
Graph Theory - Problem Set 11 (Solutions)
November 28, 2024

Exercises

1. Let (Ω,P) be a probability space. Prove that for any collection of events E1, . . . , Ek, we have

P

[
k⋃

i=1

Ei

]
≤

k∑
i=1

P[Ei],

and if E1, . . . , Ek are disjoint events, then we have equality here.

Solution. The proof is by induction on n. For two events E1 and E2 we have that

P[E1 ∪ E2] =
∑

ω∈E1∪E2

p(ω) ≤
∑
ω∈E1

p(ω) +
∑
ω∈E2

p(ω) = P[E1] + P[E2].

Assume that the statement holds for n− 1 and let us prove it for n:

P

[
n⋃
1

Ei

]
= P

[(
n−1⋃
1

Ei

)
∪ En

]
⩽ P

[
n−1⋃
1

Ei

]
+ P[En] ⩽

n−1∑
1

P[Ei] + P[En] =
n∑
1

P[Ei].

2. Let σ be an arbitrary permutation of {1, . . . , n}, selected uniformly at random from the set
of all permutations, that is, each permutation is selected with probability 1

n! . Recall that i is
a fixed point if σ(i) = i. What is the expectation of the number of fixed points in σ?

Solution. Let Xi be a random variable being 1 if the i-th position is a fixed point, and 0
otherwise. Then, by linearity of expectation, the expected number of fixed points in a random
permutation are simply

∑n
i=1 E[Xi]. On the other hand, E[Xi] = 1/n, so we obtain that

n∑
i=1

E[Xi] = n · 1/n = 1.

3. Take a complete graph Kn where each edge is independently colored red, green or blue with
probability 1/3. What is the expected number of red cliques of size a in this graph?

Solution. We assume that vertices of G are labeled from 1 to n. Let X be the number of
crossing edges. We decompose

X =
∑

I∈([n]
a )

XI ,

where
(
[n]
a

)
is the set of a-element subsets of the set {1, . . . , n} and XI is the indicator random

variable for clique on vertices with indices from I being red colored.

By linearity of expectation, we have

E[X] =
∑

I∈([n]
a )

E[XI ].



On the other hand E[XI ] =
(
1
3

)(a2) , and, finally, the expected number of red cliques of size a
in this graph is

E[X] =

(
n

a

)(
1

3

)(a2)
4. Prove that α(G) ≥ n2

2m+n for every graph with n vertices and m edges follows from Turán’s
theorem (in fact, they are essentially equivalent).

Solution. Let α = α(G) and let H be the complement of G. Then H contains no Kα+1, so

by Turán’s theorem, H has at most (1− 1
α)

n2

2 edges. But then G has m ≥ n(n−1)
2 −(n

2

2 − n2

2α) =
n2

2α − n
2 edges. Rearranging this, we get 2m+ n ≥ n2

α and hence α ≥ n2

2m+n .

5. In this exercise, we prove the following two results which are used in the proof of Erdös
theorem (existence of a graph with large girth and large chromatic number).

(a) The expectation of the number of ℓ-cycles, 3 ≤ ℓ ≤ n, inG ∈ G(n, p) is: n(n−1)...(n−ℓ+1)
2ℓ pℓ.

(b) For any integers n and k such that n ≥ k ≥ 2, the probability that a graph G ∈ G(n, p)
has an independent set larger than k is at most: Pr[α(G) ≥ k] ≤

(
n
k

)
(1− p)(

k
2).

Solution.

(a) Let X : G(n, p) → N be the random variable that assigns to a random graph G its
number of ℓ-cycles. Let Cℓ be the set of all ℓ-cycles in the complete graph with same
vertices as any G. Since there are n(n− 1) . . . (n− ℓ+1) ways of choosing a sequence of
ℓ distinct vertices, and each ℓ-cycle is identified by 2ℓ of those sequences, we have

|Cℓ| =
n(n− 1) . . . (n− ℓ+ 1)

2ℓ
pℓ.

For each C ∈ Cℓ, define XC : G(n, p) → {0, 1} to be the indicator random variable for
C ⊆ G. We have E[XC ] = P[C ⊆ G] = pℓ. Since X(G) =

∑
C∈Cℓ XC(G), the expectation

of X follows from the linearity of expectation.

(b) The probability that a fixed k-set is independent in G is (1− p)(
k
2). The assertion then

follows from the fact that there are only
(
n
k

)
such k-sets.

Problems

6. Let G be a graph with m edges, and let X ⊆ V (G) be a random set that contains each vertex
of G independently with probability 1/2. Let G[X] be the induced subgraph of G with vertex
set X and contains all edges in G with both ends in X. What is the expected number of
edges in G[X]?

Solution. Let Y be the number of edges in G[X]. Then Y =
∑

e∈E(G) Ye, where Ye is
the indicator of the event that the edge e is induced by X. This event occurs if and only
if both endpoints of e are included in X, which has probability 1/4. So by the linearity of
expectation, E[Y ] =

∑
e∈E(G) E[Ye] = m/4.
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7. Let G be a graph with m edges, and let k be a positive integer. Prove that the vertices of G
can be colored with k colors in such a way that there are at most m/k monochromatic edges
(i.e., edges with both endpoints colored the same).

Solution. We assume that edges of G are labeled from 1 to m. For any 1 ⩽ i ⩽ m, we define
the random variable Xi being 1 whenever endpoints of the i-th edge are colored by the same

color, and 0 otherwise. Let X =
m∑
i
Xi. Then E [X] =

m∑
i
E [Xi]. On the other hand, it is easy

to see that E [Xi] =
k
k2

= 1
k . Therefore, E [X] = m

k . Thus, there is a coloring of the vertices
of G with k colors such that at most m

k edges of G connect two vertices with the same color.

8. Prove that if G has 2n vertices and e edges then it contains a bipartite subgraph with at least
e · n

2n−1 edges.

Hint: Use a random partition of the vertices into two parts of size n.

Solution. The proof is similar to the probabilistic proof for the bound e/2 given in lectures,
but now we choose a more subtle probability space. Let A be an n-element subset of V (G)
chosen uniformly among all n-element subsets of V (G). Set B = V (G) − T. Call an edge
{x, y} crossing if exactly one of x, y are in A. Then any edge {x, y} now has probability n

2n−1
of being crossing.

We complete the proof with the standard arguments. Let X be the number of crossing
edges and Xxy be the indicator random variable for {x, y} being crossing. By linearity of
expectation,

E[X] =
∑

{x,y}∈E(G)

E[Xxy] = e
n

2n− 1
.

Thus, there is a choice of T such that X ⩾ e n
2n−1 and the set of those crossing edges form a

bipartite graph.

9. Prove that ex(n,C2k) >
1
16n

1+1/(2k−1) for every n, k ≥ 2.

Hint: Apply the same idea as in proving a lower bound of ex(n,Ks,t).

Solution. This proof follows the same idea used in the lectures forKs,s. Let p = 1
2n

−1+1/(2k−1),
and consider the random graph G on n vertices that contains each edge independently with
probability p. Let X be the number of edges in G, then E[X] = n(n−1)p

2 ≥ 1
8n

1+1/(2k−1). Let
Y be the number of cycles of length 2k in G. There are at most n(n−1) . . . (n−2k+1) ≤ n2k

potential cycles, and each occurs in G with probability p2k, so

E[Y ] ≤ n2kp2k =
1

22k
n2k/(2k−1) ≤ 1

16
n1+1/(2k−1)

Now let H be a subgraph of G obtained by deleting an edge from each 2k-cycle of G. Then
in expectation, H has at least E[X − Y ] = E[X]− E[Y ] ≥ 1

16n
1+1/(2k−1) edges, so there is an

instance with at least this many edges. This graph is C2k-free.

Remark: one can get better constants for large n by choosing p more carefully.

3


