receive the same color, then they have the same color in both ¢; and ¢y, which means that
there is no edge between them neither in G nor in H. Therefore, it is a proper coloring.

(b) By induction from (a), if K,, = G1U...UGy, then x(K,) < x(G1U...UGk_1)x(Gy) <
o < x(G)X(Gy) .. x(Gy). Since x(K,) =n =28 +1 > 2% we have that for at least
one j=1...,k x(Gj) > 2.



