
Graph Theory - Problem Set 12 (Solutions)
December 5, 2024

Exercises

1. Using k colors, construct a coloring of the edges of the complete graph on 2k vertices without
creating a monochromatic triangle.

Solution. We can construct the desired coloring by using induction on k. Suppose that we
have constructed an edge coloring c of the complete graph on 2k−1 vertices with k− 1 colors,
say, 1, 2, . . . , k − 1. Now take two vertex-disjoint copies of this graph (so we have taken a
total of 2k−1 + 2k−1 = 2k vertices). Color the edges inside each of the copies according to
the coloring c (i.e., using only k− 1 colors), and color all of the edges between the two copies
using a new color k. It is easy to check that this gives the desired coloring with k colors, and
it contains no monochromatic triangles.

2. The lower bound for R(s, s) that we saw in the lecture is not a constructive proof: it merely
shows the existence of a red-blue coloring not containing any monochromatic copy of Ks

by bounding the number of bad graphs. Give an explicit coloring on K(s−1)2 that proves
R(s, s) > (s− 1)2.

Solution. Take s−1 disjoint Ks−1’s, color them blue, and color the complement red. This is
a 2-coloring of K(s−1)2 , and it has no blue clique of size s (two of the s vertices would belong
to different Ks−1’s, so they would be connected in red), and it has no red clique of size s,
either (two of the s vertices would belong to the same Ks−1, so they would be connected in
blue).

3. A random graph G(n, p) is a probability space of all labeled graphs on n vertices {1, 2, . . . , n},
where for each pair 1 ≤ i < j ≤ n, (i, j) is an edge of G(n, p) with probability p, independently
of any other edge (you can think of a sequence of independent coin tosses for each edge).

(a) the expected number of edges in G(n, p);

(b) the expected degree of a vertex in G(n, p);

(c) the expected number of triangles (cycles of length 3) in G(n, p);

(d) the expected number of paths of length 2 in G(n, p);

(e) the probability that the degree of a given vertex v is exactly k.

Solution.

(a) The expected number of edges in G(n, p) is
(
n
2

)
p.

(b) The expected degree of a vertex in G(n, p) is (n− 1)p.

(c) The expected number of triangles in G(n, p) is
(
n
3

)
p3. The number of possible triangles

is
(
n
3

)
and each of them arises with probability p3.

(d) The expected number of paths of length 2 in G(n, p) is 3
(
n
3

)
p2. The number of possible

paths of length 2 is 3
(
n
3

)
and each of them arises with probability p2.



(e) The probability that the degree of a given vertex v is exactly k is
(
n−1
k

)
pk(1− p)(n−1−k).

Problems

4. Prove that R(n1, . . . , nk) ≤ R(n1, . . . , nk−2, R(nk−1, nk)). Deduce that for every k and n,
there is an N such that any k-coloring of the edges of KN contains a monochromatic Kn.

Solution. Let r = R(n1, . . . , nk−2, R(nk−1, nk)). We want to show that any k-edge-coloring
of Kr will contain a clique of size ni in color i for some 1 ≤ i ≤ k. By the definition of r,
either there is such an i ∈ {1, . . . , k − 2}, or there is a clique of size R(nk−1, nk) that only
uses colors k− 1 and k. But then the definition of R(nk−1, nk), there is either a clique of size
nk−1 in color k − 1 or a clique of size nk in color k. This is what we wanted to show. Now
induction on k shows that these multicolor Ramsey numbers are indeed finite (the k = 2 case
was established in class).

5. Show that the edges of Kn can be colored with 3 colors so that the number of monochromatic
triangles is at most 1

9

(
n
3

)
.

Solution. Let X be a random variable counting the number of monochromatic triangles
in a random coloring of the edges of Kn with 3 colors, and let XT be a random variable
taking value 1 if a given triangle T is monochromatic, and 0 otherwise (a triangle is a triple
of vertices of Kn). Since the total number of possible colorings of T is 33, and there are 3
ways to color T as a monochromatic triangle, we have that E[XT ] = 3/33.

Since X =
∑

T XT , by the linearity of expectation (and since there are
(
n
3

)
possible distinct

triangles in Kn), we have that

E[X] = E[
∑
T

XT ] =
∑
T

E[XT ] =

(
n

3

)
· 1
9
.

Thus, there exists a coloring of Kn such that the number of monochromatic triangles is at
most

(
n
3

)
/9.

6. (a) Show that if for some real number 0 ≤ p ≤ 1 we have
(
n
s

)
p(

s
2) +

(
n
t

)
(1− p)(

t
2) < 1, then

R(s, t) > n.

(b) Deduce that there is a positive constant c such that R(4, t) ≥ c · t3/2

log3/2 t
.

Solution.

(a) Consider the random coloring of the edges of Kn by red and blue, such that each edge
is colored independently by red with probability p, and by blue with probability 1 − p.

Clearly, the expected number of monochromatic cliques of size s in G(n, p) is
(
n
s

)
p(

s
2).

Therefore, the sum of expected numbers of red Ks’s and blue Kt’s is m :=
(
n
s

)
p(

s
2) +(

n
t

)
(1− p)(

t
2). Since m < 1 by the assumption, there exists a coloring χ without any red

Ks or blue Kt. Therefore, we have R(s, t) > n.

(b) We want to make
(
n
4

)
p(

4
2) +

(
n
t

)
(1 − p)(

t
2) less than 1 for large n.

(
n
4

)
≤ n4/2, so for

p = n−2/3 we have
(
n
4

)
p(

4
2) < 1/2. For this p the second term is(

n

t

)
(1− p)(

t
2) ≤ nte−p(t2) ≤ exp(t log n− n−2/3t2/4)
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If n ≤ c t3/2

log3/2 t
for some small enough c then n−2/3t2/4 > t log n + 1, hence this term is

also less than 1/2 and we can apply part (a).

7. Prove that for every k ≥ 2 there exists an integer N such that every coloring of [N ] =
{1, . . . , N} with k colors contains three numbers a, b, c satisfying ab = c that have the same
color.

Solution. According to Schur’s theorem, there is a K such that every coloring of [K] with
k colors contains three numbers x, y, z satisfying x + y = z. Now let N = 2K and take
an arbitrary k-coloring c of [N ]. Let d be a coloring of [K] defined by d(i) = c(2i). By
Schur’s theorem, there are x, y, z such that x + y = z and d(x) = d(y) = d(z). But then
2x · 2y = 2x+y = 2z and d(x) = c(2x) = c(2y) = c(2z), which is what we wanted.

8. (a) Prove that R(4, 3) ≤ 10, i.e., any graph on 10 vertices contains a clique of size 4 or an
independent set of size 3.

Solution. Take an arbitrary vertex v. It either has 6 neighbors in red or 4 neighors in
blue. In the former case, those six neighbors induce a monochromatic triangle (R(3, 3) =
6). If it’s blue, we are done, if it’s red then we get a red K4 with v. In the latter case, if
the 4 blue neighbors induce a blue edge, we get a blue triangle, otherwise we get a red
K4.

(b) Prove that R(4, 3) ≤ 9.

Solution. Take an arbitrary vertex v. If it has 6 neighbors in red or 4 neighbors in
blue then we are done as before. So we may assume that it has 5 red neighbors and 3
blue neighbors. In fact, we may assume this for every vertex v. But then the red graph
is a 5-regular graph on 9 vertices, which is impossible because the sum of the degrees
is always even. This contradiction shows that for some v, we can indeed repeat the
argument from part (a).
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