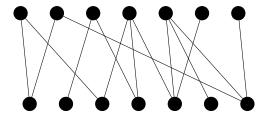
Graph Theory - Problem Set 7

October 31, 2024

Exercises

- 1. Construct preference lists for the vertices of $K_{3,3}$ so that there are multiple stable matchings.
- 2. Find a maximum matching in the following graph.



- 3. Construct a 2-regular graph without a perfect matching.
- 4. Let G be a bipartite graph on 2n vertices such that $\alpha(G) = n$.
 - (a) Show that both parts of G contain n vertices.
 - (b) Check that Hall's condition holds for G and then deduce that G has a perfect matching.

Problems

- 5. Prove the following "defect" version of Hall's theorem:
 - If $G = (A \cup B, E)$ is a bipartite graph such that $|N(S)| \ge |S| d$ holds for every $S \subseteq A$, then G has a matching with at least |A| d edges.
- 6. An $r \times s$ Latin rectangle is an $r \times s$ matrix A with entries in $\{1, \ldots, s\}$ such that each integer occurs at most once in each row and at most once in each column. An $s \times s$ Latin rectangle is called a Latin square. Prove that every $r \times s$ Latin rectangle can be extended to an $s \times s$ Latin square.
 - Hint: Consider a bipartite graph that models the constraints of any $i \in \{1, ..., s\}$ appearing only once in each row and column.
- 7. Let G be a bipartite graph with both parts of the same size 2n and minimum degree at least n. Prove that G has a perfect matching.
- 8. Prove König's line coloring theorem: for every bipartite graph G, we have $\chi'(G) = \Delta(G)$.

 Hint: One proof is very similar (while simpler) to the proof of Vizing's theorem.
- 9. Prove that every bipartite graph G has a matching of size at least $|E(G)|/\Delta(G)$.