Graph Theory - Problem Set 8 (Solutions)

November 7, 2024

Exercises

1. Find a minimum vertex cover in the following graph.

Solution. Since this graph has a perfect matching, the vertices from the top part form a
minimum vertex cover.

2. Find a maximum flow from s to ¢t and a minimum s-t cut in the following network.
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Solution. The only maximum flow here (with value 4) is the following:
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An example of a minimum cut (of capacity 4) is shown in red vs black.

3. Construct a network on four vertices for which the Ford-Fulkerson algorithm may need more
than a million iterations, depending on the choice of augmenting paths.

Solution. Consider the following network:

Clearly, the maximum value of a flow is 2 million, but the Ford-Fulkerson algorithm might
always choose a path that uses the edge uv by alternately choosing suvt and svut. This way
the value of the flow increases by 1 in every step, so it takes 2 million improvements to reach
a maximum flow.



4. Let G be a network with source s, sink ¢, and integer capacities. Prove or disprove the
following statements:

(a) If all capacities are even then there is a maximal flow f such that f(e) is even for all
edges e.

(b) If all capacities are odd then there is a maximal flow f such that f(e) is odd for all edges
e.

Solution.

(a) Dividing all capacities by two, we obtain a network with integral capacities. Therefore,
it has an integral maximum flow. Multiplying this flow by 2, we get an even maximum
flow on the original network.

(b) Counterexample:

Problems

5. Let G be a graph on n vertices

(a) Show that 7(G) + a(G) = n.
(b) Show that if G is bipartite then v(G) 4+ a(G) = n.

Solution.

(a) First note that X C V(G) is a vertex cover if and only if V(G) \ X is an independent
vertex set. To prove the case =, suppose by the contradiction that there exist vertices
u,v € V(G) \ X such that uv € E(G). Then the edge uv is not covered by any of the
vertices in X, which is in contradiction with the assumption that X is a vertex cover.
One can prove the <= case by a similar reasoning.

Now take the vertex cover X with | X| = 7(G). We know V(G) \ X is an independent
vertex set, so we have

n=|X|+|V(G)\ X| = 7(G) + [V(G)\ X| < 7(G) + a(G).

On the other hand, consider the independent vertex set Y with |Y| = a(G). By the
remark, V(G) \ 'Y forms a vertex cover.

n=[Y[+[V(G)\Y|=a(G) +[V(G)\ Y] = a(G) + 7(G).

Therefore, we have 7(G) + a(G) = n.



(b) It follows from part (a) and the Kénig’s Theorem (v(G) = 7(G)).

6. Let G be a network with source s, sink ¢, and integer capacities. Prove that an edge e
is saturated (i.e., the flow uses its full capacity) in every maximum s-t flow if and only if
decreasing the capacity of e by 1 would decrease the maximum value of an s-t flow in G.

Solution. Let k be the value of the maximum flow, i.e., the capacity of a minimum cut in
G. We argue by contradiction for both directions.

=: Suppose decreasing the capacity does not decrease the size of the max flow. Then there
is a flow in this new network G’ of value k that does not use the full capacity of e in G. This
corresponds to a flow of size k in G with the same property, contradicting our assumption.

<: Suppose e is not saturated in every maximum s-t flow. If we could assume that this flow
is an integer flow, then we would be done: This flow would have value k in G’, contradicting
the assumption. But we don’t quite know that we can assume this, so let’s do something else
instead:

Indeed, if e is not saturated in some maximum flow, then e does not occur in any min cut
(otherwise the size of this flow would be less than the capacity of a min cut). Now we do
know that every cut has an integer capacity, so if e is not in a k-cut, then every cut containing
e has capacity at least k + 1. Hence decreasing the capacity of e by 1 will not create any cut
of size k, therefore the size of the maximum flow does not decrease. Contradiction.

7. Deduce Hall’s theorem from the max-flow min-cut theorem.

Hint: Consider a network derived from the bipartite graph similar to the proof of Konig
theorem.

Solution. Consider the bipartite graph G = (A U B, E) that satisfies Hall’s conditions. Let
us make a network out of G. Add a source s, connect it to all vertices of A by oriented edges
of capacity 1. Analogously, add a sink ¢ and connect all vertices of B to it by edges of capacity
1. Let the edges of G be oriented from A to B and their capacities to be infinite. We stress
that all the edges are now oriented in the direction from s to ¢ (see the figure below).

If there is a integer flow of value |A| in G, then the edges (z,y) satisfying = € A,y € B,
and f(z,y) = 1 constitute a matching of A in G, and we are done. Otherwise, there is a cut
(X,Y) of capacity k < |A|. We know that

[ANY |+ | BNnX|=k<|A=]ANX|+|ANY]|,

from which we conclude that [BNX| < |[ANX]|. Let W = AN X. The set N(W) is contained
in BN X, as otherwise there would be an infinite-capacity edge crossing from X to Y. Thus,
IN(W)| = |BNX| < |W]|, and we verified that when a perfect matching does not exist, there
is a set W violating Hall’s criterion.
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8. Let A be an n X m matrix of non-negative real numbers such that the sum of the entries
is an integer in every row and in every column. Prove that there is an n x m matrix B of
non-negative integers with the same sums as in A, in every row and every column.

Solution. Let aq,...,a, and by, ..., b, be the sums of the entries in the rows and columns
of A, respectively. Consider the complete bipartite graph G = (P U Q, E), where P =
{p1,...,pn}and Q@ = {q1,...,qmn}. Let us make a directed network out of G. Orient all edges
from P to @), and set their capacity to infinity. Add a source s, connect it to all vertices of P
by oriented edges of capacity a; for the vertex p;. Analogously, add a sink ¢ and connect all
vertices of ) to it by oriented edges of capacity b; for the vertex g;.

Clearly, the minimum capacity of a cut is a; +--- + a, = b1 + - - - + b;,. Since all capacities
are integral, the Ford-Furkerson theorem shows that there is an integer flow with maximum
value. We can then define the entry B;; of the matrix B to be the value of this flow on the

edge piq;.



