Graph Theory - Problem Set 5 (Solutions)

October 10, 2024

Exercises

1. Determine if the following graphs are planar or not.

Solution. The graph on the left is planar, since it has a planar drawing, for example:

The graph on the right is not planar. Suppose not, then by Euler’s formula any planar
drawing of it would have |F(G)| =2 — |V(G)| + |E(G)| = 2 — 11 + 20 = 11 faces. However
one can observe that the graph contains no triangles, so all faces would be bordered by > 4
edges. Each edge borders 2 faces (there are no cut-edges in this graph), so we should have
2e > 4f which implies that 40 > 44, a contradiction.

Alternatively, one can observe that the graph contains a subdivision of K5 as follows.

2. Determine all positive integers r and s for which K s is planar.

Solution. First, note that if r,s > 3, then K, is not planar, since it contains K33 as a
subgraph. On the other hand, K, and K», are planar for all s > 1, since the first one can
be easily drawn by non-crossing straight line edges as a star graph, and a planar drawing of
the second one is similar: put s vertices on a line in the plane, and add two extra vertices,
one on each side of the line. Then draw edges as straight line segments.



3. Let G be a graph on n vertices and 3n — 6 + k edges for some k£ > 0. Show that any drawing
of G in the plane contains at least k crossing pairs of edges.

Solution. We prove it by induction on k. For the induction basis k = 1, one knows that a
planar graph on n vertices has at most 3n — 6 edges, so any drawing of a graph with 3n — 5
edges has at least a pair of crossing edges. Now suppose the statement holds for &k, we prove
it for k4 1: By the same reason as before, any drawing D¢ of G has at least a pair of crossing
edges, e, ¢’. Now remove e from the drawing, this gives a drawing of a graph with 3n — 6 + k
edges which by the induction hypothesis has at least k pair of crossing edges. So altogether,
the drawing D¢ has at least k + 1 crossings.

4. Let G be a planar graph with fewer than 12 vertices. Show that G has a vertex of degree at
most 4.

Solution. By the corollary of Euler’s formula, we have

> deg(v) =2|E(G)| < 2(3n — 6) = 6n — 12 < 6n —n = 5n,
veV(Q)

which by the pigeonhole principle implies that G has a vertex of degree at most 4.

Problems

5. Using FEuler’s formula, show that if G is a planar graph on n vertices that has finite girth
g, then G has at most ﬁ(n — 2) edges. Deduce that the Petersen graph (see below) is not
planar.

Solution: The proof goes in the same direction as the proof of the following result shown
in the lecture: every planar graph on n vertices has at most 3n — 6 edges. First, we can
assume that G is connected, since otherwise one can add extra edges to make it connected.
Fix the planar drawing D of G. By double counting the pairs (e, f) where e is an edge on
the boundary of face f, we get 2|E(G)| > g|Fp(G)|. Plugging in the Euler’s formula, we get
2 g
V(G)| = [E(G)| + rh [E(G) =22=|E(G)| < ﬁ(n —2).
For the Petersen graph, use the same argument by noting that the girth is 5, the number of
vertices is 10 and it has 15 edges.

6. (a) Let G be a planar graph containing no triangles. Show that x(G) < 4.
(b) Let G be a planar graph containing at most three triangles. Show that x(G) < 4.

Solution:

(a) We prove by induction on the number of vertices of G. If |V (G)| < 4, there is nothing
to prove. Suppose that the statement holds for all the graphs with n — 1 vertices, we
prove it for the graph G on n vertices.

First, we show that G has a vertex of degree at most 3. Since the girth of G is at least 4,
by following the same proof of the previous exercise, we get |E(G)| < §(n—2) = 2n —4.
So we have
> deg(v) =2|E(G)| < 4n -8,
veV(Q)



which by the pigeonhole principle implies that there exists v € V(G) with deg(v) < 3.
Now by the induction hypothesis, since the graph G — v is also triangle-free, we have
X(G —v) < 4. So by coloring the vertex v by a color different from its neighbors, we get
a valid 4-coloring of G.

(b) The proof is similar to the proof of part (a). Again we prove by induction on the
number of vertices. For a graph G on n vertices with at most three triangles, if we
remove one edge from each triangle, then the resulting graph becomes triangle-free, so
by the previous exercise, we have |E(G)| < 2n — 4 + 3 = 2n — 1, which implies that G
has a vertex of degree at most 3. The rest of the proof is the same as before.

7. Prove that for any three vertices x, y, z of a planar graph on n vertices, the sum of the degrees
d(z) +d(y) + d(z) is at most 2n + 2.

Hint: Use the fact that a planar graph does not contain K33 as subgraph.

Solution: Denote the graph by G. First note that if x,y, 2z are pairwise connected, each
of the three pairwise edges among them appears twice in the sum d(z) + d(y) + d(z). On
the other hand, note that since G cannot have K33 as a subgraph, at most two vertices of
G\{z,y, z} are connected to all z,y, z. This means that the all (n—3) vertices of G\ {z,y, 2},
probably except two, are connected to at most two vertices among {z,y, z}. Therefore, we
get:

d(z) +d(y) +d(z) <2(n—5)+3-2+6,

where 6 accounts for the maximum number of pairwise edges between x, y, z, as discussed in
the beginning.

8. Let S be a set of n points in the plane such that any two of them have distance at least 1.
Show that there are at most 3n — 6 pairs of distance exactly 1.
Hint: Prove that the graph has no crossing using the triangle inequality.

Solution: For any pair of points p,q € S, we connect them by their connecting line segment
if d(p,q) = 1, where d(p,q) denotes their distance. The resulting drawing gives us a graph.
We only need to show that this graph has no crossing. Then the result follows from the
corollary of Euler’s formula.

Now suppose by contradiction that for p,q,r, s € S, the edges pq,rs cross at z. Let p,r,q,s
appear in this order on the boundary of their convex hull. By the triangle inequality we have

d(p,s) < d(p,z)+d(z,s), d(q,r) <d(q,x) + d(r,x),

which implies that 2 < d(p, s) + d(q,r) < d(p,q) + d(r, s) = 2, which is a contradiction.



