Graph Theory - Problem Set 10

November 21, 2024

Exercises

- 1. Prove that if G is a K_3 -free graph, then $\alpha(G) \geq \Delta(G)$.
- 2. Prove the lower bound for the Erdős-Stone-Simonovits theorem, i.e., for every graph H with chromatic number $s \geq 2$, $ex(n, H) \geq |E(T(n, s 1))|$.
- 3. Deduce from the proof of Mantel's theorem that $G = K_{\lfloor \frac{n}{2} \rfloor, \lceil \frac{n}{2} \rceil}$ is the only "extremal" K_3 -free graph, i.e., every K_3 -free graph with $\operatorname{ex}(n, K_3) = \lfloor \frac{n^2}{4} \rfloor$ edges is isomorphic to G.
- 4. Let L be a set of n lines in the plane and P a set of n points in the plane. Prove that the number of point-line incidences, i.e., pairs $(p, \ell) \in P \times L$ with $p \in \ell$ is $O(n^{3/2})$.

Problems

- 5. Recall from Problem Set 8 that $\alpha(G) + \tau(G) = |V(G)|$. Prove that if G is triangle-free then $|E(G)| \leq \alpha(G) \cdot \tau(G)$, and use this to reprove Mantel's theorem.
- 6. Prove the Kővári-Sós-Turán theorem: For any integers $2 \le s \le t$ there is a constant c such that $\operatorname{ex}(n, K_{s,t}) \le cn^{2-1/s}$.
 - Hint: Use a similar double-counting argument as in the proof of $ex(n, K_{2,2}) \leq O(n^{3/2})$.
- 7. Let G be a d-regular graph on n vertices with girth at least 2k + 1. Prove that $d \le n^{1/k}$, i.e., G has at most $\frac{1}{2}n^{1+1/k}$ edges.
- 8. Show that $ex(n, \triangleright -) = \lfloor \frac{n^2}{4} \rfloor$ for every n > 3.

 Hint: Modify slightly the proof of Mantel's theorem.
- 9. This exercise is about constructing a $K_{2,2}$ -free graph on n vertices with $n^{3/2}$ edges for large n.
 - Let $p \geq 3$ be a prime, and G_0 be the graph on the vertex set $\mathbb{Z}_p \times \mathbb{Z}_p$ where (x, y) and (x_1, y_1) are connected by an edge and only if $x + x_1 = yy_1$. (Technically this is a multigraph as it has loops.) Let G be the graph on $n = p^2$ vertices that we get by deleting the loops from G_0 .
 - (a) Prove that G_0 is p-regular and has at most p loops.
 - (b) Deduce that G has $(\frac{1}{2} + o(1))n^{3/2}$ edges.
 - (c) Show that any two vertices in G have at most 1 common neighbor (and hence G is $K_{2,2}$ -free).