Graph Theory - Problem Set 9 (Solutions)

November 14, 2024

Exercises

1. Deduce the undirected version of Menger’s theorem from the directed version.

Solution. Let G be an undirected graph containing vertices s and t. The “easy” direction
of Menger’s theorem can be proved with the same argument we have seen in the lecture, so
we only need to show the “difficult” direction: if there is no s-t edge (or vertex) separator of
size less than k, then there are k edge (or internally vertex) disjoint s-¢ paths in G.

So let D be the directed graph obtained from G by replacing every (undirected) edge with two
opposite directed edges. There is a bijective correspondence between directed paths in D and
undirected paths in G. In particular, if D contained an s-t edge (or vertex) separator of size
less than k& (whose deletion destroys all directed s-t paths), then deleting the corresponding
edges (or vertices) from G would destroy all undirected s-t paths in G. I.e., they would be a
separator in G of size less than k, contradicting our assumption. So D has no such separator,
either, and we can thus apply Menger’s theorem to find the k£ disjoint directed paths in D.
The corresponding paths in G are the ones we were looking for.

2. Let G be a k-connected graph. Show using the definitions that if G’ is obtained from G by
adding a new vertex V adjacent to at least k vertices of G, then G’ is k-connected.

Solution. Let S be such that G’ — S is disconnected. Let us show that |S| > k. Assume the
contrary that |S| < k— 1. If V € S, then G — (5 \ V) is disconnected as well. Since G is
k-connected then |S| > |S\ V| > k. This is a contradiction. If V' ¢ S then G — S is connected
(by k-connectivity of GG) and, since the degree of V' is at least k, then V is adjacent for at
least one vertex of G — X. Hence, G’ — S is connected. This is a contradiction.

3. Prove that a graph G on at least k+ 1 vertices is k-connected if and only if G — X is connected
for every vertex set X of size k — 1.

Solution. =: By the definition of k-connectivity, if G is k-connected then G — X is connected
for every set X of size k — 1.

<: Assume the contrary that G = (V, E) is not k-connected. Then there is a set of vertices
Y such that |Y| < k — 1 and the graph G —Y is disconnected. Hence, there are two vertices
x and y, which lie in different connected components. We obtain set Y/ from Y by adding
k—1—1Y| vertices to Y from V \ {z,y}. Then G — Y’ D {z,y} is a disconnected graph and
|Y'| = k — 1. This is a contradiction.

Problems

4. Prove the following variants of Menger’s theorem. Let G be a graph and let S, T be disjoint
vertex sets. An S-T path is a path with one endpoint in S and the other in T'. Then:



(a) The maximum number of edge-disjoint S-7" paths equals the min size of an S-T edge
separator.

(b) If |S],|T| > k and there is no S-T separator of size k — 1, then G contains k vertex
disjoint S-T' paths.
(An S-T separator X C V(@) is a set such that G — X has no path between S\ X and
T\X.)

Solution.

(a) We construct the graph G’ out of G by merging all the vertices in S to a single vertices
s and all the ones in T to a single vertex t in such a way that for each vertex u € S, we
draw an edge between s and all the neighbors of v in G, allowing multiple edge, and we
do the same thing for each w € T and t. The rest of proof follows by applying Menger’s
theorem for s — t paths in G’. But note that G’ might be a multigraph, if for example
two vertices in S share a common neighbor. This version of Menger’s theorem still holds
for the multigraphs, since one can merge a collection of multiple edges into one edge and
then let the capacity of this edge to be the number of multiple edges it represents, and
then apply Ford-Fulkerson theorem in the same way as seen in the lecture notes.

(b) The idea is again to construct a graph G’ out of G and then apply Menger’s theorem to
G'. To construct G’, we add two extra vertices s,t to G, and connect s to all the vertices
in S, and connect ¢ to all the ones in T'.

5. Find a graph G with x(G) = 10 and £'(G) > 50.

Solution. Construct the graph G = (V, E) as the union of two complete graphs, each on 51
vertices, such that they have 10 vertices Vig = {v1,...,v10} in common. It is easy to see that
k(G) = 10. Indeed, the graph G — Vi is disconnected, and for every set X C V of size at
most 9, the vertices of Vi \ X are connected to all vertices of G — X, this means G — X is
connected.

On the other hand, in order to make G disconnected by removing edges, we need to make at
least one of the K351 subgraphs disconnected. Clearly, K5; is a 50-edge-connected graph (for
example, by the Global version of Menger’s theorem).

6. Let G be a connected graph with all degrees even. Show that G is 2-edge-connected.

Solution. As G is connected with all degrees even, it has an Euler tour. Deleting any edge
from an Euler tour results in an Euler trail. So G — e has an Euler trail and all its vertices
have positive degree, so it is connected. As this is true for any edge e, G is a 2-edge-connected
graph.

7. Show that if G is a graph with |[V(G)] =n > k+ 1 and 6(G) > (n + k — 2)/2 then G is
k-connected.

Solution. We prove that any two non-adjacent vertices u,v € V(G) have at least k common
neighbor vertices. Then one can easily see that after removing any k& — 1 vertices from G, if
u and v are adjacent, we are done, otherwise they still have at least one common neighbor,
so the graph remains connected. Denote the set of neighbor vertices of u,v by N(u), N(v),
respectively. Since we have |N(u) U N(v)| < n — 2, we get

n—2 > |N(u)|+|N (v)|~ N (0)N (v)| > 2-%]%2—|N(U)HN(U)| = ntk—2—|N(u)NN(v)|.

Therefore, we have k < |N(u) N N(v)|.



8. Prove that G is 2-connected if and only if for any three vertices z,y, z there is a path in G
from z to z containing y.

Solution. =: And again, the idea is to construct a graph G’ out of G and then apply
Menger’s theorem to G’. To construct G’, we add an extra vertex s to GG, and connect s
to the vertices # and z. By exercise 1, G’ is 2-connected. By Menger’s theorem, there are
two internally vertex-disjoint s-y paths in G’. By construction, one of them contains z and
another contains z. Therefore, there is a path in G from z to z containing y.

<: Let = be any vertex of G. Let y, z be any two vertices of G — z. By assumption, there
is a path ...y...z in G. Then there is a path y...z in G — z, and these two vertices are
connected in G — z. Hence, G — x is connected.



