Graph Theory - Problem Set 11

November 28, 2024

Exercises

1. Let (Ω, \mathbb{P}) be a probability space. Prove that for any collection of events $\mathcal{E}_1, \dots, \mathcal{E}_k$, we have

$$\mathbb{P}\left[\bigcup_{i=1}^k \mathcal{E}_i\right] \leq \sum_{i=1}^k \mathbb{P}[\mathcal{E}_i],$$

and if $\mathcal{E}_1, \ldots, \mathcal{E}_k$ are disjoint events, then we have equality here.

- 2. Let σ be an arbitrary permutation of $\{1, \ldots, n\}$, selected uniformly at random from the set of all permutations, that is, each permutation is selected with probability $\frac{1}{n!}$. Recall that i is a fixed point if $\sigma(i) = i$. What is the expectation of the number of fixed points in σ ?
- 3. Take a complete graph K_n where each edge is independently colored red, green or blue with probability 1/3. What is the expected number of red cliques of size a in this graph?
- 4. Prove that $\alpha(G) \geq \frac{n^2}{2m+n}$ for every graph with n vertices and m edges follows from Turán's theorem (in fact, they are essentially equivalent).
- 5. In this exercise, we prove the following two results which are used in the proof of Erdös theorem (existence of a graph with large girth and large chromatic number).
 - (a) The expectation of the number of ℓ -cycles, $3 \le \ell \le n$, in $G \in \mathcal{G}(n,p)$ is: $\frac{n(n-1)...(n-\ell+1)}{2\ell}p^{\ell}$.
 - (b) For any integers n and k such that $n \ge k \ge 2$, the probability that a graph $G \in \mathcal{G}(n,p)$ has an independent set larger than k is at most: $\Pr[\alpha(G) \ge k] \le \binom{n}{k}(1-p)^{\binom{k}{2}}$.

Problems

- 6. Let G be a graph with m edges, and let $X \subseteq V(G)$ be a random set that contains each vertex of G independently with probability 1/2. Let G[X] be the induced subgraph of G with vertex set X and contains all edges in G with both ends in X. What is the expected number of edges in G[X]?
- 7. Let G be a graph with m edges, and let k be a positive integer. Prove that the vertices of G can be colored with k colors in such a way that there are at most m/k monochromatic edges (i.e., edges with both endpoints colored the same).
- 8. Prove that if G has 2n vertices and e edges then it contains a bipartite subgraph with at least $e \cdot \frac{n}{2n-1}$ edges.

Hint: Use a random partition of the vertices into two parts of size n.

9. Prove that $ex(n, C_{2k}) > \frac{1}{16}n^{1+1/(2k-1)}$ for every $n, k \ge 2$. Hint: Apply the same idea as in proving a lower bound of $ex(n, K_{s,t})$.