Graph Theory - Problem Set 12 (Solutions)

December 5, 2024

Exercises

1. Using k colors, construct a coloring of the edges of the complete graph on 2¥ vertices without

creating a monochromatic triangle.

Solution. We can construct the desired coloring by using induction on k. Suppose that we
have constructed an edge coloring ¢ of the complete graph on 28~! vertices with k — 1 colors,
say, 1,2,...,k — 1. Now take two vertex-disjoint copies of this graph (so we have taken a
total of 28=1 4 2F=1 = 2F vertices). Color the edges inside each of the copies according to
the coloring ¢ (i.e., using only k£ — 1 colors), and color all of the edges between the two copies
using a new color k. It is easy to check that this gives the desired coloring with k colors, and

it contains no monochromatic triangles.

2. The lower bound for R(s,s) that we saw in the lecture is not a constructive proof: it merely
shows the existence of a red-blue coloring not containing any monochromatic copy of K
by bounding the number of bad graphs. Give an explicit coloring on K(,_1)2 that proves

R(s,s) > (s — 1)2.

Solution. Take s —1 disjoint K,_1’s, color them blue, and color the complement red. This is
a 2-coloring of K(,_1)2, and it has no blue clique of size s (two of the s vertices would belong
to different Ks_1’s, so they would be connected in red), and it has no red clique of size s,
either (two of the s vertices would belong to the same K;_1, so they would be connected in

blue).

3. A random graph G(n,p) is a probability space of all labeled graphs on n vertices {1,2,...,n},
where for each pair 1 < i < j < n, (4,7) is an edge of G(n, p) with probability p, independently

of any other edge (you can think of a sequence of independent coin tosses for each edge).
(a) the expected number of edges in G(n,p);
(b) the expected degree of a vertex in G(n,p);
(c) the expected number of triangles (cycles of length 3) in G(n, p);
(d) the expected number of paths of length 2 in G(n, p);

(e) the probability that the degree of a given vertex v is exactly k.
Solution.

(a) The expected number of edges in G(n,p) is (g)p
(b) The expected degree of a vertex in G(n,p) is (n — 1)p.

n

(¢) The expected number of triangles in G(n,p) is (3)p*. The number of possible triangles
is (g) and each of them arises with probability p°.

(d) The expected number of paths of length 2 in G(n,p) is 3(?) p?. The number of possible
paths of length 2 is 3(’;) and each of them arises with probability p?.



(e) The probability that the degree of a given vertex v is exactly k is ("gl)pk(l —p)(n—1=k),

Problems

4. Prove that R(ny,...,nt) < R(ni,...,ng_2, R(ng_1,nk)). Deduce that for every k and n,

there is an NV such that any k-coloring of the edges of K contains a monochromatic K,.

Solution. Let r = R(nq,...,ng_2, R(ng_1,nk)). We want to show that any k-edge-coloring
of K, will contain a clique of size n; in color ¢ for some 1 < ¢ < k. By the definition of r,
either there is such an ¢ € {1,...,k — 2}, or there is a clique of size R(ng_1,ny) that only
uses colors k — 1 and k. But then the definition of R(n;_1,nk), there is either a clique of size
ng_1 in color k — 1 or a clique of size ny in color k. This is what we wanted to show. Now
induction on k shows that these multicolor Ramsey numbers are indeed finite (the k = 2 case
was established in class).

. Show that the edges of K, can be colored with 3 colors so that the number of monochromatic
triangles is at most é(g)
Solution. Let X be a random variable counting the number of monochromatic triangles
in a random coloring of the edges of K, with 3 colors, and let X7 be a random variable
taking value 1 if a given triangle 7" is monochromatic, and 0 otherwise (a triangle is a triple
of vertices of K,). Since the total number of possible colorings of T is 33, and there are 3
ways to color T' as a monochromatic triangle, we have that E[Xr] = 3/33.

Since X = ), X7, by the linearity of expectation (and since there are (g) possible distinct
triangles in K ), we have that

Bix] = B(Y Xr = LBl = () - 5
T T

Thus, there exists a coloring of K,, such that the number of monochromatic triangles is at
most (%) /9.

(a) Show that if for some real number 0 < p < 1 we have (Z)p(;) + (1) - p)(;) < 1, then
R(s,t) > n.
(b) Deduce that there is a positive constant ¢ such that R(4,t) > c- k)tgzi/f%.

Solution.

(a) Consider the random coloring of the edges of K, by red and blue, such that each edge
is colored independently by red with probability p, and by blue with probability 1 — p.

Clearly, the expected number of monochromatic cliques of size s in G(n,p) is (Z)p(;)

Therefore, the sum of expected numbers of red K,’s and blue K,’s is m := (Z)p(2) +
(?) (1-— p)(;) Since m < 1 by the assumption, there exists a coloring x without any red
K or blue K;. Therefore, we have R(s,t) > n.

(b) We want to make (Z)p(g) + (N1 - p)(é) less than 1 for large n. (%) < n*/2, so for

4
p =n"2/3 we have (Z)p(;) < 1/2. For this p the second term is

<TZ> (1-— p)(;) < nte?(2) < exp(tlogn — n"2/3¢%/4)
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7.

8.

Iftn < c1 3/2 for some small enough ¢ then n=2/3t2/4 > tlogn + 1, hence this term is

also less than 1/2 and we can apply part (a).

Prove that for every k > 2 there exists an integer N such that every coloring of [N] =
{1,..., N} with k colors contains three numbers a, b, ¢ satisfying ab = ¢ that have the same
color.

Solution. According to Schur’s theorem, there is a K such that every coloring of [K] with
k colors contains three numbers x,7, 2 satisfying  +y = z. Now let N = 2K and take
an arbitrary k-coloring ¢ of [N]. Let d be a coloring of [K] defined by d(i) = ¢(2). By
Schur’s theorem, there are x,y,z such that z + y = z and d(z) = d(y) = d(z). But then
2% . 2Y¥ = 2%Y = 2% and d(z) = ¢(2%) = ¢(2¥) = ¢(2%), which is what we wanted.

(a) Prove that R(4,3) < 10, i.e., any graph on 10 vertices contains a clique of size 4 or an
independent set of size 3.

Solution. Take an arbitrary vertex v. It either has 6 neighbors in red or 4 neighors in
blue. In the former case, those six neighbors induce a monochromatic triangle (R(3,3) =
6). If it’s blue, we are done, if it’s red then we get a red K4 with v. In the latter case, if

the 4 blue neighbors induce a blue edge, we get a blue triangle, otherwise we get a red
Ky.
(b) Prove that R(4,3) < 9.

Solution. Take an arbitrary vertex v. If it has 6 neighbors in red or 4 neighbors in
blue then we are done as before. So we may assume that it has 5 red neighbors and 3
blue neighbors. In fact, we may assume this for every vertex v. But then the red graph
is a 5-regular graph on 9 vertices, which is impossible because the sum of the degrees
is always even. This contradiction shows that for some v, we can indeed repeat the
argument from part (a).



