Problem Sheet 1

Question 1

• We take the scalar product with $\vec{u}(t)$ and obtain $\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|\vec{u}(t)\|^2 + \vec{u}(t)^T A \vec{u}(t) = \vec{u}(t)^T \vec{f}(t)$. We have $\vec{u}^T(t) A \vec{u}(t) \geqslant \lambda_{\min} \|\vec{u}(t)\|^2$. Using Cauchy-Schwarz and Young inequality $(ab \leqslant \frac{\lambda}{2}a^2 + \frac{1}{2\lambda}b^2)$ we find

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|\vec{u}(t)\|^2 + \lambda_{\min} \|\vec{u}(t)\|^2 \leqslant \frac{\lambda_{\min}}{2} \|\vec{u}(t)\|^2 + \frac{1}{2\lambda_{\min}} \|\vec{f}(t)\|^2,$$

which yields the result integrating from t = 0 to t = T.

• From Taylor expansion we find $\vec{u}(t_n) = \vec{u}(t_{n+1}) - h\vec{u}'(t_{n+1}) + \frac{h^2}{2}\vec{u}''(s_n)$, with $t_n < s_n < t_{n+1}$. This yields

$$\frac{\vec{u}(t_{n+1}) - \vec{u}(t_n)}{h} + A\vec{u}(t_{n+1}) = \vec{f}(t_{n+1}) - \frac{h}{2}\vec{u}''(s_n),$$

hence $\vec{r}^{n+1} = -\frac{h}{2}\vec{u}''(s_n)$ and $\|\vec{r}^{n+1}\| \leqslant \frac{1}{2}h \max_{0 \leqslant t \leqslant T} \|\vec{u}''(t)\|$.

- Subtracting (2) and (3) and taking the scalar product with \vec{e}^{n+1} we find $\frac{1}{h} \left(\vec{e}^{n+1} \vec{e}^n \right)^T \vec{e}^{n+1} + (\vec{e}^{n+1})^T A \vec{e}^{n+1} = (\vec{e}^{n+1})^T \vec{r}^{n+1}$. Thus, $\frac{1}{2h} \left(\|\vec{e}^{n+1}\|^2 \|\vec{e}^n\|^2 + \|\vec{e}^{n+1} \vec{e}^n\|^2 \right) + \lambda_{\min} \|\vec{e}^{n+1}\|^2 \leqslant \frac{\lambda_{\min}}{2} \|\vec{e}^{n+1}\|^2 + \frac{1}{2\lambda_{\min}} \|\vec{r}^{n+1}\|^2$, which yields the result.
- Summing from n = 0 to N 1 and since $\bar{e}^0 = 0$ we find

$$\frac{1}{h} \|\vec{e}^{N}\|^{2} + \lambda_{\min} \sum_{n=0}^{N-1} \|\vec{e}^{n+1}\|^{2} \leqslant \sum_{n=0}^{N-1} \frac{1}{\lambda_{\min}} \|\vec{r}^{n+1}\|^{2} \leqslant \frac{NC^{2}h^{2}}{\lambda_{\min}}.$$

From $h = \frac{T}{N}$ we obtain our result.

Question 2

(a) We have $\vec{u}(t_{n+1}) = \vec{u}(t_n) + h\vec{u}'(t_n) + \frac{1}{2}h^2\vec{u}''(s_n), \quad t_n < s_n < t_{n+1}.$ Thus

$$\frac{\vec{u}(t_{n+1}) - \vec{u}(t_n)}{h} + A\vec{u}(t_n) = \vec{f}(t_n) + \vec{r}^n,$$

with $\vec{r}^n = \frac{1}{2}h\vec{u}''(s_n)$ and $\|\vec{r}^n\| \leqslant \frac{1}{2}h\max_{0 \leqslant t \leqslant T} \|\vec{u}''(t)\|$. Defining $\vec{e}^n = \vec{u}(t_n) - \vec{u}^n$, we have

$$\frac{\vec{e}^{n+1} - \vec{e}^n}{h} + A\vec{e}^n = \vec{r}^n.$$

Multiplying the result by \vec{e}^{n+1} it yields

$$\frac{1}{h} \left(\vec{e}^{n+1} - \vec{e} \right)^T \vec{e}^{n+1} + (\vec{e}^{n+1})^T A \vec{e}^n = (\vec{e}^{n+1})^T \vec{r}^n$$

which yields the result, using a = (a - b) + b and $(a - b)a = \frac{1}{2}(a^2 - b^2 + (a - b)^2)$.

(b) Defining the scalar product $\langle \vec{u}, \vec{v} \rangle_A = \vec{u}^T A \vec{v}$, we use the Cauchy-Schwarz and Young inequality to find $\langle \vec{u}, \vec{v} \rangle_A \leqslant \|\vec{u}\|_A \|\vec{v}\|_A \leqslant \frac{1}{2} \|\vec{u}\|_A^2 + \frac{1}{2} \|\vec{v}\|_A^2$. This yields the result choosing $\vec{u} = \vec{e}^{n+1}$ and $\vec{v} = \vec{e}^{n+1} - \vec{e}^n$.

(c) From (a) and (b), we have

$$\frac{1}{2h} \left(\left\| \bar{e}^{n+1} \right\|^2 - \left\| \bar{e}^{n} \right\|^2 + \left\| \bar{e}^{n+1} - \bar{e}^{n} \right\|^2 \right) + \frac{1}{2} (\bar{e}^{n+1})^T A \bar{e}^{n+1} \leqslant (\bar{e}^{n+1})^T \bar{r}^n + \frac{1}{2} (\bar{e}^{n+1} - \bar{e}^n)^T A (\bar{e}^{n+1} - \bar{e}^n).$$

The result is obtained since $\lambda_{\min} \|\vec{v}\|^2 \leqslant \vec{v}^T A \vec{v} \leqslant \lambda_{\max} \|\vec{v}\|^2$, $\forall \vec{v} \in \mathbb{R}^d$ (from decomposition into orthonormal basis of eigenvectors of A).

(d) We have

$$\begin{split} \left(\frac{1}{2h} + \frac{\lambda_{\min}}{2}\right) \left\| \vec{e}^{n+1} \right\|^2 + \left(\frac{1}{2h} - \frac{\lambda_{\max}}{2}\right) \left\| \vec{e}^{n+1} - \vec{e}^n \right\|^2 &\leqslant \frac{1}{2h} \left\| \vec{e}^n \right\|^2 + \left\| \vec{e}^{n+1} \right\| \left\| \vec{r}^n \right\| \\ &\leqslant \frac{1}{2h} \left\| \vec{e}^n \right\|^2 + \frac{\lambda_{\min}}{2} \left\| \vec{e}^{n+1} \right\|^2 + \frac{1}{2\lambda_{\min}} \left\| \vec{r}^n \right\|^2. \end{split}$$

If $\frac{1}{2h} - \frac{\lambda_{\max}}{2} \geqslant 0$, this yields $\|\vec{e}^{n+1}\|^2 \leqslant \|\vec{e}^n\|^2 + \frac{h}{\lambda_{\min}} \|\vec{r}^n\|^2 \leqslant \|\vec{e}^n\|^2 + \frac{C^2h^3}{\lambda_{\min}}$. Summing from n=0 to n=N-1 and using T=Nh yields the result.

Question 3

We have from (4):

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|\vec{x}'(t)\|^2 = \vec{x}''(t)^T \vec{x}'(t) = \frac{-\vec{x}(t)^T \vec{x}'}{\|\vec{x}(t)\|^3} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{\|\vec{x}(t)\|}.$$

Now let $\vec{x}'(t) = \vec{v}(t)$, (1) is equivalent to $\vec{u}'(t) = f(\vec{u}(t))$, with $\vec{u}(t) = \begin{pmatrix} \vec{x}(t) \\ \vec{v}(t) \end{pmatrix}$ and $f(\vec{x}, \vec{v}) = \begin{pmatrix} \vec{v} \\ \frac{-\vec{x}}{\|\vec{x}\|^3} \end{pmatrix}$. Let N be a positive integer, $h = \frac{T}{N}, t_n = nh, n = 0, 1, \dots, N$. We compute $\vec{u}^{n+1} \in \mathbb{R}^d, n = 0, 1, \dots, N-1$, with the Euler explicit scheme:

 $\frac{\vec{u}^{n+1} - \vec{u}^n}{h} = \vec{f}(\vec{u}^n).$

Let \vec{e} be the error at final time, the following results are obtained:

h	$ ec{e} \exp \operatorname{licit} $
0.0002	0.330
0.0001	0.169
0.00005	0.085
0.000025	0.042

which shows that the error is O(h).

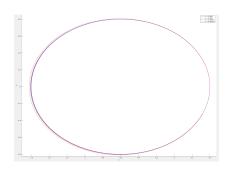


FIGURE 1 – Numerical solution with the Forward Euler method for the different hs.

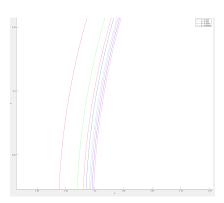


FIGURE 2 - Zoom of the left side of the previous plot.