
Graph Theory - Problem Set 7 (Solutions)
October 31, 2024

Exercises

1. Construct preference lists for the vertices of K3,3 so that there are multiple stable matchings.

Solution. For example, for parts {1, 2, 3} and {x, y, z}, take1 : z y x
2 : y x z
3 : x z y

 x : 2 1 3
y : 3 1 2
z : 1 2 3


Here {(1, z), (2, y), (3, x)} is a stable matching (optimal for the numbers), and another one is
{(1, z), (2, x), (3, y)} (optimal for the letters).

2. Find a maximum matching in the following graph.

Solution. It has a perfect matching, for example:

3. Construct a 2-regular graph without a perfect matching.

Solution. Take an odd cycle.

4. Let G be a bipartite graph on 2n vertices such that α(G) = n.

(a) Show that both parts of G contain n vertices.

(b) Check that Hall’s condition holds for G and then deduce that G has a perfect matching.

Solution. Let V (G) = A ∪B be the bipartition of G.

(a) We have |A|, |B| ≤ α(G), which implies that 2n = |A| + |B| ≤ 2α(G) = 2n. Therefore,
we get |A| = |B| = α(G) = n.



(b) For S ⊆ A, if |N(S)| < |S|, then S ∪ (B \N(S)) is an independent set of size

|S ∪ (B \N(S)) | = |S|+ |B| −N(S) > |B| = n,

a contradiction to the assumption α(G) = n. By Hall’s theorem, there is a matching
covering A. Since |A| = |B|, this is indeed a perfect matching.

Problems

5. Prove the following “defect” version of Hall’s theorem:

If G = (A∪B,E) is a bipartite graph such that |N(S)| ≥ |S| − d holds for every S ⊆ A, then
G has a matching with at least |A| − d edges.

Solution. Add d new vertices to B, where each is connected to all vertices in A. Denote
the new graph as G′. Then G′ has |NG′(S)| ≥ |S| for every S ⊂ A, since S has at least
|S| − d neighbors from G and d neighbors being the new vertices. By Hall’s theorem, G′ has
a matching covering A, which has |A| edges. At most d edges of this matching contain a new
vertex of G′, which leaves at least |A| − d edges from G.

6. An r× s Latin rectangle is an r× s matrix A with entries in {1, . . . , s} such that each integer
occurs at most once in each row and at most once in each column. An s× s Latin rectangle
is called a Latin square. Prove that every r × s Latin rectangle can be extended to an s× s
Latin square.

Hint: Consider a bipartite graph that models the constraints of any i ∈ {1, . . . , s} appearing
only once in each row and column.

Solution. Define a bipartite graph whose vertex set consists of two copies of {1, . . . , s}, call
them S1 and S2. We connect i ∈ S1 with j ∈ S2 if the i-th column of the r×s Latin rectangle
does not contain the number j. What we are looking for is a matching that matches S1, since
then we can put numbers on row r + 1 such that no number is repeated in that row, and no
number is repeated in a column.

A column i ∈ S1 contains r distinct numbers, so there are s − r numbers that it does not
contain. That means that the vertex i ∈ S1 has degree s− r. On the other hand, a number
j ∈ S2 occurs exactly once in each of the r rows, and at most once in any of the s columns.
Hence there are s−r columns that do not contain j, so the degree of j ∈ S2 is s−r. Therefore
the graph is (s− r)-regular, so there is a perfect matching.

7. Let G be a bipartite graph with both parts of the same size 2n and minimum degree at least
n. Prove that G has a perfect matching.

Solution. Denote the two parts of G as A and B. To show that G has a perfect matching,
by Hall’s theorem it suffices to check Hall’s condition for A. Take any S ⊆ A.

• If S is empty, then |N(S)| = |S| = 0, so the condition holds.

• If 1 ≤ |S| ≤ n, then |N(S)| ≥ n ≥ |S| since any vertex in X has at least n neighbors in
B.

• If |S| > n, then N(S) = B since every vertex v in B has at least n neighbors in A, so it
must have a neighbor in S (otherwise the disjoint union S ∪ N(v) would contain more
than 2n vertices in A). Therefore |N(S)| = |B| = 2n ≥ |S|.
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8. Prove König’s line coloring theorem: For every bipartite graph G, we have χ′(G) = ∆(G).

Hint: One proof is very similar (while simpler) to the proof of Vizing’s theorem.

Solution. We prove it by induction on |E(G)|. The theorem is obviously true for |E(G)| = 1.
Now let us consider a bipartite graph G with |E(G)| > 1 and assume that the theorem is
true for all bipartite graphs with |E(G)| − 1 edges. We use the following notations: for a
given edge-coloring (i) v ∈ V (G) is c-free if there is no edge incident at v colored with c,
(ii) a (c1, . . . , ck)-walk (resp. path, cycle) is a walk which contains only edges colored with
c1, . . . , ck.

Let xy ∈ E(G). Consider the graph G−xy: it is bipartite with |E(G)|−1 edges and maximum
degree at most ∆(G). By the induction assumption it has a proper ∆(G)-edge-coloring, we
call it C. x and y have degree at most ∆(G) − 1 in G − xy, thus there exists colors cx, cy
such that x is cx-free and y is cy-free in C. If cx = cy then coloring xy with cx extends C to
a proper ∆(G)-edge-coloring of G and we are done.

Otherwise cx ̸= cy. Consider W a maximal (cx, cy)-walk in G − xy starting from x. Then
no vertex can appear in W multiple times, otherwise there is more than one incident edge
colored with cx at the same vertex and C is not a proper edge-coloring. Hence W is indeed a
path. Furthermore y ̸∈ W. If y is on W, it is at the end of it, because y has no incident edge
colored cy. Then W + xy is an odd-length cycle, which is impossible in a bipartite graph.

Then we can define a new edge-coloring C ′ that is identical to C for edges outside W and
with swapped colors cx, cy on W. Since W is a maximal (cx, cy)-path starting in x, C ′ is still
a proper ∆(G)-edge-coloring of G− xy. In C ′, x is now cy-free while y is still cy-free because
y ̸∈ W. Therefore coloring xy with cy extends C ′ to a proper ∆(G)-edge-coloring of G.

9. Prove that every bipartite graph G has a matching of size at least |E(G)|/∆(G).

Solution. Consider an optimal edge coloring of G, which uses ∆(G) colors by König’s line
coloring theorem (proved above). Therefore, there are at least |E(G)|/∆(G) edges colored by
the same color, which form a matching.
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