
Graph Theory - Problem Set 9 (Solutions)
November 14, 2024

Exercises

1. Deduce the undirected version of Menger’s theorem from the directed version.

Solution. Let G be an undirected graph containing vertices s and t. The “easy” direction
of Menger’s theorem can be proved with the same argument we have seen in the lecture, so
we only need to show the “difficult” direction: if there is no s-t edge (or vertex) separator of
size less than k, then there are k edge (or internally vertex) disjoint s-t paths in G.

So let D be the directed graph obtained from G by replacing every (undirected) edge with two
opposite directed edges. There is a bijective correspondence between directed paths in D and
undirected paths in G. In particular, if D contained an s-t edge (or vertex) separator of size
less than k (whose deletion destroys all directed s-t paths), then deleting the corresponding
edges (or vertices) from G would destroy all undirected s-t paths in G. I.e., they would be a
separator in G of size less than k, contradicting our assumption. So D has no such separator,
either, and we can thus apply Menger’s theorem to find the k disjoint directed paths in D.
The corresponding paths in G are the ones we were looking for.

2. Let G be a k-connected graph. Show using the definitions that if G′ is obtained from G by
adding a new vertex V adjacent to at least k vertices of G, then G′ is k-connected.

Solution. Let S be such that G′ − S is disconnected. Let us show that |S| ⩾ k. Assume the
contrary that |S| ⩽ k − 1. If V ∈ S, then G − (S \ V ) is disconnected as well. Since G is
k-connected then |S| > |S \V | ⩾ k. This is a contradiction. If V /∈ S then G−S is connected
(by k-connectivity of G) and, since the degree of V is at least k, then V is adjacent for at
least one vertex of G−X. Hence, G′ − S is connected. This is a contradiction.

3. Prove that a graph G on at least k+1 vertices is k-connected if and only if G−X is connected
for every vertex set X of size k − 1.

Solution. ⇒: By the definition of k-connectivity, if G is k-connected then G−X is connected
for every set X of size k − 1.

⇐: Assume the contrary that G = (V,E) is not k-connected. Then there is a set of vertices
Y such that |Y | ⩽ k − 1 and the graph G− Y is disconnected. Hence, there are two vertices
x and y, which lie in different connected components. We obtain set Y ′ from Y by adding
k − 1− |Y | vertices to Y from V \ {x, y}. Then G− Y ′ ⊃ {x, y} is a disconnected graph and
|Y ′| = k − 1. This is a contradiction.

Problems

4. Prove the following variants of Menger’s theorem. Let G be a graph and let S, T be disjoint
vertex sets. An S-T path is a path with one endpoint in S and the other in T . Then:



(a) The maximum number of edge-disjoint S-T paths equals the min size of an S-T edge
separator.

(b) If |S|, |T | ≥ k and there is no S-T separator of size k − 1, then G contains k vertex
disjoint S-T paths.

(An S-T separator X ⊆ V (G) is a set such that G−X has no path between S \X and
T \X.)

Solution.

(a) We construct the graph G′ out of G by merging all the vertices in S to a single vertices
s and all the ones in T to a single vertex t in such a way that for each vertex u ∈ S, we
draw an edge between s and all the neighbors of u in G, allowing multiple edge, and we
do the same thing for each u ∈ T and t. The rest of proof follows by applying Menger’s
theorem for s − t paths in G′. But note that G′ might be a multigraph, if for example
two vertices in S share a common neighbor. This version of Menger’s theorem still holds
for the multigraphs, since one can merge a collection of multiple edges into one edge and
then let the capacity of this edge to be the number of multiple edges it represents, and
then apply Ford-Fulkerson theorem in the same way as seen in the lecture notes.

(b) The idea is again to construct a graph G′ out of G and then apply Menger’s theorem to
G′. To construct G′, we add two extra vertices s, t to G, and connect s to all the vertices
in S, and connect t to all the ones in T .

5. Find a graph G with κ(G) = 10 and κ′(G) ≥ 50.

Solution. Construct the graph G = (V,E) as the union of two complete graphs, each on 51
vertices, such that they have 10 vertices V10 = {v1, . . . , v10} in common. It is easy to see that
κ(G) = 10. Indeed, the graph G − V10 is disconnected, and for every set X ⊂ V of size at
most 9, the vertices of V10 \X are connected to all vertices of G −X, this means G −X is
connected.

On the other hand, in order to make G disconnected by removing edges, we need to make at
least one of the K51 subgraphs disconnected. Clearly, K51 is a 50-edge-connected graph (for
example, by the Global version of Menger’s theorem).

6. Let G be a connected graph with all degrees even. Show that G is 2-edge-connected.

Solution. As G is connected with all degrees even, it has an Euler tour. Deleting any edge
from an Euler tour results in an Euler trail. So G − e has an Euler trail and all its vertices
have positive degree, so it is connected. As this is true for any edge e, G is a 2-edge-connected
graph.

7. Show that if G is a graph with |V (G)| = n ≥ k + 1 and δ(G) ≥ (n + k − 2)/2 then G is
k-connected.

Solution. We prove that any two non-adjacent vertices u, v ∈ V (G) have at least k common
neighbor vertices. Then one can easily see that after removing any k − 1 vertices from G, if
u and v are adjacent, we are done, otherwise they still have at least one common neighbor,
so the graph remains connected. Denote the set of neighbor vertices of u, v by N(u), N(v),
respectively. Since we have |N(u) ∪N(v)| ≤ n− 2, we get

n−2 ≥ |N(u)|+|N(v)|−|N(u)∩N(v)| ≥ 2·n+ k − 2

2
−|N(u)∩N(v)| = n+k−2−|N(u)∩N(v)|.

Therefore, we have k ≤ |N(u) ∩N(v)|.
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8. Prove that G is 2-connected if and only if for any three vertices x, y, z there is a path in G
from x to z containing y.

Solution. ⇒: And again, the idea is to construct a graph G′ out of G and then apply
Menger’s theorem to G′. To construct G′, we add an extra vertex s to G, and connect s
to the vertices x and z. By exercise 1, G′ is 2-connected. By Menger’s theorem, there are
two internally vertex-disjoint s-y paths in G′. By construction, one of them contains x and
another contains z. Therefore, there is a path in G from x to z containing y.

⇐: Let x be any vertex of G. Let y, z be any two vertices of G − x. By assumption, there
is a path x . . . y . . . z in G. Then there is a path y . . . z in G − x, and these two vertices are
connected in G− x. Hence, G− x is connected.
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