
Graph Theory - Problem Set 6 (Solutions)
October 17, 2024

Exercises

1. Determine the chromatic number of the first graph and the edge-chromatic number of the
second graph below.

Solution.

The chromatic number of the left graph and the edge-chromatic number of the right graph
are both 4. Shown are 4-colorings for both.

To show that the coloring of the first graph is optimal, we try to 3-color it. Start with the
outer C5: up to isomorphism there is only one coloring, red-blue-red-blue-green. This forces
a red, blue, and green vertex on the inner ring of 5 vertices, which forces a fourth color on
the middle vertex.

By Vizing’s theorem we cannot color edges of the right graph by less than 4 colors.

2. For a graph G, we define G[X], the subgraph induced by the vertex set X ⊆ V (G) as the
graph with vertex set X that contains all the edges of G with both ends in X.
Prove that χ(G) ≤ χ(G[X]) + χ(G[V \X]).

Solution. Define χ1 = χ(G[X]), χ2 = χ(G[V \X]). We prove that there is a valid coloring
of G with χ1 + χ2 colors: Color the vertices of X with χ1 colors such that we have a valid
coloring of G[X], and color V \X with χ2 colors different from the first χ1 colors so that we
get a valid coloring of G[V \X]. Note that the edge e of G is either fully included in one of
G[X] or G[V \X], or it connects them. In both cases the end vertices of e get different colors:
since in the former case both of the induced subgraphs have a valid coloring, and in the latter
one, it follows from the fact that the vertices in X get different colors from the vertices in
V \X.

3. Are the following statements true? Provide reasons for your answers.

(a) If G and H are graphs on the same vertex set, then χ(G ∪H) ≤ χ(G) + χ(H).



(b) Every graph G has a coloring with χ(G) colors where α(G) vertices get the same color.

Solution. We give counterexamples to both of the statements:

(a) Let n ≥ 6 be a positive integer and V be a set of n vertices with the partition V = V1∪V2

such that |V1| = ⌊n2 ⌋ and |V1| = ⌈n2 ⌉. Let G,H be the graphs with the vertex set V
satisfying

E(G) = {vw : v, w ∈ V1 or v, w ∈ V2}, E(H) = {vw : v ∈ V1, w ∈ V2}.

Note that G is the union of the complete graphs on V1 and V2, so we have χ(G) ≤
max{|V1|, |V2|} = ⌈n2 ⌉. On the other hand, H is a bipartite graph so χ(H) = 2. There-
fore, we have

χ(G ∪H) = χ(Kn) = n > ⌈n
2
⌉+ 2 = χ(G) + χ(H).

(b) Let n > 1 be a positive integer. Consider the double star graph G, i.e. G is the union
of two disjoint star graphs K1,n, such that the two centers of the stars are connected:

V = {v0, v1, . . . , vn, u0, u1, . . . , un}, E = {v0vi : 1 ≤ i ≤ n}∪{u0ui : 1 ≤ i ≤ n}∪{v0u0}.

It is easy to check that α(G) = |V (G)|−2, since the set of vertices {v1, . . . , vn, u1, . . . , un}
is independent, and any independent set of vertices may have at most one of u0 or ui, for
any i, and at most one of v0 or vi for any i. Furthermore, the set {v1, . . . , vn, u1, . . . , un} is
the unique maximal independent set of vertices in G. On the other hand, we have χ(G) =
2 since we can partition V (G) into independent subsets {u0, v1, . . . , vn},{v0, u1, . . . , un}.
Note that if we color all the vertices in {v1, . . . , vn, u1, . . . , un} with the same color,
we need 3 colors to have a valid coloring of G. So this gives a counterexample to the
statement.

Problems

4. Let G be a graph on n vertices and G be its complement. Prove that

(a) χ(G)χ(G) ≥ n.

(b) χ(G) + χ(G) ≤ n+ 1. Hint: Prove by induction on n.

Solution.

(a) Note that the union G ∪ G is the complete graph Kn. We construct a valid coloring
of Kn with χ(G)χ(G) colors. Then we get the required inequality, since χ(Kn) = n.
Denote V = V (G). Let c : V → {1, 2, . . . , χ(G)} be a valid coloring of G and c : V →
{1, 2 . . . , χ(G)} be a valid coloring of G. Define the coloring c′ : V → {1, 2, . . . , χ(G)} ×
{1, 2 . . . , χ(G)} with c′(v) = (c(v), c(v)) for v ∈ V . It is easy to see that c′ is a valid
coloring for Kn on V : for distinct vertices u, v ∈ V , if uv ∈ E(G), then c(u) ̸= c(v), and
if uv ∈ E(G), then c(u) ̸= c(v), both of which imply that c′(u) ̸= c′(v).

(b) We prove it by induction on the number of the vertices. It is easy to check the induction
basis. Now suppose the inequality holds for all graphs with n vertices, we prove it for
the graph G on n + 1 vertices. Fix the vertex v ∈ V (G) and let k be its degree in G,
so the degree of v in G is n − k. Consider the graph G − v. Note that adding back
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v to G − v does not increase the chromatic number if χ(G − v) > k, since one can
color v by an existing color different from the colors of its k neighbors; otherwise, it will
increase the chromatic number by at most one. The same statement holds for G − v
with the condition χ(G − v) > n − k. Therefore, if at least one of χ(G − v) > k and
χ(G− v) > n− k holds, then applying induction hypothesis to G− v will complete the
proof:

χ(G) + χ(G) ≤ χ(G− v) + χ(G− v) + 1 ≤ n+ 2.

Otherwise, we have χ(G− v) ≤ k and χ(G− v) ≤ n− k, which implies

χ(G) + χ(G) ≤ χ(G− v) + χ(G− v) + 2 ≤ k + n− k + 2 = n+ 2.

This finishes the proof.

5. (a) Show that if an n-vertex graph is d-degenerate, then it has at most dn edges.

(b) Prove that if the longest path in G has length ℓ, then χ(G) ≤ ℓ+ 1.

Solution.

(a) This can be proved by induction on the number of vertices n. Note that by the induction
hypothesis, removing a vertex of degree at most d would result in a graph with at most
d(n− 1) edges, so the original graph has at most d(n− 1) + d = dn edges.

(b) This follows from the fact that any such graph is ℓ-degenerate. To see this, let G′ be a
subgraph of G and v be an endpoint of a longest path in G′. Since this path cannot be
extended, all the neighbors of v in G′ are contained in this path, therefore degG′(v) ≤ ℓ.

6. Let G be a 3-regular graph with χ′(G) = 4. Prove that G does not have a Hamilton cycle.

Hint: What can be said about the parity of the number of vertices?

Solution. Note that since
∑

d(v) = 2|E(G)| and every d(v) = 3, G must have an even
number of vertices. Suppose that G has a Hamilton cycle C. It must be even, so we can color
it with 2 colors. Every vertex has 2 edges from C and one other edge, so the edges not in C
form a matching. Hence we can color these edges with one color. This gives an edge-coloring
of G with 3 colors, contradicting χ′(G) = 4.

7. Prove that if every two odd cycles of G intersect in at least one vertex, then χ(G) ≤ 5.

Hint: Consider two cases in which G contains odd cycles or not.

Solution. If G has no odd cycles, then G is bipartite, which means that χ(G) ≤ 2. Thus we
can assume that G has at least one odd cycle.

Let C be a shortest odd cycle, which is 3-colorable. Now remove the vertices of C from G to
get a new graph G−C. It has no odd cycles, since every odd cycle previously intersected C.
This implies that G − C is bipartite, or in other words 2-colorable. Then we can combine a
2-coloring of G− C with a 3-coloring of C to get a 5-coloring of G.

8. (a) Find the edge-chromatic number of K2n+1.

(b) Find the edge-chromatic number of K2n.

Solution.
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(a) χ′(K2n+1) = ∆(K2n+1) + 1 = 2n+ 1.

To get a 2n+ 1 edge-coloring, place the vertices vi on a circle with equal spacing. Then
for each vertex vi, give the same color to the edges vi−1vi+1, vi−2vi+2, etc. (these edges
will be parallel). This way we color all the edges with 2n+ 1 colors.

Suppose that we could color the edges of K2n+1 with 2n colors. Each color class has
at most n edges, so with 2n colors we can color at most 2n2 edges. But K2n+1 has(
2n+1

2

)
= (2n+ 1)n = 2n2 + n edges, so this can’t work.

(b) χ′(K2n) = ∆(K2n) = 2n− 1.

Now place 2n−1 of the vertices vi on a circle with equal spacing, and put the remaining
vertex u at the center of the circle. Then for each vi, color in the same way as in the odd
case, and also give that color to the edge uvi. This gives an edge coloring with 2n − 1
colors. In this case we have ∆(K2n) = 2n − 1, so by Vizing’s theorem there is no edge
coloring with fewer colors.
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