Graph Theory - Problem Set 7 (Solutions)

October 31, 2024

Exercises

1. Construct preference lists for the vertices of K33 so that there are multiple stable matchings.

Solution. For example, for parts {1,2,3} and {z,y, z}, take

1: z y = z: 2 1 3
2: y z =z y: 3 1 2
3: ¢z 2z y z: 1 2 3

Here {(1, 2), (2,v), (3,2)} is a stable matching (optimal for the numbers), and another one is
{(1,2),(2,2),(3,y)} (optimal for the letters).

2. Find a maximum matching in the following graph.

Solution. It has a perfect matching, for example:

3. Construct a 2-regular graph without a perfect matching.

Solution. Take an odd cycle.
4. Let G be a bipartite graph on 2n vertices such that a(G) = n.

(a) Show that both parts of G contain n vertices.

(b) Check that Hall’s condition holds for G' and then deduce that G has a perfect matching.
Solution. Let V(G) = AU B be the bipartition of G.

(a) We have |A|,|B| < a(G), which implies that 2n = |A| 4 |B| < 2a(G) = 2n. Therefore,
we get |A| = |B| = a(G) =n.



(b) For S C A, if IN(S)| < |S], then SU (B \ N(S)) is an independent set of size
[SU(B\N(S))| = I[S]+[B| = N(S) > [B| =mn,

a contradiction to the assumption «(G) = n. By Hall’s theorem, there is a matching
covering A. Since |A| = |B], this is indeed a perfect matching.

Problems

5. Prove the following “defect” version of Hall’s theorem:

If G = (AU B, E) is a bipartite graph such that |[N(5)| > |S| — d holds for every S C A, then
G has a matching with at least |A| — d edges.

Solution. Add d new vertices to B, where each is connected to all vertices in A. Denote
the new graph as G'. Then G’ has |[Ng/(S)| > |S] for every S C A, since S has at least
|S| — d neighbors from G and d neighbors being the new vertices. By Hall’s theorem, G’ has
a matching covering A, which has |A| edges. At most d edges of this matching contain a new
vertex of G’, which leaves at least |A| — d edges from G.

6. An r x s Latin rectangle is an r X s matrix A with entries in {1, ..., s} such that each integer
occurs at most once in each row and at most once in each column. An s x s Latin rectangle
is called a Latin square. Prove that every r x s Latin rectangle can be extended to an s X s
Latin square.

Hint: Consider a bipartite graph that models the constraints of any i € {1,...,s} appearing
only once in each row and column.

Solution. Define a bipartite graph whose vertex set consists of two copies of {1,..., s}, call
them S; and So. We connect ¢ € Sy with j € Ss if the i-th column of the r x s Latin rectangle
does not contain the number j. What we are looking for is a matching that matches S7, since
then we can put numbers on row r + 1 such that no number is repeated in that row, and no
number is repeated in a column.

A column 7 € S; contains r distinct numbers, so there are s — r numbers that it does not
contain. That means that the vertex ¢ € S; has degree s — r. On the other hand, a number
j € S5 occurs exactly once in each of the r rows, and at most once in any of the s columns.
Hence there are s —r columns that do not contain j, so the degree of j € Ss is s —r. Therefore
the graph is (s — r)-regular, so there is a perfect matching.

7. Let G be a bipartite graph with both parts of the same size 2n and minimum degree at least
n. Prove that G has a perfect matching.
Solution. Denote the two parts of G as A and B. To show that G has a perfect matching,
by Hall’s theorem it suffices to check Hall’s condition for A. Take any S C A.
o If S is empty, then |N(S)| = |S| = 0, so the condition holds.

o If 1 <|S| <mn, then [N(S)| > n > |S| since any vertex in X has at least n neighbors in
B.

o If |S| > n, then N(S) = B since every vertex v in B has at least n neighbors in A, so it
must have a neighbor in S (otherwise the disjoint union S U N(v) would contain more
than 2n vertices in A). Therefore |[N(S)| = |B| = 2n > |S|.



8. Prove Konig’s line coloring theorem: For every bipartite graph G, we have x'(G) = A(G).
Hint: One proof is very similar (while simpler) to the proof of Vizing’s theorem.

Solution. We prove it by induction on |E(G)|. The theorem is obviously true for |E(G)| = 1.
Now let us consider a bipartite graph G with |E(G)| > 1 and assume that the theorem is
true for all bipartite graphs with |E(G)| — 1 edges. We use the following notations: for a
given edge-coloring (i) v € V(G) is c-free if there is no edge incident at v colored with ¢,
(ii) a (c1,...,ck)-walk (resp. path, cycle) is a walk which contains only edges colored with
Cly...,Ck-

Let zy € E(G). Consider the graph G—zy: it is bipartite with |E(G)|—1 edges and maximum
degree at most A(G). By the induction assumption it has a proper A(G)-edge-coloring, we
call it C. x and y have degree at most A(G) — 1 in G — xy, thus there exists colors ¢, ¢y
such that x is c,-free and y is ¢y-free in C. If ¢, = ¢, then coloring zy with ¢, extends C to
a proper A(G)-edge-coloring of G and we are done.

Otherwise ¢; # c¢y. Consider YW a maximal (¢, ¢y)-walk in G — zy starting from z. Then
no vertex can appear in W multiple times, otherwise there is more than one incident edge
colored with ¢, at the same vertex and C' is not a proper edge-coloring. Hence W is indeed a
path. Furthermore y ¢ W. If y is on W, it is at the end of it, because y has no incident edge
colored c,. Then W + zy is an odd-length cycle, which is impossible in a bipartite graph.

Then we can define a new edge-coloring C’ that is identical to C for edges outside W and
with swapped colors ¢z, ¢, on W. Since W is a maximal (¢, ¢, )-path starting in =, C” is still
a proper A(G)-edge-coloring of G — zy. In C’, x is now ¢,-free while y is still ¢,-free because
y & W. Therefore coloring xy with ¢, extends C’ to a proper A(G)-edge-coloring of G.

9. Prove that every bipartite graph G has a matching of size at least |E(G)|/A(G).

Solution. Consider an optimal edge coloring of G, which uses A(G) colors by Kénig’s line
coloring theorem (proved above). Therefore, there are at least |E(G)|/A(G) edges colored by
the same color, which form a matching.



