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Plan

Estimation with a point treatment.
Standardisation
Propensity methods

Marginal structural models

Uncertainty quantification
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Some fundamentals (as a reminder for you)

Slides 249-257 describe some fundamentals about statistical modelling. All
the details will not be covered in the lectures. The idea is that you might
find this background information useful.
Slides labelled with an asterisk (*) are, in particular, additional details that
we will not study in depth in class.
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Reminder: Maximum Likelihood Estimation (MLE)

Consider a vector ✓ = [✓1, ✓2, . . . , ✓k ]
T of parameters that indexes the

distribution {f (· ; ✓) | ✓ 2 ⇥}, where ⇥ is a parameter space.
We evaluate the observed data sample Y = (Y1,Y2, . . . ,Yn), which gives us the
likelihood,

Ln(✓) = Ln(✓;Y ) = fn(Y ; ✓),

where fn(Y ; ✓) is a product of n density functions evaluated at
Y = (Y1,Y2, . . . ,Yn).
MLE maximises the likelihood, i.e.

✓ = arg max
✓2⇥

Ln(✓ ;Y ).

The logarithm is a monotone function, and thus it is more convenient to
maximise the log-likelihood: `(✓ ;Y ) = log Ln(✓ ;Y ). If `(✓ ;Y ) is di↵erentiable in

✓, we solve M(Y ; ✓) = �`(✓ ;Y )

�✓ , , i.e. the score equations (also called likelihood
equations)

p1 ⌘
@`

@✓1
= 0,

@`

@✓2
= 0, . . . ,

@`

@✓k
= 0.

.
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*Reminder: Likelihood continues

We need local concavity. Thus, the Hessian matrix

H

⇣
b✓
⌘
=

2

6666664

@2`
@✓2

1

���
✓=b✓

@2`
@✓1 @✓2

���
✓=b✓

. . . @2`
@✓1 @✓k

���
✓=b✓

@2`
@✓2 @✓1

���
✓=b✓

@2`
@✓2

2

���
✓=b✓

. . . @2`
@✓2 @✓k

���
✓=b✓

...
...

. . .
...

@2`
@✓k @✓1

���
✓=b✓

@2`
@✓k @✓2

���
✓=b✓

. . . @2`
@✓2k

���
✓=b✓

3

7777775
,

is negative semi-definite at b✓ . The Fisher information matrix is defined as

I(✓) = E
h
H

⇣
b✓
⌘i

.
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Logistic regression

Suppose Y 2 {0, 1}. Define � = [�1, �2, . . . , �k ]
T as a vector of k parameter

and consider a k dimensional covariate X. Then the logistic model is defined as

logit(E[Yi | Xi ]) = logit(pi ) = log

✓
pi

1� pi

◆
= �T

Xi ,

or, equivalently, we can write that that Y follows a Bernoulli distribution,

P(Yi = y | Xi ) = pi
y (1� pi )

1�y =

 
e
�T

Xi

1 + e�
TXi

!y  
1� e

�T
Xi

1 + e�
TXi

!1�y

=
e
�T

Xi ·y

1 + e�
TXi

.

Thus the likelihood is L(�) =
Qn

i=1
pi

Yi (1� pi )1�Yi , which can be solved
numerically, e.g. solving the score equations (you can derive this from the
log-likelihood, take derivatives wrt. �).

nX

i=1

✓
1
Xi

◆✓
Yi �

exp(�T
Xi )

1 + exp(�TXi )

◆
= 0.
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M-estimation, preliminaries

You only need to know the basics of M-estimation. Some of the slides on
M-estimation, labelled with *, are additional readings that you do not need
to study in detail.

Consider a generic statistical model, and suppose we have i.i.d. random
vectors Z1, . . . ,Zn where Z ⇠ PZ (z) from this model. Let ✓ be a k

dimensional parameter. If ✓ fully characterizes PZ (z), then we write
PZ (z ; ✓). Let ✓0 denote the true value of ✓. It follows that if ✓ fully
characterizes PZ (z), then the true density is PZ (z ; ✓0).
We are considering the (classical) statistical problem of deriving an
estimator for ✓.
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Definition of an M-estimator

Definition (M-estimator)

An M-estimator for ✓ is the solution ✓̂ (assuming that it exists and is well
defined) to the (k ⇥ 1) system of estimating equations

nX

i=1

M(Zi ; ✓̂) = 0,

We say that M(z ; ✓) = {M1(z ; ✓), . . . ,Mk(z ; ✓)}T is an unbiased

estimating function for E✓(M(Zi ; ✓)) = 0. The expectation is taken wrt.
to the distribution of Z at ✓. From now on, we will suppress the subscript
when we evaluate the expectation in the true value ✓0, i.e.
E(M(Zi ; ✓)) ⌘ E✓0(M(Zi ; ✓)).
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MLE is an M-estimator

Consider a fully parametric model PZ (z ; ✓). Define,

M(z ; ✓) =
� log(PZ (z ; ✓))

�✓
,

where the right hand side is a k dimensional vector of derivatives.
Solving an estimating equation with this M(z ; ✓) yields a maximum
likelihood estimator (MLE), and thus the MLE is an M-estimator.
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Methods of moment estimators are M-estimators

Consider a fully parametric model PZ (z ; ✓). Define,

Mm(Zi ; ✓) = Z
m
i � E✓(Z

m
i ),

where m = 1, . . . , k , i.e. k is the dimension of ✓.
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Overview of properties of M-estimators

This is for your information, not something we will go

through in detail

Theorem (M-estimator)

Under suitable regularity conditions, ✓̂ is a consistent and asymptotically

normal estimator,

✓̂
P�! ✓0

and p
n(✓̂ � ✓0)

D�! N (0,⌃),

where ⌃ is a covariance matrix.
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*Su�cient regularity conditions for M-estimators

This is for your information, not something we will go

through in detail

Suppose that the following regularity conditions hold.

1 sup✓2⇥ |Mn(✓)�M0(✓)|
P�! 0.

2 For all ✏ > 0, inf{|M0(✓)| : d(✓, ✓0) � ✏} > 0 = |M0(✓0)|.
For this condition it is su�cient that there exists a unique solution, ⇥
is compact and M is continuous.

3 Mn(✓̂n) = oP(1).

where Mn(✓) = En(M(Z ; ✓)) is the expectation over the empirical
distribution and M0(✓) = E(M(Z ; ✓)) over the true data generating law.
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*Proof that the conditions above are su�cient for the
consistency of M-estimators

Proof.
From the 2nd condition, for all ✏ > 0 there is a � > 0 such that

P(d(✓̂n, ✓0) � ✏)

P(|M0(✓̂n)|� |M0(✓0)| � �)

=P(|M0(✓̂n)|� |Mn(✓̂n)|+ |Mn(✓̂n)|� |Mn(✓0)|+ |Mn(✓0)|� |M0(✓0)| � �)

P(|M0(✓̂n)|� |Mn(✓̂n)| �
�

3
) + P(|Mn(✓̂n)|� |Mn(✓0)| �

�

3
)+

P(|Mn(✓0)|� |M0(✓0)| �
�

3
).

Condition 1 implies that the first and third probabilities go to zero.
Condition 3 implies that the second goes to zero.
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Example: Smoking Cessation A on weight gain Y .

1566 cigarette smokers aged 25-74 years. The outcome weight gain measured
after 10 years.

Miguel A Hernan and James M Robins. Causal inference: What if? CRC Boca
Raton, FL:, 2018.
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On estimation of causal e↵ects

From slide 73, remember that from an experiment where A is randomised
conditional on L, or more generally when consistency, positivity and
exchangeability (Y a ?? A | L) hold, we have that

E(Y a) =
X

l

E(Y | L = l ,A = a) Pr(L = l)

= E

I (A = a)

⇡(A | L) Y
�
.

where ⇡(a | l) = P(A = a | L = l).
This equality motivates di↵erent estimators.
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Regression estimator

We can also write

E(Y a) =
X

l

E(Y | L = l ,A = a) Pr(L = l)

= E(E(Y | L,A = a)),

where you should note that the outer expectation in the second line is with
respect to the marginal of L. Denote

E(Y | L = l ,A = a) = Q(l , a).

Q(l , a) is usually unknown, even in an experiment.
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Regression estimator

Consider a parametric regression model Q(l , a;�) of Q(l , a); that is a linear or
nonlinear function of (l , a) and the finite-dimensional parameter �.
We estimate � from the observed data. For example, we could in our conditional
randomised trial pose a simple linear model

Q(l , a;�) = �1 + �2a+ �T
3 l ,

which can be fitted with least squares methods.
If the outcome is binary (Y 2 {0, 1}), we could fit a logistic regression model
such as

logit{Q(l , a;�)} = �1 + �2a+ �T
3 l .

We can fit the logistic regression models with maximum likelihood estimators.

Definition (Correctly specified model)

A model is correctly specified if there exists a value �0 such that Q(l , a;�)
evaluated at �0 yields the true function Q(l , a).

PS: As in any regression setting, the models we have posited may or may not be
correctly specified.
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Example continues

We can estimate the conditional sample mean Ê(Y | A = 1) = 4.5 in
quitters and Ê(Y | A = 0) = 2.0 in non-quitters. More specifically,
the di↵erence is

Ê(Y | A = 1)� Ê(Y | A = 0) = 2.5 (95% CI : 1.7, 3.4),

but we will not assign a causal interpretation to the estimates.

Let L include the baseline variables sex (0: male, 1: female), age (in
years), race (0: white, 1: other), education (5 categories), intensity
and duration of smoking (number of cigarettes per day and years of
smoking), physical activity in daily life (3 categories), recreational
exercise (3 categories), and weight (in kg).

Suppose A ?? Y
a | L.

Mats Stensrud Causal Thinking Autumn 2023 262 / 361



Standardization: A natural way of estimating
counterfactual outcomes

If we knew Q(l , a), a natural way of estimating E(Y a) is by the empirical average

1

n

nX

i=1

Q(Li , a),

motivated by the identification formula expression E(E(Y | L,A = a)). When we
do not know Q(l , a), but we assume that our model Q(Li , a;�) is correctly
specified, we can use the outcome regression estimator to get the estimator

µ̂REG (a) =
1

n

nX

i=1

Q(Li , a; �̂).

For example, using the linear estimator from the previous slide, we can estimate
E(Y a=1) - E(Y a=0) by

1

n

nX

i=1

Q(Li , 1; �̂)�
1

n

nX

i=1

Q(Li , 0; �̂) = �̂2,

that is, the regression parameter is the causal e↵ect.
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More broadly, our causal e↵ects are not equal to regression
coe�cients

Whereas the causal e↵ect turned out to be equal to a regression
coe�cient in the previous slide, regression coe�cients are not
necessarily equal to our causal e↵ect of interest.

For example, the coe�cients in the logistic regression model

logit{Q(l , a;�)} = �1 + �2a+ �T
3 l .

do not necessarily translate to a causal e↵ect of interest.
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Standardization (G-computation)

We say that standardization is a plug-in g-formula estimator because it
simply replaces the conditional mean outcome in the g-formula by its
estimates.
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Section 27

Propensity score methods
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Matching on the propensity score (intuitive motivation)

In a homework you will see that, for all a,

Y
a ?? A | L =) Y

a ?? A | ⇡(a | L).

We could, for each treated individual (i.e. individual with A = 1),
match this individual with an untreated individual with similar

propensity score.

Then crudely compare the mean in the two groups.

This crude comparison should be fine, but...

Potential problems with matching (but not weighting, as we will se
next)

What does similar propensity score mean? A conservative approach
means that we ”waste” data, but a loose approach mean that we
compare people with di↵erent propensity scores...
How many matches should we choose?
Do we really get the average treatment e↵ect?
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Motivation for inverse probability weighting (IPW)

We would like to adjust for confounding: imbalance between L’s
among those who are treated and untreated.

Suppose that we find a treated subject i , who due to her confounders
was unlikely to be treated. That is, ⇡(1 | Li ) is small.

We upweight her, so that she represents herself but also the others
like herself (in terms of L) who were unexposed.

Similarly, we upweight untreated individuals with a small value of
⇡(0 | Li ).
Heuristically, we can think about the weighted sample as a
pseudopopulation where we observe each individual for each exposure
level. In particular, ⇡⇤(0 | Li ) = ⇡⇤(1 | Li ) for all i in the weighted
population (which we indicate by the ⇤).
In this pseudopopulation, confounders are balanced between
treatment groups, and a crude comparison estimates a causal e↵ect
(Intuitively, we get a new DAG for this pseudopopulation, where the
arrow from L to A is omitted).
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Motivating example

Suppose the counterfactual data are:

and the average treatment e↵ect E(Y a=1)� E(Y a=0) = 1.
but we observe:

The naive contrast E(Y | A = 1)� E(Y | A = 0) = 7

4
� 6

5
= 0.55.

Example from Oliver Dukes.
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Example continues

However, from the table we see that,

⇡̂(1, group A) =
2

3

⇡̂(1, group B) =
1

3

⇡̂(1, group C) =
1

3

Let us estimate E(Y a=1) by a weighted average, where each observation is
weighted by 1

⇡̂(1,group X)
,Group X 2 {Group A,Group B,Group C},

(1 + 1) 3
2
+ 2 3

1
+ 3 3

1

3

2
+ 3

2
+ 3

1
+ 3

1

= 2

and estimate E(Y a=0) by weighting each observation by 1

⇡̂(0,Group X)
,

Group X 2 {Group A,Group B,Group C},

0 3

1
+ (1 + 1) 3

2
+ (2 + 2) 3

2

3

1
+ 3

2
+ 3

2
+ 3

2
+ 3

2

= 1.
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Estimation when the propensity score is known

When ⇡(a | l) is a known function, the estimator of E(Y a) is

µ̂IPW (a) =
1

n

nX

i=1

I (Ai = a)Yi

⇡(Ai | Li )
.

The propensity score ⇡(a | l), unlike the function Q(l , a), is known in
randomised experiments (it is determined by the investigator). However, in
most observational data settings, it is unknown.
PS: This estimator has been known for a long time and is often called the
Horvitz Thompson estimator in survey sampling38.

38Daniel G Horvitz and Donovan J Thompson. “A generalization of sampling without
replacement from a finite universe”. In: Journal of the American statistical Association

47.260 (1952), pp. 663–685.
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Estimation when the propensity score is unknown

More generally, we can propose a regression model ⇡(A | L; �) for ⇡(A | L),
and we can consider the estimator

µ̂IPW (a) =
1

n

nX

i=1

I (Ai = a)Yi

⇡(Ai | Li ; �)
.

For example, suppose that we fit a logistic regression model and find the
MLE �̂ of �, which is the solution to the estimating equation (See slide
250)

nX

i=1

✓
1
Li

◆✓
Ai �

exp(�1 + �T
2
Li )

1 + exp(�1 + �T
2
Li )

◆
= 0.

Mats Stensrud Causal Thinking Autumn 2023 272 / 361


	Structure of the course
	Motivation
	Prediction vs. causal inference
	Counterfactuals
	Prediction vs. causal inference
	Lecture 2
	More on the definition of causal effects
	Lecture 3
	Causal inference from observational data
	Effect modification and conditional effects
	Interaction is different from effect modification
	Lecture 4
	Target trial
	Structural equations
	Graphs
	The next slides on Non-Parametric Structural Equation Models give some more details
	Causal graphs
	Intuitive motivation for causal graphs
	More formal consideration of graphs

	The next slides were not discussed explicitly in the lectures but give some more justification and background on graphs and NPSEMs
	Lecture 5
	Lecture 6
	Single World Intervention Graphs (SWIGs)
	Lecture 7
	Dynamic regimes
	Lecture 8
	Estimation (learning)
	Lecture 9
	Propensity score methods
	Lecture 10
	Doubly robust estimators
	Time-varying treatments
	Lecture 11
	More on IPW
	Lecture 12
	Unmeasured confounding and instrumental variables

