Problem Sheet 1 September 09, 2024

Question 1

Let d be a positive integer, $A \in \mathbb{R}^{d \times d}$ symmetric positive definite, T > 0, $\vec{u}_0 \in \mathbb{R}^d$, $\vec{f} : [0, T] \to \mathbb{R}^d$. Let $\vec{u}(t) \in \mathbb{R}^d$ be the solution of the differential system :

$$\vec{u'}(t) + A\vec{u}(t) = \vec{f}(t), \quad 0 < t \le T,$$

 $\vec{u}(0) = \vec{u}_0.$ (1)

• Prove that

$$\|\vec{u}(T)\|^2 + \lambda_{\min} \int_0^T \|\vec{u}(t)\|^2 dt \leqslant \frac{1}{\lambda_{\min}} \int_0^T \|\vec{f}(t)\|^2 dt + \|\vec{u}_0\|^2,$$

where $\lambda_{\min} > 0$ is the smallest eigenvalue of A and $\|\cdot\|$ denotes the Euclidean norm.

Let N be a positive integer, $h = \frac{T}{N}$, $t_n = nh$, n = 0, 1, ..., N. We compute $\vec{u}^{n+1} \in \mathbb{R}^d$, n = 0, 1, ..., N - 1, with the Euler implicit scheme:

$$\frac{\vec{u}^{n+1} - \vec{u}^n}{h} + A\vec{u}^{n+1} = \vec{f}(t_{n+1}). \tag{2}$$

• Assume that $\vec{u} \in \mathcal{C}^2([0,T],\mathbb{R}^d)$ and prove that

$$\frac{\vec{u}(t_{n+1}) - \vec{u}(t_n)}{h} + A\vec{u}(t_{n+1}) = \vec{f}(t_{n+1}) + \vec{r}^{n+1},\tag{3}$$

with $\|\vec{r}^{n+1}\| \leqslant Ch$, where C depends only on u.

• Using the equality

$$(a-b)a = \frac{1}{2}(a^2 - b^2 + (a-b)^2), \quad a, b \in \mathbb{R},$$

and setting $\vec{e}^{n+1} = \vec{u}(t_{n+1}) - \vec{u}^{n+1}$, prove that

$$\frac{1}{h} \left(\|\vec{e}^{n+1}\|^2 - \|\vec{e}^n\|^2 + \|\vec{e}^{n+1} - \vec{e}^n\|^2 \right) + \lambda_{\min} \|\vec{e}^{n+1}\|^2 \leqslant \frac{1}{\lambda_{\min}} \|\vec{r}^{n+1}\|^2,$$

where $\lambda_{\min} > 0$ is the smallest eigenvalue of A.

• Conclude that $\|\vec{e}^N\|^2 \leqslant \frac{C^2}{\lambda_{\min}} Th^2$.

Question 2

Consider the Euler explicit scheme to solve the differential system (1):

$$\frac{\vec{u}^{n+1} - \vec{u}^n}{h} + A\vec{u}^n = \vec{f}(t_n).$$

(a) Prove that

$$\frac{1}{2h} \left(\left\| \vec{e}^{n+1} \right\|^2 - \left\| \vec{e}^{n} \right\|^2 + \left\| \vec{e}^{n+1} - \vec{e}^{n} \right\|^2 \right) + (\vec{e}^{n+1})^T A \vec{e}^{n+1} = (\vec{e}^{n+1})^T \vec{r}^n + (\vec{e}^{n+1})^T A (\vec{e}^{n+1} - \vec{e}^n),$$

where \vec{r}^n is such that $||\vec{r}^n|| \leq Ch$, where C depends only on u.

(b) Using Cauchy-Schwarz inequality for the scalar product $\vec{u}^T A \vec{v}$, \vec{u} , $\vec{v} \in \mathbb{R}^d$, prove that

$$(\bar{e}^{n+1})^T A (\bar{e}^{n+1} - \bar{e}^n) \leqslant \frac{1}{2} (\bar{e}^{n+1})^T A \bar{e}^{n+1} + \frac{1}{2} (\bar{e}^{n+1} - \bar{e}^n)^T A (\bar{e}^{n+1} - \bar{e}^n).$$

(c) Let λ_{\min} (resp. λ_{\max}) be the smallest (resp. biggest) eigenvalue of A. Prove that

$$\frac{1}{2h}\left(\left\|\bar{e}^{n+1}\right\|^2-\left\|\bar{e}^{n}\right\|^2+\left\|\bar{e}^{n+1}-\bar{e}^{n}\right\|^2\right)+\frac{\lambda_{\min}}{2}\left\|\bar{e}^{n+1}\right\|^2\leqslant \left\|\bar{e}^{n+1}\right\|\left\|\bar{r}^{n}\right\|+\frac{\lambda_{\max}}{2}\left\|\bar{e}^{n+1}-\bar{e}^{n}\right\|^2.$$

(d) Assume that $\frac{1}{2h} - \frac{\lambda_{\max}}{2} \geqslant 0$ and prove that

$$\|\bar{e}^{n+1}\|^2 \leq \|\bar{e}^n\|^2 + \frac{h}{\lambda_{\min}} \|\bar{r}^n\|^2$$
,

so that

$$\left\|\vec{e}^N\right\|^2 \leqslant C^2 \frac{h^2 T}{\lambda_{\min}}.$$

Question 3

Graded exercise for group 1

Consider the differential system (Kepler)

$$\vec{x}''(t) = \frac{-\vec{x}(t)}{\|\vec{x}(t)\|^3}, \quad 0 < t \le T,$$

$$\vec{x}'(0) = \vec{v}_0,$$

$$\vec{x}(0) = \vec{x}_0,$$
(4)

where $\vec{x}(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$ denotes the position at time t of a planet with respect to the sun and $\|\vec{x}(t)\|^3 = \left((x_1(t))^2 + (x_2(t))^2\right)^{3/2}$.

(a) Take the scalar product of (4) with $\vec{x}'(t)$ and prove that

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t} \left\| \vec{x}'(t) \right\|^2 = \frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{\left\| \vec{x}(t) \right\|},$$

so that

$$\frac{1}{2} \|\vec{x}'(T)\|^2 - \frac{1}{\|\vec{x}(T)\|} = \frac{1}{2} \|\vec{v}_0\|^2 - \frac{1}{\|\vec{x}_0\|}.$$

(b) Introducing $\vec{x}'(t) = \vec{v}(t)$, write (4) as a differential system $\vec{u}'(t) = f(\vec{u}(t))$, with $\vec{u}(t) = \begin{pmatrix} \vec{x}(t) \\ \vec{v}(t) \end{pmatrix}$ and implement Euler explicit scheme. Check convergence when $\vec{x}_0 = \begin{pmatrix} 1-c \\ 0 \end{pmatrix}, \vec{v}_0 = \begin{pmatrix} 0 \\ \sqrt{\frac{1+c}{1-c}} \end{pmatrix}$, with c = 0.6, $T = 4\pi$. Fill the following table containing the error for different time steps

$$h \mid \|\vec{e}\|$$
 explicit

and provide a figure showing the results of the simulations.