# Problem Sheet 4 September 30, 2024

#### Question 1

## Graded exercise for group 3

Consider an s-stages implicit Runge-Kutta method for solving  $y'(t) = f(t, y(t)), y(t_0) = y_0 \in \mathbb{R}^d$ 

$$k_{i} = f(t_{0} + c_{i}h, y_{0} + h\sum_{j=1}^{s} a_{ij}k_{j}) \quad i = 1, ..., s,$$

$$y_{1} = y_{0} + h\sum_{i=1}^{s} b_{i}k_{i}$$
(1)

Here  $c_i, b_i, a_{ij} \in \mathbb{R}$  and satisfy  $c_1 = 0$ ,  $c_i = \sum_{j=1}^s a_{ij}$ .

Assume  $f: \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$  is Lipschitz continuous (with constant L and norm  $||\cdot||$ ) with respect to the second variable. Prove that there exists a unique solution of (1) if  $h < \frac{1}{L \max_{1 \le i \le s} \sum_{j=1}^{s} |a_{ij}|}$ .

**Indication**: consider the fixed point iteration

$$k_i^{(m+1)} = f(t_0 + c_i h, y_0 + h \sum_{j=1}^s a_{ij} k_j^{(m)}) \quad m = 0, 1, 2, \dots$$
 (2)

and use Banach fixed point theorem.

## Question 2

Implement the adaptive algorithm that was introduced in the lecture and apply it to ordinary differential equation given by

$$\begin{cases} \dot{y}(t) = -50 \left( y(t) - \cos(t) \right), & 0 < t \le T, \\ y(0) = 0.15, \end{cases}$$
 (3)

with T=7. Compute  $y_n$  with the Runge method and  $\hat{y}_n$  with the Forward Euler scheme.

#### Question 3

Prove the following Lemma of the lecture. Let y be the solution to the ODE

$$\begin{cases} y'(t) = f(t, y(t)), & t_0 \leqslant t \leqslant T, \\ y(t_0) = y_0, \end{cases}$$

and  $y_n$  a RK method given by

$$y_{n+1} = y_n + h_n \Phi(t_n, y_n, h_n),$$
  
 $t_n = t_{n-1} + h_n, \quad n = 0, 1, 2, ..., N,$ 

where  $\Phi(t, z, h)$  is defined as in the lecture.

If f(t,z) satisfies a Lipschitz condition, that is there exists L>0 such that

$$||f(t,z_1) - f(t,z_2)|| \le L||z_1 - z_2||, \quad \forall (t,z_1), (t,z_2) \text{ in a neighbourhood of } (t,y(t)),$$

then there exists  $\Lambda > 0$  such that

 $\|\Phi(t, z_1, h) - \Phi(t, z_2, h)\| \le \Lambda \|z_1 - z_2\|, \quad \forall t \le T, 0 < h \le h_{max}.$