Graph Theory - Problem Set 4

October 3, 2024

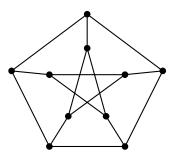
Exercises

- 1. In this exercise, we show that the sufficient conditions for Hamiltonicity that we saw in the lecture are tight in some sense.
 - (a) For every $n \ge 2$, find a non-Hamiltonian graph on n vertices that has $\binom{n-1}{2} + 1$ edges.
 - (b) For every $n \ge 2$, find a non-Hamiltonian graph on n vertices that has minimum degree $\lceil \frac{n}{2} \rceil 1$.
 - (c) Find a non-Hamiltonian graph G which satisfies $\alpha(G) = \kappa(G) + 1$.
- 2. For every $k, n \ge 2$, find a graph G on at least n vertices such that $\delta(G) = k$ but G contains no cycle longer than k + 1.
- 3. Check that the proof of Dirac's theorem also proves Ore's theorem.

<u>Dirac's theorem</u>: Let G be a graph on $n \geq 3$ vertices. If $\delta(G) \geq \frac{n}{2}$, then G contains a Hamilton cycle.

<u>Ore's theorem</u>: Let G be a graph on $n \ge 3$ vertices. If $d(u) + d(v) \ge n$ for any non-adjacent vertices u and v, then G contains a Hamilton cycle.

4. The graph below is called the Petersen graph. Does it have a Hamilton path? Does it have a Hamilton cycle? Provide reasons for your answers.



Problems

- 5. Use Ore's theorem from Exercise 3 to give a short proof of the fact that any *n*-vertex graph G with more than $\binom{n-1}{2} + 1$ edges has a Hamilton cycle.
- 6. Let G be a connected graph on n vertices with minimum degree δ . Show that
 - (a) if $\delta \leq \frac{n-1}{2}$ then G contains a path of length 2δ , and
 - (b) if $\delta \geq \frac{n-1}{2}$ then G contains a Hamilton path.

- 7. Suppose that each edge of the complete graph K_n is painted either red or blue. Prove that this colored graph has a Hamilton path, which is the union of a red path and a blue path. (We allow the case when one of the paths has length 0, i.e., the Hamilton path uses only one color.)
- 8. Prove the following sufficient conditions of Hamiltonicity, which generalizes Dirac's theorem. Chvátal's theorem (1972): Let G be a graph on $n \geq 3$ vertices, whose degree sequence of its vertices is $d_1 \leq d_2 \leq \cdots \leq d_n$. If there is no $1 \leq k < \frac{n}{2}$ for which $d_k \leq k$ and $d_{n-k} < n k$, then G is Hamiltonian.
 - Hint: Show that its closure c(G) is complete by contradiction. Start by taking two non-adjacent vertices in c(G) with the largest sum of degrees.
- 9. (*) Let G be a graph in which every vertex has odd degree. Show that every edge of G is contained in an even number of Hamilton cycles.
 - Hint: Let $xy \in E(G)$ be given. The Hamilton cycles through xy correspond to the Hamilton paths in G xy from x to y. Consider the set \mathcal{H} of all Hamilton paths in G xy starting at x, and show that an even number of these end in y. To show this, define a graph on \mathcal{H} so that the desired assertion follows from the fact (proved in Problem Set 1): the number of odd-degree vertices in a graph is always even.