
Graph Theory - Problem Set 10 (Solutions)
November 21, 2024

Exercises

1. Prove that if G is a K3-free graph, then α(G) ≥ ∆(G).

Solution. If G is triangle-free then every neighborhood is an independent set, so α(G) ≥
∆(G).

2. Prove the lower bound for the Erdős-Stone-Simonovits theorem, i.e., for every graph H with
chromatic number s ≥ 2, ex(n,H) ≥ |E(T (n, s− 1))|.
Solution. The Turán graph T (n, s − 1) is (s − 1)-colorable, so it does not contain any
subgraph of chromatic number s, in particular, ex(n,H) ≥ |E(T (n, s− 1))|.

3. Deduce from the proof of Mantel’s theorem that G = K⌊n
2
⌋,⌈n

2
⌉ is the only “extremal” K3-free

graph, i.e., every K3-free graph with ex(n,K3) = ⌊n2

4 ⌋ edges is isomorphic to G.

Solution. Analyzing the proof, we see that the optimum is reached when ∆ = ⌊n2 ⌋ or ⌈n2 ⌉,
and every vertex not adjacent to v touches exactly ∆ edges, which are all distinct. This is
only possible if there is no edge going between two non-neighbors of v, i.e., the non-neighbors
are all connected to the neighbors of v. Then the graph is isomorphic to K∆,n−∆.

4. Let L be a set of n lines in the plane and P a set of n points in the plane. Prove that the
number of point-line incidences, i.e., pairs (p, ℓ) ∈ P × L with p ∈ ℓ is O(n3/2).

Solution. Let G be the bipartite graph on 2n vertices with parts P and L as vertices, where
a point in P is connected to a line in L if the point lies on the line. Note that this graph
is K2,2-free. Indeed, two lines in L share at most 1 point in common. Then we can apply
the Kővári-Sós-Turán theorem on G to see that the graph has at most cn3/2 edges for some
constant c.

Problems

5. Recall from Problem Set 8 that α(G) + τ(G) = |V (G)|. Prove that if G is triangle-free then
|E(G)| ≤ α(G) · τ(G), and use this to reprove Mantel’s theorem.

Solution. By Exercise 1, we have α(G) ≥ ∆(G). Now take a vertex cover of size τ(G).
They touch all edges. On the other hand, the number of edges touching these vertices is at
most ∆(G) · τ(G) ≤ α(G) · τ(G), proving the first statement. The second statement is just
Cauchy-Schwarz (or AM-GM): if x+ y = n then xy ≤ n2/4.

6. Prove the Kővári-Sós-Turán theorem: For any integers 2 ≤ s ≤ t there is a constant c such
that ex(n,Ks,t) ≤ cn2−1/s.

Hint: Use a similar double-counting argument as in the proof of ex(n,K2,2) ≤ O(n3/2).



Solution. The proof follows the K2,2 case seen in the lectures. We give a sketch here, without
explaining the calculations in detail.

Let G be a Ks,t-free graph on n vertices and m edges. The idea is to count the number of
pairs (v, {x1, . . . , xs}), where v, x1, . . . , xs are vertices, and v is adjacent to all of x1, . . . , xs.
On the one hand, this is at least

∑
v∈V

(
d(v)

s

)
≥ n ·

(∑
d(v)
n

s

)
= n ·

(
2m/n

s

)
> Cn(m/n)s

for some constant C. On the other hand, every s-tuple has at most t− 1 common neighbors,
so this number is at most

(t− 1)

(
n

s

)
≤ Dns

for some constantD. But then Cn(m/n)s ≤ Dns, which is equivalent tom/n ≤ ((D/C)ns−1)1/s,
and thus m ≤ (D/C)1/s · n2−1/s, as needed.

7. Let G be a d-regular graph on n vertices with girth at least 2k+1. Prove that d ≤ n1/k, i.e.,
G has at most 1

2n
1+1/k edges.

Solution. Suppose d > n1/k. Let v be a vertex and let V1, . . . , Vk be subsets of vertices
where Vi is the set of vertices of distance i from v. As there is no cycle of length less than
2k + 1, no vertex in Vi is connected to multiple vertices in Vi−1. The regularity then implies
|Vi| = d(d − 1)i−1. But then G contains at least |Vk| ≥ d(d − 1)k−1 > (d − 1)k ≥ n, a
contradiction.

8. Show that ex(n, ) = ⌊n2

4 ⌋ for every n > 3.

Hint: Modify slightly the proof of Mantel’s theorem.

Solution. Take a vertex v of max degree ∆. If ∆ ≥ 3 then the neighborhood of v contains no
edge: otherwise we get a graph which is forbidden. We can then repeat the proof of Mantel
to get that the number of edges is at most ∆(n−∆) ≤ ⌊n2

4 ⌋. Otherwise, ∆ ≤ 2, so the total

number of edges is at most n∆/2 ≤ n. When n > 3, this is at most ⌊n2

4 ⌋, so we are done.

Another proof is to use Mantel’s theorem: We know there is a triangle in any graph with more
than ⌊n2

4 ⌋ edges. This forms a graph in question, unless this triangle is isolated. One can
then delete the vertices of the triangle and iterate on the remaining, denser graph. Eventually
this will yield a graph that is way too dense not to contain the graph. (fyi: this was just a
solution sketch).

9. This exercise is about constructing a K2,2-free graph on n vertices with n3/2 edges for large
n.

Let p ≥ 3 be a prime, and G0 be the graph on the vertex set Zp×Zp where (x, y) and (x1, y1)
are connected by an edge and only if x+x1 = yy1. (Technically this is a multigraph as it has
loops.) Let G be the graph on n = p2 vertices that we get by deleting the loops from G0.

(a) Prove that G0 is p-regular and has at most p loops.

(b) Deduce that G has (12 + o(1))n3/2 edges.

(c) Show that any two vertices in G have at most 1 common neighbor (and hence G is
K2,2-free).
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Solution.

(a) For every x, y, y1 there is a unique choice of x1 such that (x, y) and (x1, y1) are adjacent.
Also, loops correspond to solutions of the equation 2x = y2. There is therefore one loop
for every choice of y, giving at most p loops in total.

(b) G has n = p2 vertices, and 1
2(np− p) = (12 + o(1))n3/2 edges.

(c) For any (x1, y1) and (x2, y2), a vertex (x, y) adjacent to both of them satisfies x+x1 = yy1
and x+x2 = yy2, so x1−x2 = y(y1−y2). If y1 = y2 then x1 = x2, so if our chosen vertices
(x1, y1) and (x2, y2) were distinct then y1 − y2 ̸= 0. Then y is uniquely determined from
the last equation, and this defines x, as well.
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