Graph Theory - Problem Set 11 (Solutions)

November 28, 2024

Exercises

1. Let (2,P) be a probability space. Prove that for any collection of events &1, ..., &, we have

k k
P [U 5}] <> P&,

and if &1, ..., &, are disjoint events, then we have equality here.

Solution. The proof is by induction on n. For two events £ and £ we have that

P U&= Y pw)< D pw)+ Y pw)=PE] +PlE).
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Assume that the statement holds for n — 1 and let us prove it for n:
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+ P& < ni PlE] + P[Ea] = ) P&

2. Let o be an arbitrary permutation of {1,...,n}, selected uniformly at random from the set
of all permutations, that is, each permutation is selected with probability % Recall that i is
a fixed point if o(i) = i. What is the expectation of the number of fixed points in o7
Solution. Let X; be a random variable being 1 if the i-th position is a fixed point, and 0
otherwise. Then, by linearity of expectation, the expected number of fixed points in a random

permutation are simply Y " | E[X;]. On the other hand, E[X;] = 1/n, so we obtain that
n
> EXi=n-1/n=1
i=1

3. Take a complete graph K, where each edge is independently colored red, green or blue with
probability 1/3. What is the expected number of red cliques of size a in this graph?

Solution. We assume that vertices of G are labeled from 1 to n. Let X be the number of
crossing edges. We decompose
X = X1,
1e(%)
where ([Z]) is the set of a-element subsets of the set {1,...,n} and X7 is the indicator random
variable for clique on vertices with indices from I being red colored.

By linearity of expectation, we have

EX]= ) E[X]].
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On the other hand E[X;] = (%) () , and, finally, the expected number of red cliques of size a

in this graph is 1\ )
== (2) (5)

4. Prove that o(G) > 27;’“1” for every graph with n vertices and m edges follows from Turan’s

theorem (in fact, they are essentially equivalent).

Solution. Let a = a(G) and let H be the complement of G. Then H contains no Kq+1, S0

by Turén’s theorem, H has at most (1— é)%z edges. But then G has m > ”(”2_1) — ("—22 — %) =

n2
2m—+n’

% — 5 edges. Rearranging this, we get 2m +n > %2 and hence a >

5. In this exercise, we prove the following two results which are used in the proof of Erdos
theorem (existence of a graph with large girth and large chromatic number).

(a) The expectation of the number of /-cycles, 3 < ¢ < n,in G € G(n,p) is: %ng.

(b) For any integers n and k such that n > k > 2, the probability that a graph G € G(n,p)
has an independent set larger than k is at most: Pr[a(G) > k] < (’,;‘)(1 — p)(g)

Solution.

(a) Let X : G(n,p) — N be the random variable that assigns to a random graph G its
number of /-cycles. Let Cy be the set of all /-cycles in the complete graph with same
vertices as any G. Since there are n(n —1)...(n — £+ 1) ways of choosing a sequence of
¢ distinct vertices, and each f-cycle is identified by 2¢ of those sequences, we have

(n—l)...(n—ﬁ—kl)pg.

n

For each C' € Cy, define X¢ : G(n,p) — {0,1} to be the indicator random variable for
C C G. We have E[X¢] = P[C C G] = p’. Since X (G) = >-cec, Xc(G), the expectation
of X follows from the linearity of expectation.

(b) The probability that a fixed k-set is independent in G is (1 — p)(g) The assertion then
follows from the fact that there are only (Z) such k-sets.

Problems

6. Let G be a graph with m edges, and let X C V(G) be a random set that contains each vertex
of G independently with probability 1/2. Let G[X] be the induced subgraph of G with vertex
set X and contains all edges in G with both ends in X. What is the expected number of
edges in G[X]?

Solution. Let Y be the number of edges in G[X]. Then Y = 3  p) Ye, where Y, is
the indicator of the event that the edge e is induced by X. This event occurs if and only

if both endpoints of e are included in X, which has probability 1/4. So by the linearity of
expectation, E[Y] =3 . p) E[Ye] = m/4.



7. Let G be a graph with m edges, and let k be a positive integer. Prove that the vertices of G
can be colored with & colors in such a way that there are at most m/k monochromatic edges
(i.e., edges with both endpoints colored the same).

Solution. We assume that edges of GG are labeled from 1 to m. For any 1 < ¢ < m, we define
the random variable X; being 1 whenever endpoints of the i-th edge are colored by the same

m m
color, and 0 otherwise. Let X = > X;. Then E [X] = > E[X;]. On the other hand, it is easy
‘ i
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to see that E [X;] = k% = . Therefore, E [X] = 2. Thus, there is a coloring of the vertices
of G with k colors such that at most 7+ edges of G connect two vertices with the same color.

8. Prove that if G has 2n vertices and e edges then it contains a bipartite subgraph with at least
e 5.7 edges.

Hint: Use a random partition of the vertices into two parts of size n.

Solution. The proof is similar to the probabilistic proof for the bound e/2 given in lectures,
but now we choose a more subtle probability space. Let A be an n-element subset of V(G)
chosen uniformly among all n-element subsets of V(G). Set B = V(G) — T. Call an edge
{x,y} crossing if exactly one of x, y are in A. Then any edge {z,y} now has probability 5
of being crossing.

We complete the proof with the standard arguments. Let X be the number of crossing
edges and X, be the indicator random variable for {z,y} being crossing. By linearity of

expectation,
n

e——.
2n —1

EX]= ) E[X,]=
{z.y}€E(G)
Thus, there is a choice of T' such that X > e5 "5 and the set of those crossing edges form a
bipartite graph.

9. Prove that ex(n,Coy) > %nlﬂ/(%_l) for every n, k > 2.

Hint: Apply the same idea as in proving a lower bound of ex(n, K4).

Solution. This proof follows the same idea used in the lectures for K ;. Let p = %n_lﬂ/(%_l),

and consider the random graph G on n vertices that contains each edge independently with
probability p. Let X be the number of edges in G, then E[X]| = W > %n”l/(%_l). Let
Y be the number of cycles of length 2k in G. There are at most n(n—1)...(n—2k+1) < n2k
potential cycles, and each occurs in G with probability p?*, so

1 1
< 2k 2k _ 2k/(2k-1) 14+1/(2k—1)
E[Y] < n*p —Q%n < —1671

Now let H be a subgraph of G obtained by deleting an edge from each 2k-cycle of G. Then
in expectation, H has at least E[X — Y] =E[X] - E[Y] > 1—16n1+1/(2k_1) edges, so there is an
instance with at least this many edges. This graph is Coyp-free.

Remark: one can get better constants for large n by choosing p more carefully.



