
Graph Theory - Problem Set 13 (Solutions)
December 12, 2024

Exercises

1. Calculate the eigenvalues and eigenvectors of the adjacency matrix of C4.

Solution. The adjacency matrix of C4 is


0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

.

As C4 is 2-regular, we know that (1, 1, 1, 1) is an eigenvector with eigenvalue 2. One can guess
(e.g. from problem 5, noting that C4 is bipartite) that (1, 1,−1,−1) is another eigenvector,
with eigenvalue -2. Also, the matrix has rank 2 (and hence 2-dimensional null-space), so it
will have 0 as an eigenvalue with a 2-dimensional eigenspace. This eigenspace contains all
vectors of the form (x,−x, y,−y).

2. (a) Let G be a graph, and let k be a positive integer. Prove that for every x, y ∈ V (G),
Ak

G(x, y) is equal to the number of walks in G of length k with endpoints x and y.

Solution. We can prove this by induction on k. For k = 1, the statement is trivial.
Suppose that the statement is true for k. We will show that it is true for k + 1. The
number of walks in G of length k + 1 with endpoints x and y is equal to the sum of
numbers of walks in G of length k with end points x and z where the sum is taken over all
the neighbours z of y. By induction hypothesis, this is equal to

∑
z A

k
G(x, z)AG(z, y) =

Ak+1
G (x, y), as required.

(b) Let G be a graph on n vertices and let λ1, ..., λn be all the eigenvalues of AG. Show that

n∑
i=1

λ2
i = 2|E(G)|.

Solution. By (a), for any x ∈ V (G), A2
G(x, x) is equal to the number of closed walks of

length 2 from x to itself. It is easy to see that
∑

x∈V (G)A
2
G(x, x) is exactly 2|E(G)|. To

finish the proof, one just needs to recall from linear algebra that
∑n

i=1 λ
2
i = Tr(A2

G) =∑
x∈V (G)A

2
G(x, x).

(Indeed, if λ is an eigenvalue of AG then λ2 is an eigenvalue of A2
G with the same

multiplicity. Diagonalizing A2
G as S−1A2

GS = D, whereD is the diagonal matrix with the
eigenvalues of A2

G on the diagonal, gives Tr(A2
G) = Tr(S−1A2

GS) = Tr(D) =
∑n

i=1 λ
2
i ,

as required.)

3. Let G be a graph that is srg(n, d, λ, µ). Calculate n as a function of d, λ and µ.

Solution. Let us count cherries (x, {y, z}) as in the lecture. Counting from the root x, there
are

(
d
2

)
cherries at every vertex, so there are n

(
d
2

)
cherries in total. Counting from the pairs

{y, z}, there are exactly λ cherries sitting on every edge, and there are µ cherries sitting



on every non-edge. So if m denotes the number of edges, then the number of cherries is
λm+ µ(

(
n
2

)
−m). Plugging in m = nd/2, we get

nd(d− 1)

2
=

λnd

2
+

µn(n− d− 1)

2
.

Rearranging, this gives

µn2 + n((λ+ 1)d− µ(d+ 1)− d2) = 0

and hence (using n ̸= 0)

n =
d2 + µ(d+ 1)− (λ+ 1)d

µ
.

Problems

4. Let G be a d-regular graph. Prove that if λ is an eigenvalue of AG, then |λ| ≤ d.

Solution. Let v be an eigenvector of AG with eigenvalue λ, and suppose its i’th coordinate
vi is the largest in absolute value (hence |vi| > 0). We know that the i’th coordinate of AGv
is λvi. On the other hand, this coordinate is equal to the product of the i’th row of AG and
v. As G is d-regular, the i’th row contains d 1-entries, say at coordinates J . But then

|λ||vi| = |λvi| = |(AGv)i| = |
∑
j∈J

vj | ≤
∑
j∈J

|vj | ≤ d|vi|,

and hence |λ| ≤ d.

5. Let G be a bipartite graph. Prove that if λ is an eigenvalue of AG, then −λ is also an
eigenvalue.

Solution. Suppose G is bipartite, with parts S and T of sizes s and t. The idea is that for
some eigenvector, one can “flip” the sign of the coordinates corresponding to one part and
get another eigenvector with opposite eigenvalue.

Let us see how this works in detail: For some s× t matrix B we have

AG =

[
Os×s B
BT Ot×t

]
.

Since λ is an eigenvalue, we have[
λv
λw

]
= λ

[
v
w

]
= AG

[
v
w

]
=

[
Bw
BT v

]
.

So Bw = λv and BT v = λw. But then

AG

[
v

−w

]
=

[
−Bw
BT v

]
= −λ

[
v
−w

]
.

Thus −λ is also an eigenvalue.
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6. Let G be a graph and let p be the number of positive eigenvalues of AG (with multiplicity),
and let n be the number of negative eigenvalues of AG (with multiplicity). Prove that the
edge set of G cannot be partitioned into fewer than max(p, n) complete bipartite graphs.

Solution. The idea is similar to the case of complete graphs seen in the lecture. The
difference is the way we bound vTAGv away from 0 instead of (5) in the proof. So suppose G
can be partitioned into complete bipartite graphs G[Xi, Yi], and let W be the p-dimensional
subspace spanned by the eigenvectors of AG with positive eigenvalues. It is well-known from
linear algebra that vTAGv > 0 for every nonzero v ∈ W . On the other hand, any vector
v ∈ W such that

∑
x∈Xi

v(x) = 0 for every i will satisfy vTAGv = 0 (see the original proof).
If G can be partitioned into fewer than p complete bipartite graphs, then these are fewer than
p linear equations, so there is a nonzero such v ∈ W , a contradiction.

We similarly get a contradiction for negative eigenvalues (there vTAGv < 0 if v is in the
n-dimensional subspace induced by negative eigenvectors).

7. Let G be a graph that is srg(n, d, λ, µ). Calculate the eigenvalues of AG as a function of
n, d, λ, µ.

Solution. We repeat the argument from the lecture. A2
G has d in the diagonal, λ at the

entries of the edges and µ everywhere else, so A2
G + (µ − λ)AG − (d − µ)I = µJ (where J

is the all-1 matrix). As G is d-regular, we know that v = (1, . . . , 1) is an eigenvector of AG

with eigenvalue d. As AG is symmetric, it has an orthogonal basis of eigenvectors extending
v. Let u be any other vector in this basis, say with eigenvalue c. Then ⟨v, u⟩ = 0, so Ju = 0.
But then

(A2
G + (µ− λ)AG − (d− µ)I)u = c2u+ (µ− λ)cu− (d− µ)u = 0,

so c2 + (µ− λ)c− (d− µ) = 0. Solving this equation, we get that all eigenvalues other than
d are of the form

c1,2 =
λ− µ±

√
(µ− λ)2 + 4(d− µ)

2
.

To complete the solution, one would also need to check that both of these eigenvalues occur.
This is not really the point of the exercise, so we will skip the details.
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