Graph Theory - Problem Set 2

September 19, 2024

Exercises

1. Prove the triangle-inequality in graphs: for any three vertices u, v, w in a graph G,

$$d(u,v) + d(v,w) \ge d(u,w).$$

- 2. A graph that does not contain any cycles is called a *forest*. Prove that a forest on n vertices with c connected components has exactly n-c edges.
- 3. Let T be a tree and e be an edge of T. Prove that T e is not connected.
- 4. Let T be a tree and let u and v be two non-adjacent vertices of T. Prove that T + uv contains a unique cycle.

Problems

- 5. Let G be a graph with minimum degree $\delta > 1$. Prove that G contains a cycle of length at least $\delta + 1$.
- 6. Show that every tree T has at least $\Delta(T)$ leaves. (Where $\Delta(T)$ is the maximum degree of T.)
- 7. Let G be a graph on n vertices. Prove that if G has at least 2n-1 edges, then it contains an even cycle.
- 8. Let T be an n-vertex tree that has exactly 2k vertices of odd degree. Show that T can be split into k edge-disjoint paths, i.e., T is the union of k edge-disjoint paths. Note that we only consider path of length at least 1.

Hint: Prove by induction.