
Graph Theory - Problem Set 8 (Solutions)
November 7, 2024

Exercises

1. Find a minimum vertex cover in the following graph.

Solution. Since this graph has a perfect matching, the vertices from the top part form a
minimum vertex cover.

2. Find a maximum flow from s to t and a minimum s-t cut in the following network.
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Solution. The only maximum flow here (with value 4) is the following:
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An example of a minimum cut (of capacity 4) is shown in red vs black.

3. Construct a network on four vertices for which the Ford-Fulkerson algorithm may need more
than a million iterations, depending on the choice of augmenting paths.

Solution. Consider the following network:
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Clearly, the maximum value of a flow is 2 million, but the Ford-Fulkerson algorithm might
always choose a path that uses the edge uv by alternately choosing suvt and svut. This way
the value of the flow increases by 1 in every step, so it takes 2 million improvements to reach
a maximum flow.



4. Let G be a network with source s, sink t, and integer capacities. Prove or disprove the
following statements:

(a) If all capacities are even then there is a maximal flow f such that f(e) is even for all
edges e.

(b) If all capacities are odd then there is a maximal flow f such that f(e) is odd for all edges
e.

Solution.

(a) Dividing all capacities by two, we obtain a network with integral capacities. Therefore,
it has an integral maximum flow. Multiplying this flow by 2, we get an even maximum
flow on the original network.

(b) Counterexample:
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Problems

5. Let G be a graph on n vertices

(a) Show that τ(G) + α(G) = n.

(b) Show that if G is bipartite then ν(G) + α(G) = n.

Solution.

(a) First note that X ⊆ V (G) is a vertex cover if and only if V (G) \X is an independent
vertex set. To prove the case ⇒, suppose by the contradiction that there exist vertices
u, v ∈ V (G) \X such that uv ∈ E(G). Then the edge uv is not covered by any of the
vertices in X, which is in contradiction with the assumption that X is a vertex cover.
One can prove the ⇐ case by a similar reasoning.

Now take the vertex cover X with |X| = τ(G). We know V (G) \X is an independent
vertex set, so we have

n = |X|+ |V (G) \X| = τ(G) + |V (G) \X| ≤ τ(G) + α(G).

On the other hand, consider the independent vertex set Y with |Y | = α(G). By the
remark, V (G) \ Y forms a vertex cover.

n = |Y |+ |V (G) \ Y | = α(G) + |V (G) \ Y | ≥ α(G) + τ(G).

Therefore, we have τ(G) + α(G) = n.

2



(b) It follows from part (a) and the Kőnig’s Theorem (ν(G) = τ(G)).

6. Let G be a network with source s, sink t, and integer capacities. Prove that an edge e
is saturated (i.e., the flow uses its full capacity) in every maximum s-t flow if and only if
decreasing the capacity of e by 1 would decrease the maximum value of an s-t flow in G.

Solution. Let k be the value of the maximum flow, i.e., the capacity of a minimum cut in
G. We argue by contradiction for both directions.

⇒: Suppose decreasing the capacity does not decrease the size of the max flow. Then there
is a flow in this new network G′ of value k that does not use the full capacity of e in G. This
corresponds to a flow of size k in G with the same property, contradicting our assumption.

⇐: Suppose e is not saturated in every maximum s-t flow. If we could assume that this flow
is an integer flow, then we would be done: This flow would have value k in G′, contradicting
the assumption. But we don’t quite know that we can assume this, so let’s do something else
instead:

Indeed, if e is not saturated in some maximum flow, then e does not occur in any min cut
(otherwise the size of this flow would be less than the capacity of a min cut). Now we do
know that every cut has an integer capacity, so if e is not in a k-cut, then every cut containing
e has capacity at least k + 1. Hence decreasing the capacity of e by 1 will not create any cut
of size k, therefore the size of the maximum flow does not decrease. Contradiction.

7. Deduce Hall’s theorem from the max-flow min-cut theorem.

Hint: Consider a network derived from the bipartite graph similar to the proof of König
theorem.

Solution. Consider the bipartite graph G = (A ∪ B,E) that satisfies Hall’s conditions. Let
us make a network out of G. Add a source s, connect it to all vertices of A by oriented edges
of capacity 1. Analogously, add a sink t and connect all vertices of B to it by edges of capacity
1. Let the edges of G be oriented from A to B and their capacities to be infinite. We stress
that all the edges are now oriented in the direction from s to t (see the figure below).

If there is a integer flow of value |A| in G, then the edges (x, y) satisfying x ∈ A, y ∈ B,
and f(x, y) = 1 constitute a matching of A in G, and we are done. Otherwise, there is a cut
(X,Y ) of capacity k < |A|. We know that

|A ∩ Y |+ |B ∩X| = k < |A| = |A ∩X|+ |A ∩ Y |,

from which we conclude that |B∩X| < |A∩X|. Let W = A∩X. The set N(W ) is contained
in B ∩X, as otherwise there would be an infinite-capacity edge crossing from X to Y . Thus,
|N(W )| = |B ∩X| < |W |, and we verified that when a perfect matching does not exist, there
is a set W violating Hall’s criterion.
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8. Let A be an n × m matrix of non-negative real numbers such that the sum of the entries
is an integer in every row and in every column. Prove that there is an n × m matrix B of
non-negative integers with the same sums as in A, in every row and every column.

Solution. Let a1, . . . , an and b1, . . . , bm be the sums of the entries in the rows and columns
of A, respectively. Consider the complete bipartite graph G = (P ∪ Q,E), where P =
{p1, . . . , pn} and Q = {q1, . . . , qm}. Let us make a directed network out of G. Orient all edges
from P to Q, and set their capacity to infinity. Add a source s, connect it to all vertices of P
by oriented edges of capacity ai for the vertex pi. Analogously, add a sink t and connect all
vertices of Q to it by oriented edges of capacity bj for the vertex qj .

Clearly, the minimum capacity of a cut is a1 + · · ·+ an = b1 + · · ·+ bm. Since all capacities
are integral, the Ford-Furkerson theorem shows that there is an integer flow with maximum
value. We can then define the entry Bij of the matrix B to be the value of this flow on the
edge piqj .
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