Graph Theory - Problem Set 6 (Solutions)

October 17, 2024

Exercises

1. Determine the chromatic number of the first graph and the edge-chromatic number of the second graph below.

Solution.

The chromatic number of the left graph and the edge-chromatic number of the right graph are both 4. Shown are 4-colorings for both.

To show that the coloring of the first graph is optimal, we try to 3-color it. Start with the outer C_5 : up to isomorphism there is only one coloring, red-blue-red-blue-green. This forces a red, blue, and green vertex on the inner ring of 5 vertices, which forces a fourth color on the middle vertex.

By Vizing's theorem we cannot color edges of the right graph by less than 4 colors.

2. For a graph G, we define G[X], the subgraph induced by the vertex set $X \subseteq V(G)$ as the graph with vertex set X that contains all the edges of G with both ends in X. Prove that $\chi(G) \leq \chi(G[X]) + \chi(G[V \setminus X])$.

Solution. Define $\chi_1 = \chi(G[X])$, $\chi_2 = \chi(G[V \setminus X])$. We prove that there is a valid coloring of G with $\chi_1 + \chi_2$ colors: Color the vertices of X with χ_1 colors such that we have a valid coloring of G[X], and color $V \setminus X$ with χ_2 colors different from the first χ_1 colors so that we get a valid coloring of $G[V \setminus X]$. Note that the edge e of G is either fully included in one of G[X] or $G[V \setminus X]$, or it connects them. In both cases the end vertices of e get different colors: since in the former case both of the induced subgraphs have a valid coloring, and in the latter one, it follows from the fact that the vertices in X get different colors from the vertices in $V \setminus X$.

- 3. Are the following statements true? Provide reasons for your answers.
 - (a) If G and H are graphs on the same vertex set, then $\chi(G \cup H) \leq \chi(G) + \chi(H)$.

(b) Every graph G has a coloring with $\chi(G)$ colors where $\alpha(G)$ vertices get the same color.

Solution. We give counterexamples to both of the statements:

(a) Let $n \ge 6$ be a positive integer and V be a set of n vertices with the partition $V = V_1 \cup V_2$ such that $|V_1| = \lfloor \frac{n}{2} \rfloor$ and $|V_1| = \lceil \frac{n}{2} \rceil$. Let G, H be the graphs with the vertex set V satisfying

$$E(G) = \{vw : v, w \in V_1 \text{ or } v, w \in V_2\}, E(H) = \{vw : v \in V_1, w \in V_2\}.$$

Note that G is the union of the complete graphs on V_1 and V_2 , so we have $\chi(G) \leq \max\{|V_1|, |V_2|\} = \lceil \frac{n}{2} \rceil$. On the other hand, H is a bipartite graph so $\chi(H) = 2$. Therefore, we have

$$\chi(G \cup H) = \chi(K_n) = n > \lceil \frac{n}{2} \rceil + 2 = \chi(G) + \chi(H).$$

(b) Let n > 1 be a positive integer. Consider the *double star* graph G, i.e. G is the union of two disjoint star graphs $K_{1,n}$, such that the two centers of the stars are connected:

$$V = \{v_0, v_1, \dots, v_n, u_0, u_1, \dots, u_n\}, E = \{v_0v_i : 1 \le i \le n\} \cup \{u_0u_i : 1 \le i \le n\} \cup \{v_0u_0\}.$$

It is easy to check that $\alpha(G) = |V(G)| - 2$, since the set of vertices $\{v_1, \ldots, v_n, u_1, \ldots, u_n\}$ is independent, and any independent set of vertices may have at most one of u_0 or u_i , for any i, and at most one of v_0 or v_i for any i. Furthermore, the set $\{v_1, \ldots, v_n, u_1, \ldots, u_n\}$ is the unique maximal independent set of vertices in G. On the other hand, we have $\chi(G) = 2$ since we can partition V(G) into independent subsets $\{u_0, v_1, \ldots, v_n\}, \{v_0, u_1, \ldots, u_n\}$. Note that if we color all the vertices in $\{v_1, \ldots, v_n, u_1, \ldots, u_n\}$ with the same color, we need 3 colors to have a valid coloring of G. So this gives a counterexample to the statement.

Problems

- 4. Let G be a graph on n vertices and \overline{G} be its complement. Prove that
 - (a) $\chi(G)\chi(\overline{G}) \ge n$.
 - (b) $\chi(G) + \chi(\overline{G}) \leq n+1$. Hint: Prove by induction on n.

Solution.

- (a) Note that the union $G \cup \overline{G}$ is the complete graph K_n . We construct a valid coloring of K_n with $\chi(G)\chi(\overline{G})$ colors. Then we get the required inequality, since $\chi(K_n) = n$. Denote V = V(G). Let $c: V \to \{1, 2, ..., \chi(G)\}$ be a valid coloring of G and $\overline{c}: V \to \{1, 2, ..., \chi(\overline{G})\}$ be a valid coloring of G. Define the coloring $c': V \to \{1, 2, ..., \chi(G)\} \times \{1, 2, ..., \chi(\overline{G})\}$ with $c'(v) = (c(v), \overline{c}(v))$ for $v \in V$. It is easy to see that c' is a valid coloring for K_n on V: for distinct vertices $u, v \in V$, if $uv \in E(G)$, then $c(u) \neq c(v)$, and if $uv \in E(\overline{G})$, then $\overline{c}(u) \neq \overline{c}(v)$, both of which imply that $c'(u) \neq c'(v)$.
- (b) We prove it by induction on the number of the vertices. It is easy to check the induction basis. Now suppose the inequality holds for all graphs with n vertices, we prove it for the graph G on n+1 vertices. Fix the vertex $v \in V(G)$ and let k be its degree in G, so the degree of v in \overline{G} is n-k. Consider the graph G-v. Note that adding back

v to G-v does not increase the chromatic number if $\chi(G-v)>k$, since one can color v by an existing color different from the colors of its k neighbors; otherwise, it will increase the chromatic number by at most one. The same statement holds for $\overline{G}-v$ with the condition $\chi(\overline{G}-v)>n-k$. Therefore, if at least one of $\chi(G-v)>k$ and $\chi(\overline{G}-v)>n-k$ holds, then applying induction hypothesis to G-v will complete the proof:

$$\chi(G) + \chi(\overline{G}) \le \chi(G - v) + \chi(\overline{G} - v) + 1 \le n + 2.$$

Otherwise, we have $\chi(G-v) \leq k$ and $\chi(\overline{G}-v) \leq n-k$, which implies

$$\chi(G) + \chi(\overline{G}) \le \chi(G - v) + \chi(\overline{G} - v) + 2 \le k + n - k + 2 = n + 2.$$

This finishes the proof.

- 5. (a) Show that if an n-vertex graph is d-degenerate, then it has at most dn edges.
 - (b) Prove that if the longest path in G has length ℓ , then $\chi(G) \leq \ell + 1$.

Solution.

- (a) This can be proved by induction on the number of vertices n. Note that by the induction hypothesis, removing a vertex of degree at most d would result in a graph with at most d(n-1) edges, so the original graph has at most d(n-1) + d = dn edges.
- (b) This follows from the fact that any such graph is ℓ -degenerate. To see this, let G' be a subgraph of G and v be an endpoint of a longest path in G'. Since this path cannot be extended, all the neighbors of v in G' are contained in this path, therefore $\deg_{G'}(v) \leq \ell$.
- 6. Let G be a 3-regular graph with $\chi'(G) = 4$. Prove that G does not have a Hamilton cycle.

Hint: What can be said about the parity of the number of vertices?

Solution. Note that since $\sum d(v) = 2|E(G)|$ and every d(v) = 3, G must have an even number of vertices. Suppose that G has a Hamilton cycle C. It must be even, so we can color it with 2 colors. Every vertex has 2 edges from C and one other edge, so the edges not in C form a matching. Hence we can color these edges with one color. This gives an edge-coloring of G with 3 colors, contradicting $\chi'(G) = 4$.

7. Prove that if every two odd cycles of G intersect in at least one vertex, then $\chi(G) \leq 5$.

Hint: Consider two cases in which G contains odd cycles or not.

Solution. If G has no odd cycles, then G is bipartite, which means that $\chi(G) \leq 2$. Thus we can assume that G has at least one odd cycle.

Let C be a shortest odd cycle, which is 3-colorable. Now remove the vertices of C from G to get a new graph G-C. It has no odd cycles, since every odd cycle previously intersected C. This implies that G-C is bipartite, or in other words 2-colorable. Then we can combine a 2-coloring of G-C with a 3-coloring of C to get a 5-coloring of G.

- 8. (a) Find the edge-chromatic number of K_{2n+1} .
 - (b) Find the edge-chromatic number of K_{2n} .

Solution.

(a) $\chi'(K_{2n+1}) = \Delta(K_{2n+1}) + 1 = 2n + 1$.

To get a 2n + 1 edge-coloring, place the vertices v_i on a circle with equal spacing. Then for each vertex v_i , give the same color to the edges $v_{i-1}v_{i+1}$, $v_{i-2}v_{i+2}$, etc. (these edges will be parallel). This way we color all the edges with 2n + 1 colors.

Suppose that we could color the edges of K_{2n+1} with 2n colors. Each color class has at most n edges, so with 2n colors we can color at most $2n^2$ edges. But K_{2n+1} has $\binom{2n+1}{2} = (2n+1)n = 2n^2 + n$ edges, so this can't work.

(b) $\chi'(K_{2n}) = \Delta(K_{2n}) = 2n - 1$.

Now place 2n-1 of the vertices v_i on a circle with equal spacing, and put the remaining vertex u at the center of the circle. Then for each v_i , color in the same way as in the odd case, and also give that color to the edge uv_i . This gives an edge coloring with 2n-1 colors. In this case we have $\Delta(K_{2n}) = 2n-1$, so by Vizing's theorem there is no edge coloring with fewer colors.