Problem Sheet 12 December 2, 2024

Question 1

Graded Exercise for Group 2 and Group 3

Consider the implicit schema for solving the wave equation in $[0,1] \times [0,T]$

$$\frac{\vec{u}^{n-1} - 2\vec{u}^n + \vec{u}^{n+1}}{\tau^2} + A\frac{\vec{u}^{n-1} + 2\vec{u}^n + \vec{u}^{n+1}}{4} = \vec{f}^n$$

where u_i^n is an approximation of $u(x_i, t_n)$, the exact solution of the wave equation, $x_i = ih$, i = 1, ..., N, $h = \frac{1}{N+1}$, $t_n = n\tau$, n = 1, ..., M and $\tau = \frac{T}{M}$.

(a) Prove that $y^M \leq y^1 + \tau \sum_{n=0}^{M-1} C^n$ where

$$y^{M} = \left(\left\| \frac{\vec{u}^{M} - \vec{u}^{M-1}}{\tau} \right\|^{2} + \left(\frac{\vec{u}^{M} + \vec{u}^{M-1}}{2} \right)^{T} A \left(\frac{\vec{u}^{M} + \vec{u}^{M-1}}{2} \right) \right)^{\frac{1}{2}}$$

and $C^n = ||\vec{f}^n||$.

(b) Let \vec{U}^n be the vector of components $u(x_i, t_n)$, prove that, if $\vec{u} \in C^4([0, 1] \times [0, T])$

$$\frac{\vec{U}^{n-1} - 2\vec{U}^n + \vec{U}^{n+1}}{\tau^2} + A \frac{\vec{U}^{n-1} + 2\vec{U}^n + \vec{U}^{n+1}}{4} = \vec{f}^n + \vec{r}^n$$

with $|r_i^n| \leq C(h^2 + \tau^2)$ and C independent of h and τ .

(c) Let $\vec{E}^n = \vec{U}^n - \vec{u}^n$ prove that $z^M \leq z^0 + \frac{CT}{\sqrt{h}}(h^2 + \tau^2)$, where

$$z^{M} = \left(\left\| \frac{\vec{E}^{M} - \vec{E}^{M-1}}{\tau} \right\|^{2} + \left(\frac{\vec{E}^{M} + \vec{E}^{M-1}}{2} \right)^{T} A \left(\frac{\vec{E}^{M} + \vec{E}^{M-1}}{2} \right) \right)^{\frac{1}{2}}$$

Question 2

Consider the wave equation with f = 0, $v_0 = 0$, c = 1 and T = 1.

- (a) Implement the explicit scheme $(h = \frac{1}{N+1}, \ \tau = \frac{T}{M})$.
- (b) When $u_0(x) = \sin(\pi x)$, check that $\max_{1 \le i \le N} |u_i^M u(x_i, t_M)| = \mathcal{O}(h^2)$ when $\tau = h$.
- (c) When $u_0(x) = e^{-1000(x-0.5)^2}$, run the scheme with N = 99, M = 100, then N = 199, M = 200. What happens when N = 199, M = 199?