Graph Theory - Problem Set 7 (Solutions)

October 31, 2024

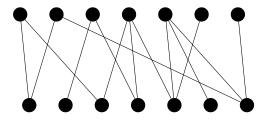
Exercises

1. Construct preference lists for the vertices of $K_{3,3}$ so that there are multiple stable matchings. **Solution.** For example, for parts $\{1, 2, 3\}$ and $\{x, y, z\}$, take

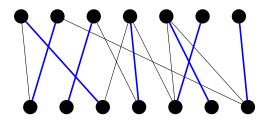
$$\begin{pmatrix} 1: & z & y & x \\ 2: & y & x & z \\ 3: & x & z & y \end{pmatrix} \qquad \begin{pmatrix} x: & 2 & 1 & 3 \\ y: & 3 & 1 & 2 \\ z: & 1 & 2 & 3 \end{pmatrix}$$

Here $\{(1, z), (2, y), (3, x)\}$ is a stable matching (optimal for the numbers), and another one is $\{(1, z), (2, x), (3, y)\}$ (optimal for the letters).

2. Find a maximum matching in the following graph.



Solution. It has a perfect matching, for example:



3. Construct a 2-regular graph without a perfect matching.

Solution. Take an odd cycle.

- 4. Let G be a bipartite graph on 2n vertices such that $\alpha(G) = n$.
 - (a) Show that both parts of G contain n vertices.
 - (b) Check that Hall's condition holds for G and then deduce that G has a perfect matching.

Solution. Let $V(G) = A \cup B$ be the bipartition of G.

(a) We have $|A|, |B| \le \alpha(G)$, which implies that $2n = |A| + |B| \le 2\alpha(G) = 2n$. Therefore, we get $|A| = |B| = \alpha(G) = n$.

(b) For $S \subseteq A$, if |N(S)| < |S|, then $S \cup (B \setminus N(S))$ is an independent set of size

$$|S \cup (B \setminus N(S))| = |S| + |B| - N(S) > |B| = n,$$

a contradiction to the assumption $\alpha(G) = n$. By Hall's theorem, there is a matching covering A. Since |A| = |B|, this is indeed a perfect matching.

Problems

5. Prove the following "defect" version of Hall's theorem:

If $G = (A \cup B, E)$ is a bipartite graph such that $|N(S)| \ge |S| - d$ holds for every $S \subseteq A$, then G has a matching with at least |A| - d edges.

Solution. Add d new vertices to B, where each is connected to all vertices in A. Denote the new graph as G'. Then G' has $|N_{G'}(S)| \geq |S|$ for every $S \subset A$, since S has at least |S| - d neighbors from G and d neighbors being the new vertices. By Hall's theorem, G' has a matching covering A, which has |A| edges. At most d edges of this matching contain a new vertex of G', which leaves at least |A| - d edges from G.

6. An $r \times s$ Latin rectangle is an $r \times s$ matrix A with entries in $\{1, \ldots, s\}$ such that each integer occurs at most once in each row and at most once in each column. An $s \times s$ Latin rectangle is called a Latin square. Prove that every $r \times s$ Latin rectangle can be extended to an $s \times s$ Latin square.

Hint: Consider a bipartite graph that models the constraints of any $i \in \{1, ..., s\}$ appearing only once in each row and column.

Solution. Define a bipartite graph whose vertex set consists of two copies of $\{1, \ldots, s\}$, call them S_1 and S_2 . We connect $i \in S_1$ with $j \in S_2$ if the *i*-th column of the $r \times s$ Latin rectangle does not contain the number j. What we are looking for is a matching that matches S_1 , since then we can put numbers on row r + 1 such that no number is repeated in that row, and no number is repeated in a column.

A column $i \in S_1$ contains r distinct numbers, so there are s-r numbers that it does not contain. That means that the vertex $i \in S_1$ has degree s-r. On the other hand, a number $j \in S_2$ occurs exactly once in each of the r rows, and at most once in any of the s columns. Hence there are s-r columns that do not contain j, so the degree of $j \in S_2$ is s-r. Therefore the graph is (s-r)-regular, so there is a perfect matching.

7. Let G be a bipartite graph with both parts of the same size 2n and minimum degree at least n. Prove that G has a perfect matching.

Solution. Denote the two parts of G as A and B. To show that G has a perfect matching, by Hall's theorem it suffices to check Hall's condition for A. Take any $S \subseteq A$.

- If S is empty, then |N(S)| = |S| = 0, so the condition holds.
- If $1 \le |S| \le n$, then $|N(S)| \ge n \ge |S|$ since any vertex in X has at least n neighbors in B.
- If |S| > n, then N(S) = B since every vertex v in B has at least n neighbors in A, so it must have a neighbor in S (otherwise the disjoint union $S \cup N(v)$ would contain more than 2n vertices in A). Therefore $|N(S)| = |B| = 2n \ge |S|$.

8. Prove König's line coloring theorem: For every bipartite graph G, we have $\chi'(G) = \Delta(G)$.

Hint: One proof is very similar (while simpler) to the proof of Vizing's theorem.

Solution. We prove it by induction on |E(G)|. The theorem is obviously true for |E(G)| = 1. Now let us consider a bipartite graph G with |E(G)| > 1 and assume that the theorem is true for all bipartite graphs with |E(G)| - 1 edges. We use the following notations: for a given edge-coloring (i) $v \in V(G)$ is c-free if there is no edge incident at v colored with c, (ii) a (c_1, \ldots, c_k) -walk (resp. path, cycle) is a walk which contains only edges colored with c_1, \ldots, c_k .

Let $xy \in E(G)$. Consider the graph G-xy: it is bipartite with |E(G)|-1 edges and maximum degree at most $\Delta(G)$. By the induction assumption it has a proper $\Delta(G)$ -edge-coloring, we call it C. x and y have degree at most $\Delta(G)-1$ in G-xy, thus there exists colors c_x, c_y such that x is c_x -free and y is c_y -free in C. If $c_x = c_y$ then coloring xy with c_x extends C to a proper $\Delta(G)$ -edge-coloring of G and we are done.

Otherwise $c_x \neq c_y$. Consider W a maximal (c_x, c_y) -walk in G - xy starting from x. Then no vertex can appear in W multiple times, otherwise there is more than one incident edge colored with c_x at the same vertex and C is not a proper edge-coloring. Hence W is indeed a path. Furthermore $y \notin W$. If y is on W, it is at the end of it, because y has no incident edge colored c_y . Then W + xy is an odd-length cycle, which is impossible in a bipartite graph.

Then we can define a new edge-coloring C' that is identical to C for edges outside \mathcal{W} and with swapped colors c_x, c_y on \mathcal{W} . Since \mathcal{W} is a maximal (c_x, c_y) -path starting in x, C' is still a proper $\Delta(G)$ -edge-coloring of G - xy. In C', x is now c_y -free while y is still c_y -free because $y \notin \mathcal{W}$. Therefore coloring xy with c_y extends C' to a proper $\Delta(G)$ -edge-coloring of G.

9. Prove that every bipartite graph G has a matching of size at least $|E(G)|/\Delta(G)$.

Solution. Consider an optimal edge coloring of G, which uses $\Delta(G)$ colors by König's line coloring theorem (proved above). Therefore, there are at least $|E(G)|/\Delta(G)$ edges colored by the same color, which form a matching.