Graph Theory - Problem Set 4 (Solutions)

October 3, 2024

Exercises

1. In this exercise, we show that the sufficient conditions for Hamiltonicity that we saw in the
lecture are tight in some sense.

(a) For every n > 2, find a non-Hamiltonian graph on n vertices that has (”51) + 1 edges.

(b) For every n > 2, find a non-Hamiltonian graph on n vertices that has minimum degree
[5]—1.
(c) Find a non-Hamiltonian graph G which satisfies a(G) = k(G) + 1.

Solution.

(a) Consider the complete graph on n — 1 vertices K,,_1. Add a new vertex v and connect
it to a vertex of K,,_1. This graph has ("51) + 1 edges and it is not Hamiltonian: every
cycle uses 2 edges at each vertex, but v has only one adjacent edge.

(b) Let G be a complete graph on [ ] vertices and G be a complete graph on | §] vertices

which is disjoint from G7. Fix a vertex v € V(G1) and connect it to all the vertices
of Go. Let G be the resulting graph. Then G has minimum degree [5] — 1 and it is
non-Hamiltonian: every cycle passing through all the vertices of G has to pass through

v at least twice.

(c) Consider the bipartite graph Ky, ,,+1. Note that o(Ky nt1) =n+ 1 and &(Kp p41) =1,
but this graph is non-Hamiltonian since after deleting all n vertices of one side there are
n -+ 1 connected components.
Alternatively, one can take the Petersen graph as an example, whose indepedence number
is 4 and connectivity is 3.

2. For every k,n > 2, find a graph G on at least n vertices such that 6(G) = k but G contains
no cycle longer than k + 1.

Solution. Let a = [n/k], and take a disjoint copies of Kj11. Then this graph has a(k+1) > n
vertices, where each of them has degree k, but there is no cycle longer than k + 1. We can
actually find a connected such graph by joining all of these cliques at one vertex (add more
copies of cliques if the degree of the centered vertex is less than k), to get a star of cliques.

3. Check that the proof of Dirac’s theorem also proves Ore’s theorem.

Dirac’s theorem: Let G be a graph on n > 3 vertices. If §(G) > §, then G contains a Hamilton
cycle.

Ore’s theorem: Let G be a graph on n > 3 vertices. If d(u) + d(v) > n for any non-adjacent
vertices v and v, then GG contains a Hamilton cycle.

Solution. There are two places in the proof of Dirac’s Theorem where we use the condition
that 6(G) > §:



(1) to show that G is connected,
(2) to show that there is an edge in P that is both type-1 and type-2.

The proof of the first statement is very similar in this case: if v and v were in different
components, then the component of u would contain at least d(u) 4+ 1 vertices, and the
component of v would have at least d(v) + 1 vertices, which would give more than n vertices
in total.

The second statement follows because there are d(vi) type-1 edges and d(vg) type-2 edges.
But then if v; and vy are not adjacent, then P has n—1 < d(v;)+d(vg) edges by assumption,
so some edge is both type-1 and type-2 and we can continue the argument. Otherwise, we
get a cycle vy ... v,v; that we can use as C for the rest of the proof.

. The graph below is called the Petersen graph. Does it have a Hamilton path? Does it have
a Hamilton cycle? Provide reasons for your answers.

Solution. A Hamilton path is given as follows.

There is no Hamilton cycle in the Petersen graph. To prove it, first one can check that the
girth of P is 5. Therefore, there is no 3-cycle or 4-cycle in the Petersen graph. Also one can
observe that the degree of each vertex is 3.

Suppose that there is a Hamilton cycle C' in the Petersen graph, which is a 10-cycle. To get
the Petersen graph, we need to add 5 edges to the cycle C. Since each vertex has degree 3 in
the Petersen graph, we need to add exactly one edge for each vertex.

If each of the latter edges connects two opposite vertices on C, then there is a 4-cycle, a
contradiction. Otherwise, some edge e joins vertices at distance 4 in C' (why cannot it be 2
or 37). Let e be incident to vertices A and B, and D be the opposite vertex to A in C. The
vertex D must be connected to one of the neighbours of A in C' (Why?), let us call it F. Then
ABDF A is a 4-cycle, a contradiction.



Problems

5. Use Ore’s theorem from Exercise 3 to give a short proof of the fact that any n-vertex graph

G with more than (";1) + 1 has a Hamilton cycle.

Solution. If the graph is complete then it has a Hamilton cycle. Othweise, for any two

non-adjacent vertices u, v, remove them from G to get a graph G — u — v with n — 2 vertices
and |E(G)| — d(u) — d(v) edges. Since G — u — v has at most (”;2) edges, we have

n—1

<”;2> > |B(G)] - d(u) — d(v) > < 2 >+1_d(“) i

—  d(u) +d(v) > <n;1>—<n;2>+1:n—1.

Thus the condition of Ore’s theorem holds, so G has a Hamilton cycle.
6. Let G be a connected graph on n vertices with minimum degree §. Show that

(a) if 6 < 3! then G contains a path of length 26, and
(b) if § > 25! then G contains a Hamilton path.

Solution. It suffices to show that G contains a path of length at least min{2,n — 1}.
Take a longest path P = vgvy---v, in G. If K =n — 1 we are done, so we can assume that
there is a vertex not on P. By connectedness of G, there must be a vertex u that is not in P
but adjacent to a vertex of P, say v;. We have the following observations:

e v; cannot be vy or v, otherwise we could extend P to get a longer path.

e vg and v cannot be adjacent, otherwise wwv; - - - vxvg - - - v;—1 would be a longer path.

e N(vo) and N (vg) must be contained in {v1,...,vx}, otherwise we could the extend P.

One more observation which is a bit trickier: we cannot have anything like (not showing all
the vertices on P)

Vj

Vo ’Uj Uj+1 I Vi

u

since this would also give a longer path:
’L)l+1 o oe. ’l}k/Uj e Uov]+1 o oe. Uzu'
Note that something similar works when j > 7. Thus we cannot have v; adjacent to v; and

at the same time v;;1 adjacent to vp.

The set {v1,...,v;} contains the two sets N(vg) and {vj41 : v; € N(vk)}, both of which have
size at least 4. Our last observation implies that these two sets are disjoint, which tells us
that k& > 20.



7. Suppose that each edge of the complete graph K, is painted either red or blue. Prove that
this colored graph has a Hamilton path, which is the union of a red path and a blue path.
(We allow the case when one of the paths has length 0, i.e., the Hamilton path uses only one
color.)

Solution. Take a longest such path P = vy ...viwuy ...u;, where v ...viw is a red path
and wuq ...u; is a blue path. If P is not Hamiltonian, then there is a vertex x not contained
in it. Look at the edge wz. If it is red, then the path vy ...viwzuy...u; satisfies the
required property, and it is longer (no matter if zu; is red or blue). If wx is blue, then
Vg ... v1xWUL . .. uy is a longer such path, a contradiction.

Alternatively, one can prove this statement by induction on n, using the same idea of looking
at wx.
8. Prove the following sufficient conditions of Hamiltonicity, which generalizes Dirac’s theorem.

Chvatal’s theorem (1972): Let G be a graph on n > 3 vertices, whose degree sequence of its
vertices is d; < dg < ---<d,. If thereisno 1 <k < % for which dy, < k and d,,_ < n — k,
then GG is Hamiltonian.

Hint: Show that its closure c¢(G) is complete by contradiction. Start by taking two non-adjacent
vertices in ¢(G) with the largest sum of degrees.

Solution. Denote the degree of v in G as d(v) and the degree of v in ¢(G) as d'(v).
By what we have shown in the lecture, it suffices to show that the closure ¢(G) is complete.
Suppose not. Then take a pair of non-adjacent vertices u and v in ¢(G) with

d'(u) < d'(v) (1)

and their sum of degrees being the largest among all non-adjacent pairs. By definition of
¢(G), we have
d'(u) +d(v) < n. (2)

Let S be the set of vertices in V' \ {v} which are non-adjacent to v in ¢(G) and T be the set
of vertices in V'\ {u} which are non-adjacent to u in ¢(G). We have

IS|l=n—-1-d ), |T|=n-1-4d(u).

By maximality of d’'(u) + d'(v), each vertex in S must have degree at most d'(u) and each
vertex in T'U {u} must have degree at most d’'(v). Define k := d’'(u). From (1) and (2) we
get k < 5. Moreover in ¢(G) there are at least |S| =n —1—d'(v) > k—1 (i.e., at least k)
vertices of degree at most k and there are at least |T'U {u}| = n — d'(u) = n — k vertices of
degree at most d'(v) < n — k. Both statements hold in G as well, which implies that dy < k
and d,,_, < n — k, a contradiction to the assumption. Thus ¢(G) must be complete.

9. (*) Let G be a graph in which every vertex has odd degree. Show that every edge of G is
contained in an even number of Hamilton cycles.

Hint: Let xy € E(G) be given. The Hamilton cycles through xy correspond to the Hamilton
paths in G — xy from x to y. Consider the set H of all Hamilton paths in G — xy starting
at x, and show that an even number of these end in y. To show this, define a graph on H
so that the desired assertion follows from the fact (proved in Problem Set 1): the number of
odd-degree vertices in a graph is always even.



Solution. As suggested in the Hint, it suffices to show that for any edge zy in G, there are
even number of Hamilton paths in G — xy which starts at x and ends at y. Let H be the
set of all Hamilton paths in G — xy starting at x. Define a graph whose vertices are exactly
elements of H and edges are defined as follows: any two Hamilton paths P and Q in G — xy
starting at x (call such path a Hamilton z-path), are connected as an edge if

P=xx1 - -z, Q=2ax1 - T;TKTip_1 - Ti+1, where x;is adjacent to xy.

Thus for any P = zx1 - - - 2y, it is connected to d’(x) — 1 many other Hamilton z-paths, where
d'(xy,) is the degree of 7} in G — zy. Note that in G — xy only x and y have even degree, thus
only Hamilton z-paths that ends at y have odd degree, which equals to d'(y) — 1 = d(y) — 2.
Since the number of odd-degree vertices is even in any graph, the number of Hamilton paths
in G — xy which starts at « and ends at y, is also even.



