Graph Theory - Problem Set 6 (Solutions)

October 17, 2024

Exercises

1. Determine the chromatic number of the first graph and the edge-chromatic number of the
second graph below.

Solution.

The chromatic number of the left graph and the edge-chromatic number of the right graph
are both 4. Shown are 4-colorings for both.

To show that the coloring of the first graph is optimal, we try to 3-color it. Start with the
outer Cx: up to isomorphism there is only one coloring, red-blue-red-blue-green. This forces
a red, blue, and green vertex on the inner ring of 5 vertices, which forces a fourth color on
the middle vertex.

By Vizing’s theorem we cannot color edges of the right graph by less than 4 colors.

2. For a graph G, we define G[X], the subgraph induced by the vertex set X C V(G) as the
graph with vertex set X that contains all the edges of G with both ends in X.
Prove that x(G) < x(G[X]) + x(G[V '\ X]).

Solution. Define x; = x(G[X]), x2 = x(G[V \ X]). We prove that there is a valid coloring
of G with x1 + x2 colors: Color the vertices of X with x; colors such that we have a valid
coloring of G[X], and color V' \ X with y2 colors different from the first x; colors so that we
get a valid coloring of G[V \ X]. Note that the edge e of G is either fully included in one of
G[X] or G[V'\ X], or it connects them. In both cases the end vertices of e get different colors:
since in the former case both of the induced subgraphs have a valid coloring, and in the latter
one, it follows from the fact that the vertices in X get different colors from the vertices in

V\X.
3. Are the following statements true? Provide reasons for your answers.

(a) If G and H are graphs on the same vertex set, then x(GU H) < x(G) + x(H).



(b) Every graph G has a coloring with x(G) colors where a(G) vertices get the same color.
Solution. We give counterexamples to both of the statements:

(a) Let n > 6 be a positive integer and V be a set of n vertices with the partition V' = VUV,
such that |Vi| = |§] and [Vi| = [§]. Let G, H be the graphs with the vertex set V'
satisfying

E(G) ={vw:v,weViorv,welVp}, E(H)={vw:veV,weV}.

Note that G is the union of the complete graphs on V; and Vs, so we have x(G) <
max{|Vi|,|Va|} = [§]. On the other hand, H is a bipartite graph so x(H) = 2. There-
fore, we have

X(GUH) = x(Kq) = n > [5]+2 = X(G) + x(H).

(b) Let n > 1 be a positive integer. Consider the double star graph G, i.e. G is the union
of two disjoint star graphs K1 ,, such that the two centers of the stars are connected:

V ={vo,v1,...,0n,u0,u1, ..., upn}, B ={vov; : 1 <@ <njU{uou; : 1 < i <njpU{vouo}.

It is easy to check that a(G) = |V (G)|—2, since the set of vertices {vi,...,vn, u1, ..., up}
is independent, and any independent set of vertices may have at most one of ug or w;, for
any 7, and at most one of vy or v; for any i. Furthermore, the set {v1,...,vp,u1,...,uy}is
the unique maximal independent set of vertices in G. On the other hand, we have x(G) =
2 since we can partition V(G) into independent subsets {ug, v1, ..., v, }{vo, U1, ..., un}.
Note that if we color all the vertices in {vi,...,vp,u1,...,u,} with the same color,
we need 3 colors to have a valid coloring of G. So this gives a counterexample to the
statement.

Problems

4. Let G be a graph on n vertices and G be its complement. Prove that

(a) x(G)x(G) = n.
(b) x(G) + x(G) < n+ 1. Hint: Prove by induction on n.

Solution.

(a) Note that the union G U G is the complete graph K,. We construct a valid coloring
of K, with x(G)x(G) colors. Then we get the required inequality, since x(K,) = n.
Denote V= V(G). Let ¢: V — {1,2,...,x(G)} be a valid coloring of G and ¢ : V —
{1,2...,x(G)} be a valid coloring of G. Define the coloring ¢’ : V — {1,2,...,x(G)} x
{1,2...,x(G)} with /(v) = (c(v),é(v)) for v € V. Tt is easy to see that ¢ is a valid
coloring for K, on V: for distinct vertices u,v € V, if uv € E(G), then c(u) # ¢(v), and

if uv € E(G), then ¢(u) # ¢(v), both of which imply that ¢(u) # ¢/(v).

(b) We prove it by induction on the number of the vertices. It is easy to check the induction
basis. Now suppose the inequality holds for all graphs with n vertices, we prove it for
the graph G on n + 1 vertices. Fix the vertex v € V(G) and let k be its degree in G,
so the degree of v in G is n — k. Consider the graph G — v. Note that adding back



v to G — v does not increase the chromatic number if x(G — v) > k, since one can
color v by an existing color different from the colors of its k£ neighbors; otherwise, it will
increase the chromatic number by at most one. The same statement holds for G — v
with the condition x(G — v) > n — k. Therefore, if at least one of x(G — v) > k and
X(G —v) > n — k holds, then applying induction hypothesis to G — v will complete the
proof:

X(G) + x(G) < x(G—=v)+x(G—v)+1<n+2.

Otherwise, we have x(G —v) < k and x(G —v) < n — k, which implies

XG)+x(G) <x(G=v)+x(G—-v)+2<k+n—k+2=n+2.
This finishes the proof.

5. (a) Show that if an n-vertex graph is d-degenerate, then it has at most dn edges.
(b) Prove that if the longest path in G has length ¢, then x(G) < £+ 1.

Solution.

(a) This can be proved by induction on the number of vertices n. Note that by the induction
hypothesis, removing a vertex of degree at most d would result in a graph with at most
d(n — 1) edges, so the original graph has at most d(n — 1) + d = dn edges.

(b) This follows from the fact that any such graph is ¢-degenerate. To see this, let G’ be a
subgraph of G and v be an endpoint of a longest path in G’. Since this path cannot be
extended, all the neighbors of v in G’ are contained in this path, therefore degq (v) < ¢.

6. Let G be a 3-regular graph with x/(G) = 4. Prove that G does not have a Hamilton cycle.

Hint: What can be said about the parity of the number of vertices?

Solution. Note that since > d(v) = 2|E(G)| and every d(v) = 3, G must have an even
number of vertices. Suppose that G has a Hamilton cycle C. It must be even, so we can color
it with 2 colors. Every vertex has 2 edges from C' and one other edge, so the edges not in C'
form a matching. Hence we can color these edges with one color. This gives an edge-coloring
of G with 3 colors, contradicting x'(G) = 4.

7. Prove that if every two odd cycles of G intersect in at least one vertex, then x(G) < 5.

Hint: Consider two cases in which G contains odd cycles or not.

Solution. If G has no odd cycles, then G is bipartite, which means that x(G) < 2. Thus we
can assume that G has at least one odd cycle.

Let C be a shortest odd cycle, which is 3-colorable. Now remove the vertices of C' from G to
get a new graph G — C'. It has no odd cycles, since every odd cycle previously intersected C.
This implies that G — C' is bipartite, or in other words 2-colorable. Then we can combine a
2-coloring of G — C' with a 3-coloring of C' to get a 5-coloring of G.
8. (a) Find the edge-chromatic number of Ko, 4.
(b) Find the edge-chromatic number of Kay,.

Solution.



(a)

X/(K2n+1) = A(K2n+1) +1=2n+1.

To get a 2n + 1 edge-coloring, place the vertices v; on a circle with equal spacing. Then
for each vertex v;, give the same color to the edges v;—1v;+1, vi—2vi+2, etc. (these edges
will be parallel). This way we color all the edges with 2n + 1 colors.

Suppose that we could color the edges of Ko, 11 with 2n colors. Each color class has
at most n edges, so with 2n colors we can color at most 2n? edges. But Ko,,1 has
(2"2“) = (2n 4+ 1)n = 2n? + n edges, so this can’t work.

X/(K2n) = A(Kzn) =2n — 1.

Now place 2n — 1 of the vertices v; on a circle with equal spacing, and put the remaining
vertex u at the center of the circle. Then for each v;, color in the same way as in the odd
case, and also give that color to the edge uv;. This gives an edge coloring with 2n — 1
colors. In this case we have A(K5,) = 2n — 1, so by Vizing’s theorem there is no edge
coloring with fewer colors.



