
Problem 1. Define H := X(X⊤X)−1X⊤, where X is a non-stochastic n× p full rank matrix with p ≤ n. Show
that

1. H is idempotent and symmetric, meaning that H2 = H and H⊤ = H.

2. the eigenvalues of H are either 0 or 1.

3. H is a projection matrix onto the column space of X, S (X). Is this still the case if the columns of X are
not linearly independent?

4. the trace of H, tr(H), is equal to p and thus rank(H) = p.

Solution. 1. Symmetry is trivial. For idempotency,

HXHX = X(X⊤X)−1X⊤X(X⊤X)−1X⊤ = XIp(X
⊤X)−1X⊤ = HX.

2. If v is an eigenvector of H associated to the eigenvalue λ, then Hv = λv by definition. But H is
idempotent, so H2v = λHv = λ2v and the only solutions of λ2 = λ are {0, 1}.

3. The matrix H is symmetric and idempotent. It remains to show its image is S (X). For any y ∈ Rn,

Hy = Xβ̂ with β̂ = (X⊤X)−1X⊤y ∈ Rp. Thus im(H) ⊆ S (X), while at the same time HX = X, so
im(H) ⊇ S (X).

H is not well-defined if X does not have rank p since the inverse X⊤X does not exist. (but the solution
in this case is rather simple: replace the matrix inverse by the pseudoinverse)

4. The trace is invariant to cyclic permutations of its arguments, so

tr(H) = tr
(
X⊤X(X⊤X)−1

)
= tr(Ip) = p.

The trace is also equal to the sum of the eigenvalues of H, which are either 0 or 1. There must be p
non-zero eigenvalues, so by the spectral theorem rank(H) = p.

If the columns of X are linearly dependent, there exists a non-zero vector v ∈ Rp such that Xv = 0p, so
X⊤Xv = 0p and X⊤X is not injective, thus not invertible.

Problem 2. Show that orthogonal projection matrices1 are unique: if P and Q are orthogonal projection
matrices onto a subspace V of Rn, then P = Q.

Solution. There are many ways to prove this. First, the column vectors of P are elements of V. Consider a
basis V of p orthogonal vectors in V and a basis of n − p vectors W for V⊥. We can express the ith column
vector of P as pi = Vα + Wγ for some coefficients α ∈ Rp, γ ∈ Rn−p. Because P is idempotent, Pp1 = p1

and so γ = 0n−p. This shows columns of P ∈ V, so QP = P since Q is a projector. Similarly, PQ = Q. Using
symmetry,

Q = PQ = P⊤Q⊤ = (QP)⊤ = P⊤ = P.

Alternatively: for any v ∈ V , v = Pβ for some β. Pre-multiply both sides by P and use the idempotency of
projection matrices to get Pv = PPβ = Pβ = v.

We thus have Pv = v = Qv for any v ∈ V. Since any vector x ∈ Rn can be uniquely decomposed into two
orthogonal vectors x = v +w, where v ∈ V and w ∈ V⊥, Qx = v = Px for any x ∈ Rn and thus P = Q.

Problem 3. Suppose the n × p full-rank design matrix X (n ≥ p) can be written as [X1 X2 ] with blocks
X1, an n × p1 matrix, and X2, an n × p2 matrix. Show that H − H1 is an orthogonal projection matrix.
(H1 = X1(X

⊤
1 X1)

−1X⊤
1 )

Solution. The key is to note that HX1 = X1 since the columns of X1 are in S (X). It follows that HH1 = H1

and, by transposing, that H1H = H1. The matrix H−H1 is symmetric since both H and H1 are symmetric.

1Note: the projection is orthogonal, not the matrix — the latter is not invertible if p < n! The three defining properties of an
orthogonal projection matrix onto V are (1) Pv = v for any v ∈ V, (2) symmetry and (3) idempotency.
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The idempotency follows from the observation that

(H−H1)(H−H1) = HH−H1H−HH1 +H1H1

= H−H1 ±H1H1

= H−H1.

Problem 4. Suppose that A,X ∈ Rn×n, x ∈ Rn. Show that

1. ∂
∂xAx = A⊤;

2. ∂
∂xx

⊤Ax = (A+A⊤)x;
[
Note the special case ∂

∂xx
⊤x = 2x.

]
3. ∂

∂X tr(X) = In.

Solution. a) Denote y = Ax. Hence, yi =
∑n

j=1 Aijxj and thus ∂
∂xj

yi = Aij . We obtain

∂

∂x
y =


∂

∂x1
y1

∂
∂x1

y2 · · · ∂
∂x1

yn
∂

∂x2
y1

∂
∂x2

y2 · · · ∂
∂x2

yn
...

...
. . .

...
∂

∂xn
y1

∂
∂xn

y2 · · · ∂
∂xn

yn

 =


A11 A21 · · · An1

A12 A22 · · · An2

...
...

. . .
...

A1n A2n · · · Ann

 = A⊤.

b) Denote y = x⊤Ax =
n∑

i=1

n∑
j=1

Aijxixj . We have

∂

∂xk
y =

∑
i ̸=k

Akixi +
∑
i ̸=k

Aikxi + 2Akkxk

=

n∑
i=1

Akixi +

n∑
i=1

Aikxi = (Ax)k + (A⊤x)k = (Ax+A⊤x)k.

Thus
∂

∂x
y = Ax+A⊤x = (A+A⊤)x.

c) Denote y = tr(X) =
n∑

i=1

Xii. Then
∂

∂Xij
y = δij , where

δij =

{
1, if i = j,

0, if i ̸= j
(1)

is the Kronecker delta. Thus ∂
∂X y = In.

Problem 5. Let X be an n × p full rank real matrix with p ≤ n and Ω an n × n positive definite matrix,
meaning that v⊤Ωv > 0 for all v ∈ Rn \ {0n}.

1. Show that B = X⊤ΩX is positive definite and thus invertible. Deduce from this fact that X⊤X is
invertible.

2. Show that B is not necessarily invertible if we only assume that Ω is real, symmetric and invertible.

Solution. (a) Recall that X is full rank if and only if X is injective and if and only if ker(X) = {0p}. If
v ∈ Rp \ {0p},

v⊤Bv = v⊤X⊤ΩXv = (Xv)⊤ΩXv > 0

since Xv ̸= 0n and Ω is positive definite. It follows that B is also positive definite and thus invertible. The
second part follows from the first upon taking Ω = In, which is positive definite.

(b) Counter-example. With X = (1, 1)⊤ and Ω =
(
1 0
0 −1

)
, we get X⊤ΩX = 0. In general, if Ω has one positive

eigenvalue a and one negative eigenvalue b, one can find a matrix X such that X⊤ΩX = 0.
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Problem 6. Let Y1, . . . , Yn be i.i.d. from N (µ, σ2).

Show that the log-likelihood satisfies

ℓ(µ, σ2) = −1

2

n log σ2 +
1

σ2

n∑
j=1

(yj − µ)2

+ const

and the maximum likelihood (ML) estimates of µ and σ2 are

µ̂ = ȳ and σ̂2 =
1

n

n∑
j=1

(yj − ȳ)2.

Solution. An easy calculation.

Problem 7. Let Σ be an p × p positive definite covariance matrix. We define the precision matrix Q = Σ−1.
Suppose the matrices are partitioned into blocks,

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
and Σ−1 = Q =

(
Q11 Q12

Q21 Q22

)
with dim(Σ11) = k × k and dim(Σ22) = (p− k)× (p− k). Prove the following relationships

(a) Σ12Σ
−1
22 = −Q−1

11 Q12

(b) Σ11 − Σ12Σ
−1
22 Σ21 = Q−1

11

(c) det(Σ) = det(Σ22) det(Σ1|2) where Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21.

Solution. By writing explicitly the relationship QΣ = In, we get

Q11Σ11 +Q12Σ21 = Ik

Q21Σ12 +Q22Σ22 = Ip−k

Q21Σ11 +Q22Σ21 = Op−k,k

Q11Σ12 +Q12Σ22 = Ok,p−k.

Recall that we can only invert matrices whose double indices are identical and that both Q and Σ are symmetric,
so Σ12 = Σ⊤

21. One easily obtains

(a) Σ12Σ
−1
22 = −Q−1

11 Q12 making use of the last equation.

(b) Σ11 − Σ12Σ
−1
22 Σ21 = Q−1

11 by substituting Q12 from the last equation into the first.

(c) One can cleverly choose B :=
(

I −Σ12Σ
−1
22

O I

)
, noting that det(B) = det

(
B⊤) = 1. Computing the quadratic

form BΣB⊤, we get det(Σ) = det(Σ22) det(Σ1|2) where Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21.

Problem 8. Let Y ∼ Nn(µ,Σ) and consider the partition

Y =

(
Y1

Y2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where Y1 is a k × 1 and Y2 is a (n− k)× 1 vector for some 1 ≤ k < n. Show that the conditional distribution
of Y1 | Y2 = y2 is Nk(µ1 +Σ12Σ

−1
22 (y2 − µ2),Σ1|2) and Σ1|2 is the Schur complement of Σ22.

Hint: write the joint density as p(y1, y2) = p(y1 | y2)p(y2) and express the joint density in terms of the precision
matrix Q. It suffices to consider terms in p(y1, y2) that depend only on y1 (why?). The conditional distribution
can then be identified by its functional form directly.
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Solution. Without the loss of generality, assume means are 0. It is easy to generalize the solution below for
the case of a non-zero mean. Following the hint, we write:

f(y1|y2) ∝ f(y1|y2)f(y2) = f(y1, y2) ∝ exp

(
−1

2
(y1, y2)Q(y1, y2)

⊤
)

∝ exp

(
−1

2
y⊤1 Q11y1 − y⊤1 Q12y2 −

1

2
y⊤2 Q22y2

)
∝ exp

(
−1

2
(y1 +Q−1

11 Q12y2)
⊤Q11(y1 +Q−1

11 Q12y2)

)
Firstly, we are using proportionality signs in our calculation, which is often convenient, and here it is almost
necessary to keep the solution of this exercise simple. Note that every density has to integrate into one, so
whatever factors that do not depend on the variable y1 can be discarded. Secondly, on the first line of the
calculation, we just wrote the density of multivariate normal using the precision matrix, discarding constants
as described above. On the second line, we just developed the expression w.r.t. to the blocks of the precision
matrix. On the final line, we completed the square in y1 and separated the term depending on y1 from the rest.
And voila! Up to proportionality we have a Gaussian in y1 considering y2 as fixed. This means that we know
the conditional distribution of Y1 given Y2.

Once we established that the conditional distribution is Gaussian, we can just read the mean and variance from
the exponential. We see the precision matrix is Q11 which by Problem 7 (c) is exactly the Schur complement
and Problem 7 (a) gives us an expression for the mean:

µ1|2 = −Q−1
11 Q12y2

= Σ12Σ
−1
22 y2

Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21.

Finally, go through the argument again to see what changes when the means are not assumed to be zero.

Problem 9. Let Z ∼ Nn(0n, In) and Y ∼ Nn(µ,Σ) with Σ positive definite.

(a) Let A be an orthogonal matrix. Show that A⊤Z ∼ Nn(0n, In).

(b) Show that C−1(Y −µ) ∼ Nn(0n, In) where C is the Cholesky root of Σ, the unique lower triangular matrix
with positive diagonal elements such that Σ = CC⊤.

(c) Let H be a n× n projection matrix of rank k ≤ n with real entries. Show that Z⊤HZ ∼ χ2(k).

(d) Show that (Y − µ)⊤Σ−1(Y − µ) ∼ χ2(n).

(e) Let A be a non-negative definite matrix. If AΣA = A, then show that (Y − µ)⊤A(Y − µ) ∼ χ2(k), where
k = tr(AΣ).

Solution. Recall the affine transformation property of the normal distribution:

Y ∼ N (µ,Σ) =⇒ BY + θ ∼ N (θ +Bµ,BΣB⊤). (S1)

The Gaussian distribution is a location-scale family.

(a) Follows from (S1) and the fact that A is orthogonal, so A⊤A = In.

(b) The matrix C is invertible because its diagonal elements are all strictly positive. Since C−1(Y − µ) =
C−1Y − C−1µ, it follows from (S1) that C−1(Y − µ) is normal with mean C−1µ − C−1µ = 0n and
covariance C−1ΣC−⊤ = C−1CC⊤C−⊤ = In.

(c) By definition, the χ2(k)-distribution is the distribution of X⊤X for X ∼ Nk(0k, Ik). We rewrite Z⊤HZ in
the form X⊤X by using the spectral decomposition

H = UΛU⊤ =

n∑
i=1

λiuiu
⊤
i

λi∈{0,1}
=

Prob. 1.2

k∑
i=1

uiu
⊤
i =: Ũ︸︷︷︸

n×k

Ũ⊤

to set

Z⊤HZ = Z⊤Ũ Ũ⊤Z︸ ︷︷ ︸
=:X

= X⊤X.
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And indeed
cov(X) = cov(Ũ⊤Z) = Ũ⊤ cov(Z)︸ ︷︷ ︸

=In

Ũ = Ũ⊤Ũ = Ik

such that X has the desired distribution, which shows that Z⊤HZ = X⊤X ∼ χ2(k).

(d) Since Σ is invertible it is positive definite. Write its Cholesky decomposition Σ = CC⊤, where C is
invertible. From b), Z := C−1(Y − µ) ∼ Nn(0n, In) and

(Y − µ)⊤Σ−1(Y − µ) = (Y − µ)⊤C−⊤C−1(Y − µ) = Z⊤Z = Z⊤InZ.

The result now follows from c) since the identity matrix In is a projection matrix of rank n.

(e) Using the solution in part d), we can write

(Y − µ)⊤A(Y − µ) = (CZ)⊤ACZ = Z⊤C⊤ACZ = Z⊤HZ.

Note that H is a symmetric matrix. Also,

H2 = C⊤ACC⊤AC = C⊤AΣAC = C⊤AC = H.

So, H is idempotent. This shows that H is a projection matrix. So, by part c), Z⊤HZ ∼ χ2(k), where k is
the rank of H. Now,

rank(H) = tr(H) = tr(C⊤AC) = tr(ACC⊤) = tr(AΣ).

Note: Part d) can be seen as a special case of part e).

Problem 10. Consider a singular value decomposition (SVD) of the design matrix X = UDV⊤, where U is
an n× p orthonormal matrix (meaning U⊤U = Ip and the columns of U are orthogonal vectors), D is an p× p
diagonal matrix and V is an p× p orthogonal matrix. Show that the hat matrix H = X(X⊤X)−1X⊤ does not
depend on V.

Solution. The fact that both U and V are orthonormal means that U⊤U = V⊤V = Ip. The hat matrix is

H = UDV⊤(VDU⊤UDV⊤)−1VDU⊤ = UΩV⊤VD−2V⊤VDU⊤ = UU⊤,

since D = D⊤ and V−1 = V⊤, thus (VD2V⊤)−1 = VD−2V⊤.

Problem 11. (Non-linear ↔ linear models). This exercise has the goal of showing that a non-linear model can
(sometimes) be transformed into a linear one. For instance, the model y = β1(x+ β3)

β2(ε2 + 1) can be written
as

log(y) = log(β1)︸ ︷︷ ︸
β∗
1

+ β2︸︷︷︸
β∗
2

log(x+ β3) + log(ε2 + 1)︸ ︷︷ ︸
ε∗

,

with β3 fixed, and
[
1 log(x+ β3)

]
as design matrix. Moreover, we need β1 > 0, x+ β3 > 0 in order to do the

transformation.

Write, when possible, the following models as linear regressions, either by transforming and/or by fixing some
parameters. Specify the new parameter (β∗), the new error (ε∗), restrictions (e.g. β1 > 0) and give the design
matrix, as in the example above:

a) y = β0 + β1/x+ β2/x
2 + ε

b) y = β0/(1 + β1x) + ε

c) y = β0/(β1x) + ε

d) y = 1/(β0 + β1x+ ε)

e) y = β0 + β1x
β2 + ε

f) y = β0 + β1x
β2

1 + β3x
β4

2 + ε

g) y = β1x
β2

1 cos(x2)
β3ε

h) y = β1 + xβ2

1 (2 + cos(x2))
β3(ε2 + 1)

Solution. Here is an example of solution (there could be others). The fixed parameters are underlined (e.g.
β0).

a) y = (1 1
x

1
x2 )(β0 β1 β2)

⊤ + ε with x ̸= 0
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b) y = ( 1
1+β1x

)(β0) + ε with x ̸= 0

c) y = (1/x)(γ) + ε with γ = β0/β1 or y = ( 1
xβ1

)(β0) + ε with x ̸= 0

d) 1/y = (1 x)(β0 β1)
⊤ + ε

e) y = (1 xβ2)(β0 β1)
⊤ + ε

f) y = (1 x
β2

1 x
β4

2 )(β0 β1 β3)
⊤ + ε

g) log(y) = (1 log(x1) log[cos(x2)])(log(β1) β2 β3)
⊤ + log(ε) with x1, ε > 0 and cos(x2) > 0

h) log(y − β1) = (log(x1) log[2 + cos(x2)])(β2 β3)
⊤ + log(ε2 + 1) with x1 > 0.

Problem 12. Let Yi = β0 + β1xi + ϵi, i = 1 . . . , n.

a) Write down the design matrix X. Calculate the elements of X⊤X, X⊤Y and (X⊤X)−1.

b) Show that β̂1 =
∑n

i=1 xiYi−nx̄Ȳ∑n
i=1 x2

i−nx̄2 , where x̄ = 1
n

∑n
i=1 xi and Ȳ = 1

n

∑n
i=1 Yi. How do you interpret the

estimate?

Solution. a) The design matrix is

X =


1 x1

1 x2

· · · · · ·
1 xn


One can straightforwardly calculate

X⊤X =

(
n

∑n
i=1 xi∑n

i=1 xi

∑n
i=1 x

2
i

)
, X⊤Y =

( ∑n
i=1 Yi∑n

i=1 xiYi

)
and use the 2× 2 matrix inversion formula to get

(X⊤X)−1 =
1

n
∑

x2
i − (

∑
xi)2

( ∑n
i=1 x

2
i −

∑n
i=1 xi

−
∑n

i=1 xi n

)
.

b) Formula for β̂ follows easily by multiplying β̂ = (X⊤X)−1X⊤Y , though we are only interested in the second
element of the resulting vector.

Assume now that the data are standardized, i.e. both x and Y have (empirical) mean zero and (empirical)

variance one. Then β̂1 reduces to the empirical correlation coefficient between x and Y , and it is the slope of
the regression line when data are plotted. When we alleviate the assumption that our data are standardized,
the interpretation of β̂1 as the slope of the regression line is retained.

Problem 13. (Factors and Interactions – Linear Models in R)

In R, a model formula has the following general form response~expression. The right-hand side expression
follows certain rules. For example, intercept is present unless removed by -1 and powers have to be designated
with I(x^2). For example, y ~ x+I(x^2)-1 defines a model where y depends on x quadratically and the
intercept is set to zero.

For this exercise, suppose that

y =


217
143
186
121
157
143

 , x =


1
0
2
0
1
0

 , a =


1
1
1
2
2
2

 , b =


1
2
3
1
2
3

 .

We can assign a toy meaning to this toy data set for illustration purposes: let yj be the stress level of the
j-th measured individual. We would like to model the mean stress level based on the number of children the
individual has (denoted xj), the sex of the individual (denote aj and labeled 1 for female and 2 for male), and
the marital status of the individual (denoted bj and labeled 1 for single, 2 for married and 3 for divorced).
Notice that the values in vectors a and b are only labels here (denoting groups, classes, or levels).
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a) A factor is a categorical/qualitative variable, which may not have a numerical meaning (e.g. a group-
allocating variable such as a and b). For example, consider the following model of stress value based on
sex only:

yj = β0 + α1 + εj , j = 1, 2, 3; yj = β0 + α2 + εj , j = 4, 5, 6;

i.e. the mean stress value is allowed to be different for males and females. We can write the model in a
single equation using indicators:

yj = β0 + α11(aj=1) + α21(aj=2) + εj , (2)

where 1E = 1 if the expression E is true, and 0 otherwise.

I. Give the design matrix corresponding to model (2).

II. Notice that this matrix is not full-rank. What is the consequence on the parameters estimation?

III. Suppress the column corresponding to α1 of this matrix in order to have a full-rank matrix. What
is now the interpretation of the parameters β0 and α2?

IV. When the model includes the constant β0, R automatically suppresses the first level of each factor.
Give the design matrix corresponding to the following models:

(i) y~b, (ii) y~x+a, (iii) y~a+b

b) An interaction of two variables (say a and x) is written in R as a:x or a*x. Adding the interaction
term a:x to the model y~a+x, i.e. forming the model y~a+x+a:x adds product effect(s) between the two
variables into the model, e.g.

yj = β0 + α21(aj=2) + β1xj + β2xj1(aj=2) + ϵj ,

where the term β2xj1(aj=2) was added by the interaction. Note that a*x is a shorthand for y~a+x+a:x,
i.e. the operator ‘*’ adds both the main terms and the interaction term to the model. This is convenient,
because one is very rarely interested in having the interaction term without the main terms.

Assuming existence of a new continuous regressor (a new continuous variable) z = (0, 1, 5, 2, 1, 1)⊤, write
down the regression function (a mathematical expression for Eyj) of the following models and find the
design matrices corresponding to those models.

(i) y~x*b, (ii) y~x*z (iii) y~a*b, (iv) y~z+I(x^2).

c) Assuming further that we have many more observations than those n = 6 given above, write down the
regression function of y~x*a*b.

d) Explain the difference between considering an ordinal variable (such as b) as a factor and considering it
as a numerical variable:

(i) y~as.factor(b), (ii) y~as.numeric(b).

What happens when we use variable a instead of b?

Solution. a) I. From the model equation (2), the regression function is

Eyj = β0 + α11aj=1 + α21aj=2

from which we can easily read the regression matrix. The first vector of ones corresponds to the
intercept. The second vector is vector of ones followed by zeros, because our dataset is ordered that
way: group 1 precedes group 2 in vector a. The third vector is then the complement of the second one.

X =


1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1

 , β = (β0, α1, α2)
⊤.

II. Superposition of the second and third columns is exactly the first column, hence the matrix is not full
rank. The consequence is that we cannot invert X⊤X, so our usual (unique) estimator

β̂ = (X⊤X)−1X⊤y

is not defined.
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Let us provide a brief explanation. We model the mean stress value and this model only allows it to
be different for the two groups (female/male). So there are only two quantities the mean stress value
can attain, say µ1 for females and µ2 for males. But the model has 3 parameters, so there is too
much freedom and multiple values of the parameters lead to the same fit (more precisely, to the same
fitted values), so the model has no means to distinguish between these values of the parameters. This
behavior is, of course, undesirable. One way to remedy is to get rid of one of the parameters.

III. X =


1 0
1 0
1 0
1 1
1 1
1 1


Suppressing the column corresponding to α1 corresponds to leaving the parameter from the regression
function, which now becomes:

Eyj = β0 + α21aj=2

Now, β0 is the mean of each observation in the group aj = 1 and α2 is the difference between the
average of group aj = 2 and the average of group aj = 1.

Any other parameter could have been suppressed instead of α1. However, suppressing the first level of
a factor to obtain the interpretation in the previous paragraph is the default in R, and we will always
take this approach.

IV. (i) Regressing y on b is similar. We again suppress the first level of b to have a full-rank design
matrix, so this time, X will have 3 columns: 1 for intercept and 3-1=2 for factor b. The regression
function and the design matrix are:

Eyj = β0 + γ21(bj=2) + γ31(bj=3) , X =


1 0 0
1 1 0
1 0 1
1 0 0
1 1 0
1 0 1


(ii) Model y~x+a is almost like the one we had before (y~a), with the difference that there will be

now one extra parameter and thus one extra column corresponding to the linear term in x:

Eyj = β0 + β1xj + α21(aj=2) , X =


1 1 0
1 0 0
1 2 0
1 0 1
1 1 1
1 0 1


(iii) The final model y~a+b contains two factors. The first level will be suppressed for both.

Eyj = β0 + α21(aj=2) + γ21(bj=2) + γ31(bj=3) , X =


1 0 0 0
1 0 1 0
1 0 0 1
1 1 0 0
1 1 1 0
1 1 0 1


Notice that the design matrix of y~a+b is the “union” of the design matrices for models y~a and
y~b.

b) Here we just provide the regression functions. You can verify the answers about the design matrices in R

using the code below.

(i) Eyj = β0+β1xj +γ21(bj=2)+γ31(bj=3)+β2xj1(bj=2) + β3xj1(bj=3)︸ ︷︷ ︸
=:(⋆)

, where (⋆) denotes the extra terms

added by the interaction compared to model without the interaction: y ~ x + b.
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(ii) Eyj = β0 + β1xj + β2zj + β3xjzj

(iii) Eyj = β0 + α21(aj=2) + γ21(bj=2) + γ31(bj=3) + δ51(aj=2)1(bj=2) + δ61(aj=2)1(bj=3)

(iv) Eyj = β0 + β1zj + β2x
2
j

You can verify the answers about the design matrices in R. First, import the data set manually (just copy-
paste the code below):

y <- c(217,143,186,121,157,143)

X <- matrix(c(1,0,2,0,1,0,1,1,1,2,2,2,1,2,3,1,2,3,0,1,5,2,1,1), 6, 4)

dfX <- data.frame(y = y, x = X[,1], a = as.factor(X[,2]), b = as.factor(X[,3]), z = X[,4])

Now you can use the command

model.matrix(y~expression, data = dfX)

where you specify properly the expression to check your answers:

model.matrix(y~x*b, data = dfX) # (i)

model.matrix(y~x*z, data = dfX) # (ii)

model.matrix(y~a*b, data = dfX) # (iii)

model.matrix(y~z+I(x^2), data = dfX) # (iv)

Notice that model (iv) does not contain the main effect of x. Such a model can be rarely useful.

c) The triple interaction term may be too hard to just write down the formula from the top of the head. Note
that the model is equivalent to y ~ x + a + b + x:a + x:b + a:b + x:a:b. I recommend reading this
developed expression left to right and writing down the regression function in steps, writing it first only for
y ~ x, then for y ~ x + a, etc. It leads to the following:

Eyj = β0 + β1xj︸︷︷︸
x

+α21(aj=2)︸ ︷︷ ︸
a

+ γ21(bj=2) + γ31(bj=3)︸ ︷︷ ︸
b

+β2xj1(aj=2)︸ ︷︷ ︸
x:a

+β3xj1(bj=2) + β4xj1(bj=3)︸ ︷︷ ︸
x:b

+ δ51(aj=2)1(bj=2) + δ61(aj=2)1(bj=3)︸ ︷︷ ︸
a:b

+β5xj1(aj=2)1(bj=2) + β6xj1(aj=2)1(bj=3)︸ ︷︷ ︸
x:a:b

Several notes are in order here. Firstly, we can use whatever symbols and subscripts to denote the parameters.
Try to find your own system. Secondly, the triple interaction term x:a:b corresponds to multiplying the
simpler interaction a:b with xj . The applied meaning of this will hopefully become clear later.

d) Model (i) has 3 parameters while model (ii) only has 2 parameters. One can in fact show that model (i) is
more general. Model (i) has the regression function

Eyj = β0 + α21(bj=2) + α31(bj=2)

from which we can deduce

bj = 1 ⇒ Eyj = β0

bj = 2 ⇒ Eyj = β0 + α2

bj = 3 ⇒ Eyj = β0 + α3

so we can see that the difference between bj = 1 and bj = 2 is given by α2, while the difference between
bj = 1 and bj = 3 is given by α3, which has no relationship with α2. Hence the sample is split into 3 groups
by variable b, and every group is allowed to have a different mean.

On the other hand, with the model (ii) we have

Eyj = β0 + β1bj

from which we can deduct

bj = 1 ⇒ Eyj = β0 + β1

bj = 2 ⇒ Eyj = β0 + 2β1

bj = 3 ⇒ Eyj = β0 + 3β1

so we can see that the difference between bj = 1 and bj = 2 is given by β1, while the difference between bj = 1
and bj = 3 is given by 2β1. This model thus linearly constrains the differences between the three groups: the
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difference between the mean of the third group and the first group is exactly double the difference between
the second group and the first group.

Note: When building a linear model and an ordinal variable such as b is available, one has to decide whether
to include that variable as a factor or as a numerical variable based on the consideration in the previous
paragraph. In our toy example, can we assume that the effect of being single vs. being married is exactly
the same as the effect of being divorced vs being married? In this case, for sure not. So we should start with
b as a factor first, and maybe later simplify the model to b being numeric, based on what the data actually
suggest.

Problem 14. (Confounders and Simpson’s paradox) In this exercise, we are interested in the dependence of
a standardized test percentile on the grade point average (GPA) of students of a certain high school in the
US. The data file percentile.RData also contains the variable grade, which determines the study age of the
students.

a) Load the data and create a scatterplot of percentile on GPA.

b) Fit the linear model percentile~GPA and add the regression line to your scatterplot from part a). What
would be your conclusion about the relationship of percentile on GPA based on this model? How does the
model quantify this relationship? Does this make sense?

c) Add the variable grade to the model as a factor. How does this change your qualitative conclusions? How
does the new model quantify the dependency? Are the conclusions sensible now?

d) Add the interaction term between GPA and grade to your model. What is now different compared to part
c)?

Solution. The plots for every subquestion are given in the figure below.

a) The data are stored as an .RData file, hence it can be simply loaded as load("percentile.RData"). Then
one can form the scatterplot using plot(DATA$percentile ~ DATA$GPA).

b) m1 <- lm(percentile ~ GPA, data=DATA)

summary(m1)

abline(m1$coefficients[1],m1$coefficients[2])

The previous commands tell us that the correlation between percentile and GPA is negative (estimated
regression coefficient is -3.773). Improving a student’s GPA by 1 leads to a decrease in his percentile by
3.773. This seems somewhat counterintuitive. One would expect that better GPA should be associated with
better percentile, provided that the education system is working.

c) m2 <- lm(percentile ~ GPA+as.factor(grade), data=DATA)

summary(m2)

plot(DATA$percentile[DATA$grade==8] ~ DATA$GPA[DATA$grade==8],

col="blue",xlim=c(1,4), ylim=c(10,100), main="c)")

points(DATA$percentile[DATA$grade==12] ~ DATA$GPA[DATA$grade==12],

col="red",pch=0)

abline(m2$coefficients[1],m2$coefficients[2],col="blue")

abline(m2$coefficients[1]+m2$coefficients[3],m2$coefficients[2],col="red")

Once the variable grade is accounted for by the model, not only GPA becomes significant but the negative
dependence from part b) suddenly becomes positive, as one would expect. Since grade has only 2 levels
(students are either from the 8th grade or 12th) it makes sense to treat different classes like two different
groups (hence the coloring in the plot). Quantitatively, the model says that if student A has GPA larger
by 1 than the GPA of student B, student A’s percentile is expected to be higher than that of student B by
16.884.

d) The code here is only a slight modification of the previous one. Note that if one naturally wants both the
interaction and the main terms, the ∗ operator can be used as

m3 <- lm(percentile ~ GPA*as.factor(grade), data=DATA)

While the model from part c) only allowed for the intercept to be different for the two groups of students and
the slope was fixed to be the same, model m3 allows for both the intercept and the slope to be different for
the two groups of students. Qualitative conclusions remain roughly the same, but one can notice that GPA
has a slightly stronger effect among the 8th grade students. To put it in numbers, if student A has GPA
larger by 1 than GPA of student B, student A’s percentile is expected to be higher by 20.626 (respectively by
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20.626-7.862=12.764) than that of student B in the case of both students being in the 8th grade (respectively
the 12th grade).

The variable grade is the so-called confounder of the relationship between percentile and GPA. If grade is not
accounted for, the model produces completely wrong results. In this case, including grade changes the negative
relationship to a positive one, which is called Simpson’s paradox. Paradox, because even though higher values
of GPA are naturally associated with higher values of percentile in both of the two classes appearing in our
data set, it seems at the first glance that the overall correlation between GPA and percentile is negative. A
sensible explanation of this could be the following: younger students usually have better GPA’s because they
put more effort into their studies, but they are not yet educated enough to be able to score higher than their
older colleagues on a standardized test.

Often, a confounder is not taken into account in a study, which then leads to insensible conclusions and
subsequent tabloid headings such as “Want to go to Harvard? Fail high school first!”.

Figure 1: Standardised residuals as a function of values adjusted for four Gaussian models.

Problem 15. Assume a linear model was developed for the blood glucose concentration (Y ) of a patient after
giving u units of a medicament to the patient with weight w and sex g (0=male, 1=female). In this model, the
effect of weight w and the medicament dose u on the glucose concentration Y is different for males and females.
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Contrarily, the increase of the medicament dose u by 1 has (for two patients of the same sex and weight) the
same effect on Y regardless of the (actual value of the) weight of the patient.

a) Write down the regression function of the model, such that the model has the interpretation above.

b) Assume the first observation is based on a male, 80 kg, who was given 10 units of the medicament. The
second observation is based on a female, 60 kg, who was given 8 units of the medicament. Write down the
first two rows of the design matrix.

c) How would you test whether weight w has different effect on Y based on the sex g?

Solution. The solutions are not unique, they depend on the ordering of variables.

a) A possible regression function can be

EY = β0 + β1u+ β2w + β3g + β4ug + β5wg.

Note that since g attains only two values, it does not matter in this case whether it is considered as a factor
or as a continuous variable. But it would be more natural to consider it as a factor:

EY = β0 + β1u+ β2w + β3δ[g=1] + β4uδ[g=1] + β5wδ[g=1],

where δ is the identifier operator.

b) The following matrix is the design matrix corresponding to the regression function from part a):

X =

1 10 80 0 0 0
1 8 60 1 8 60
...

...
...

...
...

...


c) One would like to test H0 : β5 = 0 against H1 : β5 ̸= 0. One possibility is to form the confidence interval for

β5 based on the t-distribution (see slide 87) and check whether 0 is contained in this confidence interval.

Note: Generally, the F-test is preferable to the t-test described above, but we will only learn about the F-test
later.

Problem 16. Suppose the n× p full-rank design matrix X can be partitioned into two blocks as [X1 X2 ] and
let MX1

:= In −HX1
. Show that HX = HX1

+HMX1
X2

, where HMX1
X2

is the projection on to the span of
MX1X2. (Draw a 3D picture to visualize what this result actually says.)

Solution. We need to show that HX1
+ HMX1

X2
is an orthogonal projection matrix, i.e., it is idempotent,

symmetric and it spans S (X). Note that X⊤
1 MX1

X2 = O, so HX1
HMX1

X2
= O also. Since both HMX1

X2

and HX1
are orthogonal projection matrices, the first two statements are obvious.

It remains to show that any vector z ∈ S (X) is invariant under the action of HX1
+ HMX1

X2
and that

any vector orthogonal to this span is annihilated by HX1
+ HMX1

X2
. Since X is full rank, we can write

z = Xγ = X1γ1 +X2γ2 for some vector γ and subvectors γ1 and γ2. Then

(HX1 +HMX1
X2)z = (HX1 +HMX1

X2)(X1γ1 +X2γ2)

= HX1
(X1γ1 +X2γ2) +HMX1

X2
(X1γ1 +X2γ2)

= X1γ1 +HX1
X2γ2 +MX1

X2γ2

= X1γ1 +X2γ2

upon noting that

HMX1
X2

X1 = MX1
X2(X

⊤
2 MX1

X2)
−1X⊤

2 MX1
X1 = O,

HMX1
X2

X2 = MX1
X2(X

⊤
2 MX1

X2)
−1X⊤

2 MX1
X2 = MX1

X2.

Take now w ∈ S ⊥(X). We have

(HX1 +HMX1
X2)w = HX1w +HMX1

X2w

= 0 +MX1X2(X
⊤
2 MX1X2)

−1X⊤
2 MX1w

= MX1X2(X
⊤
2 MX1

X2)
−1X⊤

2 (I−HX1
)w = 0.

Indeed, HX1
w = 0 because w is orthogonal to X, thus also orthogonal to X1. At the same time, X⊤

2 w = 0 by
orthogonality. By the uniqueness of projection matrices, the result follows.
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Problem 17. (Forecast and confidence intervals).

The following table gives the estimations, the standardised errors and the correlations for the model y =
β0 + β1x1 + β2x2 + β3x3 + ε adjusted for n = 13 cement data of the example given at the course.

Estimate SE Correlations of Estimates

(Intercept) 48.19 3.913 (Intercept) x1 x2

x1 1.70 0.205 x1 -0.736

x2 0.66 0.044 x2 -0.416 -0.203

x3 0.25 0.185 x3 -0.828 0.822 -0.089

a) Explain how we can compute the standardised errors and correlations in the table above.

b) For this model, what is the forecast of y for x1 = x2 = x3 = 1? How much would the prediction increase
if x1 = 5? And if x1 = x2 = 5?

c) For this model, compute, using only the information above and the fact that the quantiles are t9(0.975) =
2.262 and t9(0.95) = 1.833, the 0.95 confidence intervals for β0, β1, β2 and β3. Compute also a 0.90
confidence interval for β2 − β3.

Solution. a) The covariance of β̂ is given by Varβ̂ = σ2(X⊤X)−1. Since we do not know σ2, we estimate the
covariance with v̂ar(β̂) = S2(X⊤X)−1. Denoting vij = ((X⊤X)−1)ij , i = 0, 1, 2, 3, j = 0, 1, 2, 3 (note that

we start by the 0 indices). Hence, the i-th standardised error is estimated by ŜE(β̂i) =

√
v̂ar(β̂)ii =

√
S2vii.

For the correlation, we have

ĉorr(β̂i, β̂j) =
v̂ar(β̂)ij√

v̂ar(β̂)ii

√
v̂ar(β̂)jj

=
S2vij√

S2vii
√
S2vjj

=
vij√
viivjj

.

b) We recall that the forecast is given by

ŷ+ = x⊤
+β̂.

Here, we have
ŷ+ = β̂0 + β̂1x1 + β̂2x2 + β̂3x3.

For x1 = x2 = x3 = 1, the expectation would increase of 4β̂1 = 4 × 1.70 = 6.80 if x1 = 5, and of
4β̂2 = 4× 0.66 = 2.64 if x2 = 5. Explicitly,

x1 = x2 = x3 = 1 =⇒ ŷ+ = β̂0 + β̂1 + β̂2 + β̂3 = 48.19 + 1.70 + 0.66 + 0.25 = 50.80

x1 = 5, x2 = x3 = 1 =⇒ ŷ+ = 48.19 + 1.70× 5 + 0.66 + 0.25 = 57.60

x1 = x2 = 5, x3 = 1 =⇒ ŷ+ = 48.19 + 1.70× 5 + 0.66× 5 + 0.25 = 60.24

c) Let us denote here (X⊤X)−1 = (vij)
3
i,j=0. The entries vij can be read out of the R output provided in the

assignment.

Recall that for the i-th coordinate of β, the confidence interval is

β̂i ±
√
S2viitn−p(α/2) = β̂i ± ŜE(β̂i) tn−p(α/2), i = 0, 1, 2, 3.

Here, n = 13, p = 4, α = 0.05, t9(0.975) = 2.262, so we have the four intervals:

[39.34, 57.04], [1.236, 2.164], [0.5605, 0.7595], [−0.1685, 0.6685].

For the test β3 = 0 against β3 ̸= 0 we do not reject the null hypothesis because 0 ∈ [−0.1685, 0.6685].

More generally, if c ∈ Rp, the confidence interval for c⊤β is given by

c⊤β̂ ± tn−p(α/2)
√
S2c⊤(X⊤X)−1c.
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Here we want a confidence interval for c⊤β with c = (0, 0, 1,−1)⊤. We find

S2c⊤(X⊤X)−1c = S2v22 + S2v33 − 2
v23√
v22v33

√
S2v22

√
S2v33

=
(
ŜE(β̂2)

)2
+
(
ŜE(β̂3)

)2
− 2 ĉorr(β̂2, β̂3) ŜE(β̂2) ŜE(β̂3)

= 0.0442 + 0.1852 − 2 · (−0.089) · 0.044 · 0.185

Thus we have

[0.66− 0.25±
{
0.0442 + 0.1852 − 2 · 0.044 · 0.185 · (−0.089)

}1/2
t9(0.95)] = [0.055, 0.765]

as 0.90 confindence interval for β2 − β3.

In R,

library(MASS)

fit<-lm(y~1+x1+x2+x3, data=cement)

confint(fit)

donne

2.5 % 97.5 %

(Intercept) 39.3411244 57.0461442

x1 1.2330935 2.1586869

x2 0.5568501 0.7569797

x3 -0.1678276 0.6678628

for the confidence intervals of each coordinate of β.

Problem 18. (Linear Gaussian models and space rotations) Let

Y = Xβ + ε,

be a Gaussian linear model, where X is injective, and ε ∼ N(0, σ2I). We know that if A is an orthogonal matrix,
then Ỹ = AY follows a linear Gaussian model as well,

Ỹ ∼ N (X̃β, σ2I),

with X̃ = AX. We will consider some particular cases of the orthogonal matrix A:

I. A = U⊤, where X = UΛV ⊤ is the singular values decomposition of X.

II. A = Q⊤, where X = QR is the QR decomposition of X

For each of these cases,

a) Compute the adjusted values ˆ̃y as functions of ỹ. What can we say about their first p coordinates? And
about their last n− p coordinates?

b) Compute the residuals of model Ỹ . What can we say about their first p residuals? And about their last
n− p residuals?

c) Recall that residuals are usually dependent. What do we notice here?

Hint: Start by computing the hat matrix H̃ for both cases I. and II.

Solution (a)). Let us compute H̃ for each case:

I. The singular values decomposition of Xn×p is UΛV ⊤, with Λn×p diagonal, i.e.,

Λ =

(
Λ1

0

)
,

where Λ1 is a p× p diagonal matrix. Since X̃ = AX = ΛV ⊤,

X̃⊤X̃ = V Λ2
1V

⊤,

and its inverse is given by V Λ−2
1 V ⊤ (Λ1 is invertible since X is injective) and

H̃ = X̃(X̃⊤X̃)−1X̃⊤ =

(
Ip 0
0 0

)
.
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II. Since X̃ = R = (R1, 0)
⊤, we have

H̃ = X̃(X̃⊤X̃)−1X̃⊤ =

(
Ip 0
0 0

)
.

Hence, in the two cases
ˆ̃y = (ỹ1, . . . , ỹp, 0, . . . , 0)

⊤

and
ẽ = (0, . . . , 0, ỹp+1, . . . , ỹn)

⊤.

The first p coordinates of ˆ̃y are equal to those of ỹ, the last n − p are zeros. The first p coordinates of ẽ are
zeros, and its last n− p coordinates are ỹi, i = n− p, . . . , n. De plus,

ẽ = (I − H̃)ỹ ∼ N
(
(I − H̃)X̃β, (I − H̃)σ2I(I − H̃)

)
= N

(
0,

(
0 0
0 σ2In−p

))
,

and thus the residuals are independent in this case (indeed, the first p are all 0 and the last n− p are all i.i.d.
Gaussians). Notice that, usually, the residuals are not independent!

Problem 19. (The best design)

Let us consider the simple regression model

yi = β0 + β1xi + εi, i = 1, . . . , n,

where β0, β1 ∈ R, E[ε] = 0 and var(ε) = σ2In (and n ≥ 2).

a) Find the design matrix corresponding to this model and give a necessary and sufficient condition for it to be
full rank.

b) Find the covariance matrix of the least squares estimator β̂ = (β̂0, β̂1)
⊤.

c) Let us suppose that we can design the experiment by choosing xi ∈ [−1, 1] arbitrarily. Which is the best

choice of xi that minimises the variance of β̂1?

Solution. a) The model can be written as

y = [X]

(
β0

β1

)
+ ε, with X =

1 x1

...
...

1 xn

 .

The necessary and sufficient condition for the matrix X to be full rank is that the xi’s are not all the same.

b) From the model assumption we know that var(y) = σ2In. We recall that β̂ is a linear transformation of y,

i.e. β̂ = Ay with A = (X⊤X)−1X⊤. Thus (recall that X⊤X is symmetric, so (X⊤X)⊤ = X⊤X)

var(β̂) = A var(y)A⊤

= σ2(X⊤X)−1X⊤ [(X⊤X)−1X⊤]⊤
= σ2(X⊤X)−1X⊤X(X⊤X)−1

= σ2(X⊤X)−1

c) The variance of β̂1 is the second diagonal element of the variance matrix of β̂ which is

var(β̂1) = [var(β̂1)]22 = σ2[(X⊤X)−1]22 =
σ2

det(X⊤X)
[X⊤X]11.

From the form of X we have

X =

1 x1

...
...

1 xn

 =⇒ X⊤X =

[
n

∑n
i=1 xi∑n

i=1 xi

∑n
i=1 x

2
i

]
.
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So, the determinant of X⊤X as a function of x = (x1, . . . , xn)
⊤ is

f(x) = n

n∑
i=1

x2
i −

(
n∑

i=1

xi

)2

.

Summarizing, we have the dependence of var(β̂1) as a function of x is

var(β̂1)(x) =
σ2n

f(x)
,

and finding the argmin var(β̂1)(x) is equivalent to finding the argmax f(x). Being convex, f(x) attains its
minimum if xi = c for any i = 1, . . . , n and its maximum is attained on the boundary of the domain [−1, 1]n,
more specifically for xi ∈ {−1, 1}. (Double differentiation shows that the Hessian of f is Hn = 2(nIn−1n1

⊤
n )

for all x, with In the n by n identity matrix and 1n = (1, . . . , 1)⊤. The null space of Hn is span{1n}, its first
(n − 1) eigenvalues are 2n and the last is 0. Thus, Hn is always positive semi-definite.) As a consequence,∑n

i=1 x
2
i = n and

∑n
i=1 xi = n+ − n−, where n+ is the number of xi’s attaining the value +1 and n− is the

number of xi’s attaining the value −1.
When n is even the optimal value can be attained for n+ = n− = n/2, so f(x) = n2 and var(β̂1) = σ2/n.
When n is odd we have a sub-optimal case and the maximum value is attained for n+ − 1 = n− = (n− 1)/2

(or alternatively n+ = n− − 1 = (n− 1)/2), so f(x) = n2 − 1 and var(β̂1) = σ2n/(n2 − 1).

We can interpret the result in the following way: β̂1 is the slope of the line that best fits the data according
to the linear regression. If all values of xi are close to a single value (say 0) there will be “many” acceptably
good linear fitting of the data and the slope can take values in a large set of values. Alternatively, small
changes in the values of the yi’s can lead to large changes in the slope of the fitting line. On the contrary,
if the xi’s are as spread as possible then even large changes in the values of the yi’s will have little effect on
the value of the slope of the fitting line.

Problem 20. (Reformulation of the Gauss-Markov theorem)

Let Y = Xβ + ε with E(ε) = 0, var(ε) = σ2I. Let β̂ be the least squares estimator of β, and β̃ another linear
and unbiased estimator of β.

Show that
MSE(c⊤β̃) ≥ MSE(c⊤β̂), ∀c ∈ Rp,

is equivalent to the conclusion of the Gauss-Markov theorem. Here, MSE(θ̂) = E((θ̂ − θ)2) is the mean square

error of θ̂.

Recall: MSE(θ̂) = bias(θ̂)2 + var(θ̂).

Solution. We have

MSE(c⊤β̃) = bias(c⊤β̃)2︸ ︷︷ ︸
=0, as β̃ unbiased

+ var(c⊤β̃) = c⊤var(β̃)c,

MSE(c⊤β̂) = bias(c⊤β̂)2︸ ︷︷ ︸
=0, as β̂ unbiased

+ var(c⊤β̂) = c⊤var(β̂)c.

So
MSE(c⊤β̃)−MSE(c⊤β̂) = c⊤var(β̃)c− c⊤var(β̂)c = c⊤(var(β̃)− var(β̂))c.

Hence, we have

MSE(c⊤β̃) ≥ MSE(c⊤β̂), ∀c ∈ Rp

⇔ MSE(c⊤β̃)−MSE(c⊤β̂) ≥ 0, ∀c ∈ Rp

⇔ c⊤(var(β̃)− var(β̂))c ≥ 0, ∀c ∈ Rp

⇔ var(β̃)− var(β̂) ⪰ 0.

Problem 21. (Diagnostic graphics)

16



a) Figure 2 represents the standardised residuals as a function of values adjusted for the linear model derived
from four different datasets. For each case, discuss the adjusting and explain briefly how you would try
to remedy the possible insufficiency.

b) Figure 3 shows four Q-Q Gaussian plots. In all the cases, the data do not follow the Gaussian distribution.
In fact, the data are generated from a distribution with

i) tails haevier than Gaussian tails;

ii) tails lighter than Gaussian tails;

iii) a positive skewness coefficient;

iv) a negative skewness coefficient.

Associate each case i)–iv) with a Q-Q plot of Figure 3.

Figure 2: Standardised residuals as a function of values adjusted for four Gaussian models.

Solution. a) We know that cov(e, ŷ) = 0 and that the standardised residuals are standard Gaussian random
variables (i.e. around 95% of the residuals must take values between -2 and 2 independently from the
values of ŷj) if model assumptions are fulfilled (ϵ ∼ N(0, σ2I), . . . ).

• Plot A : OK.

• Plot B : Problem = An outlier.

• Plot C : Problem = dependence between the fitted values and the standardised residuals. (see
Example 8.24, page 390, Statistical Models, Davison).
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Figure 3: Four Q-Q Gaussian plots where the data do not follow a Gaussian law.
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• Plot D : Problem = The variance of the residuals is not constant, heteroscedasticity.

b) • Plot A: negative skewness coefficient.

• Plot B: tails lighter than Gaussian tails.

• Plot C: tails heavier than Gaussian tails.

• Plot D: positive skewness coefficient.

Problem 22. (QQ plots)

The goal of this exercise is to justify the use of the QQ plot to “see” whether a sample x1, . . . , xn comes from
the normal distribution. Let X1, . . . , Xn ∼ N(0, 1) be i.i.d, and let Φ be the cumulative distribution function
of the normal law N(0, 1).

1. Show that Φ(X1), . . . ,Φ(Xn) ∼ U([0, 1]) are i.i.d., where U([0, 1]) denotes the uniform law on [0, 1].

2. (Bonus, i.e. this part can be skipped, we just need the form of the density below.)
For the kth order statistic V(k) of a sample of n uniform variables on [0, 1], as given in subproblem 3 below,
prove that V(k) ∼ Beta(k, n+ 1− k) with probability density function:

fk(x) = n

(
n− 1

k − 1

)
xk−1(1− x)n−k, x ∈ [0, 1].

Hint: Even though there are not many calculations, it is not an easy exercise. Let A = {0 < v1 < · · · <
vn < 1} ⊂ [0, 1]n. For (v1, . . . , vn) ∈ A, use the symmetry of the problem to write

P
(
V(1) ≤ v1, . . . , V(n) ≤ vn

)
as a n variables multiple integral. It is not advisable to compute explicitly this integral, but we can find
a (very!) easy explicit formula for the joint distribution

∂n

∂v1 . . . ∂vn
P
(
V(1) ≤ v1, . . . , V(n) ≤ vn

)
.

Then, the marginal density of V(k) is found by integrating the joint density over all other variables.

3. Let V1, . . . , Vn ∼ U([0, 1]) be i.i.d., and let

V(1) ≤ V(2) ≤ · · · ≤ V(n)

be the associated order statistics. Compute the expectation of V(k).

4. Let zα be the quantile α of the normal law N(0, 1), defined by

Φ(zα) = α.

Explain why E[X(k)] ≈ zk/(n+1). A rigorous justification is not necessary. Link it with the QQ plot.

Hint: It is necessary to approximate E[f(X)] ≈ f(E[X]) for a function f slightly non linear.

Solution. 1. x 7→ Φ(x) is strictly increasing, and Φ(R) = (0, 1). So, Φ(Xi) ∈ (0, 1). If x ∈ (0, 1), then

Pr[Φ(Xi) ≤ x] = Pr[Xi ≤ Φ−1(x)] = Φ(Φ−1(x)) = x,

hence Φ(Xi) ∼ U([0, 1]).

2. We start by computing P
(
V(1) ≤ v1, . . . , V(n) ≤ vn

)
under the assumption that (v1, . . . , vn) ∈ A. We first

observe that
{V(1) ≤ v1, . . . , V(n) ≤ vn} ⇐⇒

⋃
π∈Π

{Vπ(1) ≤ v1, . . . , Vπ(n) ≤ vn},

where Π is the set of all possible permutations of {1, . . . , n} (if this does not convince you, think about the
simplest case with n = 2). Since the events in the union are disjoint and there are n! possible permutations,
we conclude that

P
(
V(1) ≤ v1, . . . , V(n) ≤ vn

)
=
∑
π∈Π

P
(
Vπ(1) ≤ v1, . . . , Vπ(n) ≤ vn

) i.i.d.
= n!

n∏
i=1

vi.
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By formula

fV(1),...,V(n)
(v1, . . . , vn) =

∂n

∂v1 . . . ∂vn
P
(
V(1) ≤ v1, . . . , V(n) ≤ vn

)
= n!IA,

we derive that the joint probability density function is constant on A (|A| = 1/(n!)) and vanishes outside
A. Finally, in order to calculate the density function for the k-th order statistics we integrate over all
other variables:

fV(k)
(vk) =

∫
[0,1]n

n!IAdv1 . . . dvn

= n!

∫ vk

0

∫ vk

v1

· · ·
∫ vk

vk−2

dvk−1 . . . dv2 dv1

∫ vk+1

vk

· · ·
∫ vn

vk

∫ 1

vk

dvn . . . dvk+2 dvk+1

=
n!

(k − 1)!(n− k)!
vk−1
k (1− vk)

n−k = n

(
n− 1

k − 1

)
vk−1
k (1− vk)

n−k (3)

3. Here fk(x) = n!
(k−1)!(n−k)!x

k−1(1 − x)n−k, for x ∈ [0, 1], and zero otherwise. Since fk is a density, 1 =∫
fk(x)dx, (here and then,

∫
=
∫ 1

0
) and thus∫
xk−1(1− x)n−kdx =

(k − 1)!(n− k)!

n!
,

or, more explicitly: ∫
xa(1− x)bdx =

a!b!

(a+ b+ 1)!
, a, b ∈ N.

Hence

E[V(k)] =

∫
xfk(x)dx =

n!

(k − 1)!(n− k)!

∫
xk(1− x)n−kdx = · · · = k/(n+ 1).

4. E[X(k)] = E[Φ−1(Φ(X(k)))] ≈ Φ−1(E[Φ(X(k))]) = Φ−1(k/(n+ 1)) = zk/(n+1). Thus, when X1, . . . , Xn are
N(0, 1) i.i.d, we expect that their QQ normal plot is, “on average”, on the line y = x.

Problem 23. We consider the linear model with n > 8 and p = 2, where

E[yj ] = β0, j = 1, . . . , n− 2,

E[yj ] = β0 + β1, j = n− 1, n.

a) Writing the model in the form y = Xβ + ε, find the least squares estimator β̂ of β as a function of

ỹ1 = (n− 2)−1
∑n−2

j=1 yj and ỹ2 = (yn−1 + yn)/2.

b) Calculate the hat matrix for this model, verify that its trace is equal to p and find the fitted values ŷ.

c) Suppose yn−1 = yn = ỹ2. Find the leverages hjj , the standardised residuals, and Cook’s statistics. Comment
on this.

Solution. a) From the fact that E[y] = Xβ we conclude that

X =


1 0
...

...
1 0
1 1
1 1

 =⇒ X⊤X =

(
n 2
2 2

)
=⇒ (X⊤X)−1 =

1

2n− 4

(
2 −2
−2 n

)
.

The least squares estimator β̂ is computed as

β̂ = (X⊤X)−1X⊤y =
1

2n− 4

(
2 −2
−2 n

)(
(n− 2)ỹ1 + 2ỹ2

2ỹ2

)
=

(
ỹ1

−ỹ1 + ỹ2

)
.

b) Note that the column space S (X) of the design matrix X can be spanned by two orthogonal vectors

v1 =


1
...
1
0
0

 , v2 =


0
...
0
1
1

 .
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Therefore, the hat matrix H = X(X⊤X)−1X⊤ can be decomposed to the sum of two projection matrices
H = H1 +H2, where

H1 = v1(v
⊤
1 v1)

−1v⊤1 =
1

n− 2


1 . . . 1 0 0
...

. . .
...

...
...

1 . . . 1 0 0
0 . . . 0 0 0
0 . . . 0 0 0

 ,

H2 = v2(v
⊤
2 v2)

−1v⊤2 =
1

2


0 . . . 0 0 0
...

. . .
...

...
...

0 . . . 0 0 0
0 . . . 0 1 1
0 . . . 0 1 1

 ,

and the trace of H is tr(H) = tr(H1) + tr(H2) = 2 = p. The fitted values are calculated as

ŷ = Hy = H1y +H2y =


ỹ1
...
ỹ1
0
0

+


0
...
0
ỹ2
ỹ2

 =


ỹ1
...
ỹ1
ỹ2
ỹ2

 .

c) The leverages are the diagonal values of the hat matrix. So,

hjj =

{
1/(n− 2) for j = 1, . . . , n− 2,

1/2 for j = n− 1, n.

Using the rule of thumb on slide 138 (hjj > 2p/n), xn−1 and xn are leverage points. Next, we proceed to the
standardised residuals. Since yn−1 = yn = ỹ2, i.e. en−1 = en = 0, the estimator for the variance σ2 is

s2 =
1

n− 2

n∑
j=1

(yj − ŷj)
2 =

1

n− 2

n−2∑
j=1

(yj − ỹ1)
2,

the standardised residuals are given by

ri =
ei

s
√
1− hii

=

{√
n−2
n−3 (yi − ỹ1)/s for i = 1, . . . , n− 2,

0 for i = n− 1, n.

Cook’s statistics are

Ci =
r2i hii

p(1− hii)
=

e2i
ps2

hii

(1− hii)2
=

{
(n− 2)(yi − ỹ1)

2/(2(n− 3)2s2) for i = 1, . . . , n− 2,

0 for i = n− 1, n.

Therefore, even though (xn−1, yn−1), (xn, yn) are leverage points, they have no influence on any other data as
their Cook’s statistics are zero. Why? The fitted values ŷ1 = · · · = ŷn−2 = ỹ1 are totally independent on the
values of yn−1 and yn.

Problem 24. (t-test)

Let Y = Xβ + ϵ with ϵ ∼ N (0, σ2I) and X ∈ Rn×p of full column rank. Let us denote the t-statistic for the
j-th parameter as

t =
β̂j − βj

ŝe(β̂j)
,

where se(β̂j) = (var(β̂j))
1/2 is the standard deviation of the estimator β̂j and ŝe(β̂j) is a suitable estimator of

thereof. Show that t ∼ tn−p.

Solution. Firstly, recall that tν-distribution arises as

N (0, 1)√
χ2
ν

√
ν ,
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where the two random variables in the previous symbolic expression are independent.

Secondly, by the lemma on slide 105
var(β̂j) = σ2vjj ,

where vjj = (X⊤X)−1
jj , and by the theorem on slide 81 we have S2

σ2 (n− p) ∼ χ2
n−p.

Combining the two facts, it is natural to estimate σ̂2 = S2 to get the estimator of the standard error. Note that
by the theorem on slide 81 we also have the independence needed. Hence

t =
β̂j − βj

σ
√
vjj︸ ︷︷ ︸

∼N (0,1)

σ

S
√
n− p︸ ︷︷ ︸

1√
(n−p)S2

σ2

∼ 1√
χ2
n−p

√
n− p =

N (0, 1)√
χ2
n−p

√
n− p ∼ tn−p .

Problem 25. When we adjust the model y = β0 + β1x1 + β2x2 + β3x3 + ε to the cement data set (n=13, slide
55), R gives us the following table:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 48.19363 3.91330 12.315 6.17e-07 ***

x1 1.69589 0.20458 8.290 1.66e-05 ***

x2 0.65691 0.04423 14.851 1.23e-07 ***

x3 0.25002 0.18471 1.354 0.209

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

a) Explain in details how we compute the values in the columns “t value” and “Pr(>|t|)”. Which is the
significance of these values? Comment the observed values.

b) Knowing that ĉorr(β̂2, β̂3) = −0.08911, which is the p value for the null hypothesis β2 − β3 = 0? Try to
find the value of the test statistics without using R. For a test with a threshold of 5%, can we reject the null
hypothesis?

Solution. a) The column “t value” gives the statistics t for the hypothesis βi = 0 defined by

Ti =
β̂i√
S2vii

=
β̂i

ŜE(β̂i)
,

where vii is the i-th diagonal element of the matrix V = (X⊤X)−1. When the hypothesis βi = 0 is true, we
have that Ti follows Student’s t-distribution with n−p degrees of freedom. We will reject the null hypothesis
βi = 0 when the value of |Ti| is large.

The column “Pr(>|t|)” gives the p-values for the bilateral tests t above. When we denote the observed
value of Ti by τi, the p-value for thei-th test is given by

pi = P (|Ti| > |τi|) = 2(1− tn−p(|τi|)) = 2tn−p(−|τi|)).

If pi < 0.05, we reject the i-th hypothesis with a significance threshold of 5%.

For this example, with a significance threshold of 5%, we can reject the hypothesis βi = 0 for i = 0, 1, 2, but
not for i = 3.

b) In this case, the statistics t is given by

T =
c⊤β̂√

S2c⊤(X⊤X)−1c

for c = [0, 0, 1,−1]⊤. We know that

S2c⊤(X⊤X)−1c =
(
ŜE(β̂2)

)2
+
(
ŜE(β̂3)

)2
− 2 ĉorr(β̂2, β̂3) ŜE(β̂2) ŜE(β̂3)

= 0.044232 + 0.184712 − 2 · (−0.08911) · 0.04423 · 0.18471 = 0.03753.

Hence

τ =
0.65691− 0.25002√

0.03753
= 2.10033
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and we find the p-value
p = 2 · t9(−2.10033) = 0.06508.

Thus, we do not reject the null hypothesis with a significance threshold of 5%.

Problem 26. [REDUNDANT] Suppose the n× p full-rank design matrix X can be partitioned into two blocks
as [X1 X2 ] and let MX1

:= In −HX1
. Show that HX = HX1

+HMX1
X2

, where HMX1
X2

is the projection on
to the span of MX1

X2.

Solution. We need to show that HX1 + HMX1
X2 is an orthogonal projection matrix, i.e., it is idempotent,

symmetric and it spans S (X). Note that X⊤
1 MX1X2 = O, so HX1HMX1

X2 = O also. Since both HMX1
X2

and HX1 are orthogonal projection matrices, the first two statements are obvious.

It remains to show that any vector z ∈ S (X) is invariant under the action of HX1 + HMX1
X2 and that

any vector orthogonal to this span is annihilated by HX1 + HMX1
X2 . Since X is full rank, we can write

z = Xγ = X1γ1 +X2γ2 for some vector γ and subvectors γ1 and γ2. Then

(HX1 +HMX1
X2)z = (HX1 +HMX1

X2)(X1γ1 +X2γ2)

= HX1
(X1γ1 +X2γ2) +HMX1

X2
(X1γ1 +X2γ2)

= X1γ1 +HX1
X2γ2 +MX1

X2γ2

= X1γ1 +X2γ2

upon noting that

HMX1
X2

X1 = MX1
X2(X

⊤
2 MX1

X2)
−1X⊤

2 MX1
X1 = O,

HMX1
X2

X2 = MX1
X2(X

⊤
2 MX1

X2)
−1X⊤

2 MX1
X2 = MX1

X2.

Take now w ∈ S ⊥(X). We have

(HX1 +HMX1
X2)w = HX1w +HMX1

X2w

= 0 +MX1X2(X
⊤
2 MX1X2)

−1X⊤
2 MX1w

= MX1X2(X
⊤
2 MX1X2)

−1X⊤
2 (I−HX1)w = 0.

Indeed, HX1w = 0 because w is orthogonal to X, thus also orthogonal to X1. At the same time, X⊤
2 w = 0 by

orthogonality. By uniqueness of projection matrices (Exercise 1.2), the result follows.

Problem 27. (Frisch–Waugh–Lovell theorem) Consider the linear regression y = X1β1 + X2β2 + ε with
Eε = 0n. Let y be the observed response and suppose the n× p full-rank design matrix X can be written as the
partitioned matrix [X1 X2] with blocks X1, an n× p1 matrix, and X2, an n× p2 matrix. Let β̂1 and β̂2 be the
ordinary least square (OLS) parameter estimates from running this regression. Suppose we run least squares
on this model to obtain

y = X1β̂1 +X2β̂2 + e, (E1)

Define the orthogonal projection matrix HX = X(X⊤X)−1X⊤ as usual and HXi
= Xi(X

⊤
i Xi)

−1X⊤
i for

i = 1, 2. Similarly, define the complementary projection matrices MX1
= In −HX1

and MX2
= In −HX2

.

Prove the Frisch–Waugh–Lovell (FWL) theorem, i.e., show that the ordinary least square estimates β̂2 and the
residuals e from (E1) are identical to those obtained by running ordinary least squares on the regression

MX1
y = MX1

X2β2 + residuals. (E2)

Hint: starting from (E1) assuming β̂2 has been computed, pre-multiply both sides so as to obtain an expression

in terms of β̂2 only on the right-hand side and show the latter coincides with the least square estimate from
(E2).

Solution. The coefficient estimates of (E2) is

β̃2 = (X⊤
2 MX1

X2)
−1X⊤

2 MX1
y. (S1)

Let β̂1 and β̂2 denote the OLS estimates from running regression (E1). The orthogonal decomposition of y gives

y = X1β̂1 +X2β̂2 +MXy. (S2)
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Premultiplying both sides of (S2) by X⊤
2 MX1 yields

X⊤
2 MX1y = X⊤

2 MX1X2β̂2 (S3)

since MXMX1X2 = MXX2 = O. Solving (S3) gives back (S1), showing that β̂2 = β̃2.

By premultiplying (S2) by MX1 , we obtain instead

MX1y = MX1X2β̂2 +MXy (S4)

since MX1MX = MX. The regressand in (S4) is the same as that of regression (E2). The first term, MX1X2β̂2,

must be the fitted value since β̂2 is the OLS estimate of β2. Thus, MXy must be the vector of residuals of (E2).

Deriving the expression for β̂2 in the presence of multiple regressors involves tedious calculations with partitioned
matrices. Use Frisch–Waugh-Lovell theorem when you have multiple regressors, but are only interested in a
sub-vector of coefficient estimates such as β̂2.

Problem 28. (t-test vs. F -test for model-submodel testing, requires the previous problem)

Consider the linear regression y = X1β1 + x2β2 + ε under the assumption that X = (X⊤
1 ,x

⊤
2 )

⊤ is an n × p
full-rank non-stochastic design matrix with x2 an n×1 column vector and ε ∼ Nn(0n, σ

2In). We are interested
in testing whether the parameter β2 = 0: the Wald test t-statistic W and the Fisher test statistic F for this
hypothesis are, respectively,

W =
β̂2

se(β̂2)
, F =

RSS0 − RSS

RSS/(n− p)
,

where se(β̂2) =
[
s2Var

(
β̂2

)
/σ2
]1/2

. Under the null hypothesis H0 : β2 = 0, W ∼ T (n−p) and F ∼ F(1, n−p).

Show algebraically that W 2 = F .

Note that the two statistics lead to the same inference because the square of a T (n − p) distributed random
variable has distribution F(1, n− p).

Solution. By the FWL theorem, we can write the arguments of W as

β̂2 = (x⊤
2 MX1

x2)
−1x⊤

2 MX1
y, se(β̂2) =

[
s2(x⊤

2 MX1
x2)

−1
]1/2

.

Clearly, RSS/(n− p) = s2 and thus it remains only to show that the numerator of F is

RSS0 − RSS =
[
(x⊤

2 MX1
x2)

−1/2x⊤
2 MX1

y
]2

= y⊤HMX1
x2y.

First, we have

RSS0 − RSS = ∥MX1
y∥2 − ∥MXy∥2 = ∥(MX1

−MX)y∥2.

Using an orthogonal decomposition, this expression can be further simplified to

RSS0 − RSS = ∥MX1
HXy∥2 = ∥MX1

(HX1
+HMX1

x2
)y∥2 = ∥HMX1

x2
y∥2

because HMX1
x2 ∈ M⊥(X1). Noting that ∥HMX1

x2y∥2 = y⊤HMX1
x2y, completes the proof.

Problem 29. We consider the cement data with n = 13. The residuals sum of squares (RSS) for all the possible
models (containing always the denoted variables and the intercept) are given below:

Model RSS Model RSS Model RSS
- - - - 2715.8 1 2 - - 57.9 1 2 3 - 48.1
1 - - - 1265.7 1 - 3 - 1227.1 1 2 - 4 48.0
- 2 - - 906.3 1 - - 4 74.8 1 - 3 4 50.8
- - 3 - 1939.4 - 2 3 - 415.4 - 2 3 4 73.8
- - - 4 883.9 - 2 - 4 868.9

- - 3 4 175.7 1 2 3 4 47.9

Calculate the analysis of variance table (as in slide 163) adding x4, x3, x2 and x1 to the model in this order,
and test which term should be included in the model for the threshold α = 0.05. Compare with slide 164.
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Solution. Since the ordering of the variable is different, the number in the table will be different from the ones
in slide 168. Namely:

Df Red Sum Sq F value p-value
x4 1 2715.8-883.9 = 1831.9 306.3 10−7
x3 1 883.9 -175.7 = 708.2 118.4 10−6
x2 1 175.7 -73.8 = 101.9 17.04 0.003
x1 1 73.8 -47.9 = 26 4.3 0.07

Residual 8 47.9

For calculation of the F -values one calculates the numerator as the correspondent reduction in the sum of
squares (third column of the table) divided by the degrees of freedom added (in this case only 1) and the
denominator as the residual sum of squares divided by the residual degrees of freedom (47.9/8 = 5.98). Notice
that the denominator stays always the same (which is quite irrelevant now in the computer era :). To calculate
the p-values, use R.

Adding variables in this (reverse) order would lead to a model with x2, x3 and x4, while in the slide 164 variables
x1 and x2 would be in the model instead.

Problem 30. (Orthogonal variables) Let us consider the regression

y = Xβ + ε = (X1, X2)

(
β1

β2

)
+ ε,

where X = (X1, X2), β
⊤ = (β⊤

1 , β⊤
2 ), X1 is n× p1, X2 is n× p2 (both injective) such that

X⊤
1 X2 = 0p1×p2

.

Let Hi be the hat matrix associated to Xi.

1. What is the geometrical interpretation of X⊤
1 X2 = 0?

2. Calculate H as a function of Xi and of Hi, then, calculate the products

H1H2, H2H1, HH1, H1H.

What do you notice, which is the geometrical interpretation?

3. Show that each of the following quantities are equal to Hy:

(a) H1y +H2y;

(b) H1y +H2e1, with e1 = (I −H1)y;

(c) H1y +He1.

4. Interpret these equalities in relation to the models

y = Xβ + ε (M)

and to its submodels
y = X1β1 + ε, (M1)

y = X2β2 + ε. (M2)

Solution. 1. This means that all columns of X1 are orthogonal to all columns of X2. I.e., M(X1) ⊥ M(X2).

2. We notice first that

X⊤X =

(
X⊤

1 X1 0
0 X⊤

2 X2

)
,

so

H = (X1, X2)

(
(X⊤

1 X1)
−1 0

0 (X⊤
2 X2)

−1

)
(X1, X2)

⊤

= X1(X
⊤
1 X1)

−1X⊤
1 +X2(X

⊤
2 X2)

−1X⊤
2 = H1 +H2.

Then. since X⊤
1 X2 = 0, we have H1H2 = 0. Thus, H2H1 = H⊤

2 H⊤
1 = (H1H2)

⊤ = 0,

HH1 = (H1 +H2)H1 = H2
1 = H1
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et H1H = H⊤
1 H⊤ = (HH1)

⊤ = H⊤
1 = H1.

Interpretation: H1H2 = 0 comes from the fact that the space of columns of X1 and X2 are orthogonal,
thus if we project them on M(X2) and then on M(X1), we obtain the null vector. The interpretation for
H2H1 = 0 is similar. HH1 = H1 comes from the fact that to project on M(X1) and then on M(X) is
equivalent to projecting only on M(X1), because M(X1) is a subspace of M(X). For the same reason,
H1H = H1 because we project on M(X) and then on M(X1), so it is the same as projecting on M(X1).
Intuitively, We notice that if X⊤

1 X2 ̸= 0, We have HH1 = H1 = H1H, but H1H2 ̸= 0 and H2H1 ̸= 0.

3. Using the fact that Hy = (H1 +H2)y,

(a) trivial;

(b) comes from H2H1 = 0;

(c) comes from H(I −H1) = H −H1 = H2.

4. The fitted values under (M) (with (y,X) as data) are equal to

(a) the sum of the fitted values under (M1) and (M2). (the model data (Mi) are (y,Xi))

(b) the sum of the fitted values under (M1) (given (y,X1)) and of residuals of (M1) fitted under (M2)
(the data are (e1, X2)).

(c) the sum of the fitted values under (M1) (given (y,X1)) and of residuals of (M1) fitted under (M)
(the data are (e1, X)).

Problem 31. (Orthogonal variables and ANOVA)

Let us consider the regression

y = Xβ + ε = (X1, . . . , Xk)

β1

...
βk

+ ε

where Xi is n× pi, all the Xi are injective, and

i ̸= j =⇒ X⊤
i Xj = 0.

Let H be the hat matrix associated to X, Hi the hat matrix associated to Xi and β̂ = (X⊤X)−1X⊤y =

(β̂⊤
1 , . . . , β̂⊤

k )⊤. We denote by δij Kronecker’s delta: δij = 1 if i = j, 0 otherwise. For an ordered set L ⊂
{1, . . . , k} we define XL = (Xi : i ∈ L) and β̂L = (β̂⊤

i : i ∈ L)⊤. For example, if L = {1, 2, 4}, XL = (X1, X2, X4)
and

β̂L =

β̂1

β̂2

β̂4

 .

We define RSSL = ∥y −HLy∥2, where HL = XL(X
⊤
LXL)

−1X⊤
L .

1. Show that H = H1 + · · ·+Hk and that HL =
∑

i∈L Hi.

2. Show that HiHj = δijHi.

3. Show that β̂j = (X⊤
j Xj)

−1X⊤
j y.

4. For j ̸∈ L, calculate
RSSL −RSSL∪{j},

and show that this expression does not depend on L.

5. Which is the interpretation of point 4. with respect to ANOVA?

Solution. 1. since

(X⊤X)−1 =


(X⊤

1 X1)
−1 0 . . . 0

0 (X⊤
2 X2)

−1 0
...

... 0
. . . 0

0 . . . 0 (X⊤
k Xk)

−1


and

(X⊤
LXL)

−1 = diag((X⊤
i Xi)

−1 : i ∈ L).
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Son
H = X1(X

⊤
1 X1)

−1X⊤
1 + · · ·+Xk(X

⊤
k Xk)

−1X⊤
k = H1 + · · ·+Hk

and
HL =

∑
i∈L

Xi(X
⊤
i Xi)

−1X⊤
i =

∑
i∈L

Hi.

2. If i = j, HiHj = H2
i = Hi and if i ̸= j, HiHj = Xi(X

⊤
i Xi)

−1X⊤
i Xj(X

⊤
j Xj)

−1X⊤
j = 0 because

X⊤
i Xj = 0.

3.

β̂ = (X⊤X)−1X⊤y =


(X⊤

1 X1)
−1 0 . . . 0

0 (X⊤
2 X2)

−1 0
...

... 0
. . . 0

0 . . . 0 (X⊤
k Xk)

−1



X⊤

1

X⊤
2
...

X⊤
k

 y =


(X⊤

1 X1)
−1X⊤

1 y
(X⊤

2 X2)
−1X⊤

2 y
...

(X⊤
k Xk)

−1X⊤
k y

 .

4. First of all, we notice that

eL := y −HLy = y −
∑
i∈L

Hiy

and
eL∪{j} := y −HL∪{j}y = y −

∑
i∈L∪{j}

Hiy.

Moreover,

(I −HL∪{j})eL = (I −HL∪{j})(I −HL)y (4)

= (I −HL −HL∪{j} +HL∪{j}HL)y (5)

= (I −HL∪{j})y (6)

= eL∪{j}. (7)

Then eL∪{j} is a orthogonal projection of eL, so eL − eL∪{j} ⊥ eL∪{j} and

∥eL∪{j}∥2 + ∥eL − eL∪{j}∥2 = ∥eL∥2.

So
RSSL −RSSL∪{j} = ∥eL∥2 − ∥eL∪{j}∥2 =

∥∥eL − eL∪{j}
∥∥2 = ∥Hjy∥2

is independent of L.

5. The interpretation with respect to ANOVA is that in this case, the addition of a variable Xj does not
depend on the variables that we already have in the model (this is not the general case).

Problem 32. (Automatic model selection)

We consider the cement data. The residuals’ sum of squares (RSS) and the Mallows’ Cp for the model containing
the ordinate at the origin are the following:

Model RSS Cp Model RSS Cp Model RSS Cp

- - - - 2715.8 442.58 1 2 - - 57.9 1 2 3 - 48.1
1 - - - 1265.7 202.39 1 - 3 - 1227.1 197.94 1 2 - 4 48.0
- 2 - - 906.3 1 - - 4 74.8 5.49 1 - 3 4 50.8
- - 3 - 1939.4 314.90 - 2 3 - 415.4 62.38 - 2 3 4 73.8 7.325
- - - 4 883.9 138.62 - 2 - 4 868.9 138.12

- - 3 4 175.7 22.34 1 2 3 4 47.9 5

1. Utilise the selection methods forward selection and backward elimination to chose some models for these
data, including the significant variables at level 5%. Utilise the F -test

F =
RSS(β̂L)−RSS(β̂L∪{j})

RSS(β̂full)/(13− 5)

to decide if the addition of the j-th variable is significant.
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2. Another selection criterion is the Mallow’s Cp:

Cp =
SSp

s2
+ 2p− n.

Notice that here s2 is the variance estimator in the complete model.

(a) How could we use this criterion? Calculate the missing Cp.

(b) Which is the model selected by this criterion using the forward selection, and then backward elimi-
nation? Among all the models considered, which one is the best, according to this criterion?

Solution. 1. Here we will use the following test to add or not the j-th variable to the model y = β0 +∑
i∈L βixi:

F =
RSS(β̂L)−RSS(β̂L∪{j})

RSS(β̂full)/(13− 5)
,

where β̂full represents the estimator of β for the complete model. Since RSS(β̂L)−RSS(β̂L∪{j}) ∼ σ2χ2
1

under the hypothesis H0 : βj = 0, and that RSS(β̂full) ∼ σ2χ2
n−p and it is independent of RSS(β̂L) −

RSS(β̂L∪{j}), F ∼ F1,8 under H0. In particular, the distribution of F does not depend on the size of L.
The critical value of this test at level 5% is 5.32.

Forward selection

• Initial model : y = β0 + ϵ

• Stage 1 : y = β0 + β4x4 + ϵ, F = 2715.8−883.9
47.9/(13−5) = 305.95 > 5.32.

• Stage 2 : y = β0 + β4x4 + β1x1 + ϵ, F = 135.13 > 5.32.

• Stage 3: y = β0 + β4x4 + β1x1 + β2x2 + ϵ, F = 4.47 < 5.32.

Final model : y = β0 + β4x4 + β1x1 + ϵ.

Backward selection

• Initial model: y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ϵ

• Stage 1: y = β0 + β1x1 + β2x2 + β4x4 + ϵ, F = 48−47.9
47.9/(13−5) = 0.0167 < 5.32.

• Stage 2 : y = β0 + β1x1 + β2x2 + ϵ, F = 1.65 < 5.32.

• Stage 3 : y = β0 + β2x2 + ϵ, F = 141.70 > 5.32.

Final model : y = β0 + β2x2 + β1x1 + ϵ.

2. (a) Mallow’s Cp work as AIC: we choose the model with the minimal Cp. Here’s the table with all the
Cp:

Model RSS Cp Model RSS Cp Model RSS Cp

- - - - 2715.8 442.58 1 2 - - 57.9 2.67 1 2 3 - 48.1 3.03
1 - - - 1265.7 202.39 1 - 3 - 1227.1 197.94 1 2 - 4 48.0 3.02
- 2 - - 906.3 142.37 1 - - 4 74.8 5.49 1 - 3 4 50.8 3.48
- - 3 - 1939.4 314.90 - 2 3 - 415.4 62.38 - 2 3 4 73.8 7.325
- - - 4 883.9 138.62 - 2 - 4 868.9 138.12

- - 3 4 175.7 22.34 1 2 3 4 47.9 5

(b) With forward selection, we choose y = β0 +
∑

i∈{1,2,4} βixi, while the backward selection gives the
model y = β0 + β1x1 + β2x2 + ϵ. This last model is the one with the smallest Cp among all others.

Problem 33. (AIC and Gaussian linear models)

Show that the AIC criterion for a Gaussian linear model, base on a response vector of size n, with p covariates
and σ2 unknown, can be written as :

AIC = n log σ̂2 + 2p+ const,

where σ̂2 = SSp/n is the maximum likelihood estimator of σ2
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Solution. For the Gaussian linear models y ∼ N(Xβ, σ2In), the likelihood of (β, σ2) is given by

L(β, σ2) =
1

(2πσ2)n/2
exp

(
− 1

2σ2
(y −Xβ)⊤(y −Xβ)

)
.

Then, the log-likelihood is

l(β, σ2) = −n

2
log(2πσ2)− 1

2σ2
(y −Xβ)⊤(y −Xβ).

We have that the maximum likelihood estimator of β and σ2 are

β̂ = (X⊤X)−1X⊤y, σ̂2 =
1

n
(y −Xβ̂)⊤(y −Xβ̂).

So, the maximum of log-likelihood is

l(β̂, σ̂2) = −n

2
log(2πσ̂2)− 1

2σ̂2
(y −Xβ̂)⊤(y −Xβ̂)︸ ︷︷ ︸

=nσ̂2

= −n

2
log(2π)− n

2
log σ̂2 − n

2
.

From the AIC definition, we obtain that

AIC = −2l(β̂, σ̂2) + 2p = n log(2π) + n log σ̂2 + n+ 2p = n log σ̂2 + 2p+ const.

Problem 34. (Cross validation and number of regressions)

Let y = Xβ+ϵ, and β̂ denote the OLS estimator of β. The (leave-one-out) cross validation uses one observation
(xk, yk) as the validation set and the remaining observations (X−k, y−k) as the training set and repeating the
procedure for each k = 1, . . . , n. With the k-th observations xk ∈ Rp and yk ∈ R deleted, let X−k ∈ R(n−1)×p,

y−k ∈ Rn−1, and β̂−k ∈ Rp denote the corresponding design matrix, the responses, and the OLS estimator,
respectively (symbolically, y−k = X−kβ−k + ϵ−k).

a) Use the Sherman-Morrison formula(
A+ uv⊤

)−1
= A−1 − A−1uv⊤A−1

1 + v⊤A−1u

to show that

(X⊤
−kX−k)

−1 =

(
I +

(X⊤X)−1xkx
⊤
k

1− hkk

)(
X⊤X

)−1
.

b) Noting that x⊤
k is the k-th row of the original design matrix X, show that

X⊤
−ky−k = X⊤y − ykxk and x⊤

k (X
⊤X)−1X⊤

−ky−k = (1− hkk)yk − ek ,

to conclude that

β̂−k = β̂ −
ek
(
X⊤X

)−1
xk

1− hkk
.

c) Use the previous formula to deduce that the cross-validation criterion

CV =

n∑
k=1

(yk − x⊤
k β̂−k)

2. (8)

can be written as

CV =

n∑
k=1

(yk − x⊤
k β̂)

2

(1− hkk)2
. (9)

What is the advantage of using (9) instead of (8)?

Solution. a) First note that X⊤
−kX−k = X⊤X − xkx

⊤
k and x⊤

k (X
⊤X)−1xk = hkk. By the Sherman-Morrison

formula, we have

(X⊤
−kX

⊤
−k)

−1 = (X⊤X − xkx
⊤
k )

−1 = (X⊤X)−1 +
(X⊤X)−1xkx

⊤
k (X

⊤X)−1

1− x⊤
k (X

⊤X)−1xk

=

(
I +

(X⊤X)−1xkx
⊤
k

1− hkk

)
(X⊤X)−1,

=

(
I +

(X⊤X)−1xkx
⊤
k

1− hkk

)
(X⊤X)−1,
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b) First, we can calculate

X⊤y = (x1, . . . , xn)y =

n∑
i=1

yixi = X⊤
−ky−k + ykxk, (10)

hence

x⊤
k (X

⊤X)−1X⊤
−ky−k = x⊤

k (X
⊤X)−1(X⊤y − xkyk) = ŷk − hkkyk = yk − ek − hkkyk

= (1− hkk)yk − ek. (11)

Using (a) together with two equations (10) and (11) above, we get

β̂−k = (X⊤
−kX−k)

−1X⊤
−ky−k

(a)
=

(
I +

(X⊤X)−1xkx
⊤
k

1− hkk

)
(X⊤X)−1X⊤

−ky−k

(10)
= (X⊤X)−1(X⊤y − ykxk) + (1− hkk)

−1(X⊤X)−1xkx
⊤
k (X

⊤X)−1X⊤
−ky−k

(11)
= β̂ − (X⊤X)−1xkyk + (1− hkk)

−1(X⊤X)−1xk[(1− hkk)yk − ek]

= β̂ − (1− hkk)
−1ek(X

⊤X)−1xk.

c) From (b), we know

yk − x⊤
k β̂−k = yk − x⊤

k

(
β̂ − (1− hkk)

−1ek(X
⊤X)−1xk

)
= (yk − x⊤

k β̂) + (1− hkk)
−1ekx

⊤
k (X

⊤X)−1xk

= ek +
hkk

1− hkk
ek =

ek
1− hkk

ek.

If we use formula (8) we have to conduct n regressions to estimate all the β−j , j = 1, . . . , n, and then
proceed to n adjustments. On the other hand, if we use formula (9) only the adjustment of the model with
the complete data is required. This makes it feasible to actually perform “leave-one-out” cross-validation for
a linear model.

Problem 35. Let us suppose that y = µ + ε where ε ∼ N (0, σ2In) and that we adjusted to y a linear model
with the full rank design matrix Xn×p, n ≥ p, and the corresponding hat matrix H. Let D be the diagonal
matrix with elements 1− h11, . . . , 1− hnn. Using the previous exercise, show that

E[CV ] = µ⊤(I −H)D−2(I −H)µ+ σ2tr(D−1),

and deduce that if µ belongs to the space generated by the columns of X, then E[CV ] ≈ (n+ p)σ2.

Solution. From the previous exercise, we know that the “leave-one-out” cross-validation is given by

CV =

n∑
k=1

e2k
(1− hkk)2

.

In matrix notation, this is equivalent to

CV = e⊤D−2e

= y⊤(I −H)D−2(I −H)y

To calculate its expectation, we make use of the well-known formula E[y⊤Ay] = E[y]⊤AE[y]+tr(A ·cov[y]) with
E[y] = µ and cov[y] = cov[ε] = σ2In. To see why the formula holds,

E[y⊤Ay] = E[tr(y⊤Ay)] = E[tr(A · yy⊤)] = tr(A · E[yy⊤])
= tr(A(E[y]⊤E[y] + cov[y])) = E[y]⊤AE[y] + tr(A · cov[y]).

Applying the formula above, we now have

E[CV ] = µ⊤(I −H)D−2(I −H)µ+ σ2tr((I −H)D−2(I −H))

= µ⊤(I −H)D−2(I −H)µ+ σ2tr(D−2(I −H)),
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since I −H is a projection matrix (symmetric and idempotent). As the final step of the calculation, we prove

tr(D−2(I −H)) =

n∑
k=1

(1− hkk)
−2 · (1− hkk)

=

n∑
k=1

(1− hkk)
−1 = tr(D−1),

hence the result follows. Note that µ ∈ M(X) only if the model is correct, so that (I −H)µ = 0! In the case
where the model is correct,

E[CV ] = σ2tr(D−1) = σ2
n∑

k=1

(1− hkk)
−1 ≈ σ2

n∑
k=1

(1 + hkk) = σ2(n+ tr(H)) = σ2(n+ p),

since 0 ≤ hkk ≤ 1 are usually small (influential points having high leverages pose issues for the model) and
(1− x)−1 ≈ 1 + x for small x ≈ 0 as the Taylor expansion of f(x) = (1− x)−1 at x = 0 is 1 + x.

Problem 36. (Model selection in R )

a) Use the criteria backward stepwise and forward stepwise to choose a model for the data“Supervisor Perfor-
mance” (SPD) from R package RSADBE

Which model has the best AIC value?

b) Using the package leaps, find the model with the best BIC value among all submodels.

Solution. a) library(RSADBE)

data(SPD)

m1 <- lm(Y ~ ., data = SPD)

m.backward <- step(m1, direction = "backward")

m0 <- lm(Y ~ 1, data = SPD)

my.scope <- formula(SPD)

m.forward <- step(m0, scope = my.scope, direction = "forward", data = SPD)

The forward/backward stepwise give the model Y ~ X1 + X3 with AIC of 118.00.

b) install.packages("leaps")

library(leaps)

library(car)

leaps <- regsubsets(formula(SPD), data = SPD)

plot(leaps)

subsets(leaps)

The model with the best BIC value is Y ~ X1 with BIC of -27.50.

Problem 37. (Ridge regression)

Let X = [1n Z] be an n × p design matrix with centered inputs Z, meaning that Z⊤1n = 0p−1. Consider the
model y = 1nβ0 + Zγ + ε, where Eε = 0n and Var (ε) = σ2In. The ridge estimators are defined by

(β̂0, γ̂λ) = argmin
(β0,γ)

∥y − 1nβ0 − Zγ∥22 + λ∥γ∥22.

From slide 211, we know that the ridge estimators are given by

(β̂0, γ̂λ) = (y, (Z⊤Z+ λIp−1)
−1Z⊤y)

a) Show that the fitted value of the ridge regression are

ŷλ = y1n +

p−1∑
j=1

ω2
j

ω2
j + λ

(
u⊤
j y
)
uj ,

where uj and ωj are the left singular column vectors and the singular values of Z, respectively. Discuss what

happens to ŷλ when some of the {ω2
j }

p−1
j=1 are close to zero.
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b) What happens to the ridge estimates if the columns of Z are orthogonal, i.e. Z⊤Z = Ip−1? Explain why it
is preferable to standardize the columns of Z so they have approximately unit variance.

c) Show that λ 7→
∥∥γ̂λ∥∥22 is a decreasing function.

Solution. a) Using the SVD decomposition Z = UΩV⊤, we have

Zγ̂λ = Z(Z⊤Z+ λIp−1)
−1Z⊤y = UΩ(Ω2 + λIp−1)

−1ΩU⊤y =

p−1∑
j=1

ω2
j

ω2
j + λ

(
u⊤
j y
)
uj .

Note that ZZ⊤ = UΩ2U⊤ has the eigenvectors uj with corresponding eigenvalues ω2
j . The coefficients

associated to the basis vectors uj with the smallest eigenvalue ω2
j get shrunk the most towards zero.

b) First, note that the OLS corresponds to the case where λ = 0, and γ̂OLS = (Z⊤Z)−1Z⊤y = Z⊤y. Also, we
know that the fitted values with the OLS method is invariant to the scale of the variables: a rescaling of a
column, say zj 7→ kzj leads to the solution γ̂j 7→ γ̂j/k, so that the fitted values ŷ = 1ny + Zγ̂OLS remains
unchanged (To rephrase it, we have not changed the column space of the design matrix). However, this is
not the case for penalized methods: rescaling amounts to the different amount of shrinkage to the covariates,
which can be seen from (a), and the fitted values ŷ = 1ny + Zγ̂λ change. Therefore, imposing a uniform
criteria Z⊤Z = Ip−1 ensures that the penalty is consistent, and in this case,

γ̂λ = (Z⊤Z+ λIp−1)
−1Z⊤y =

1

1 + λ
Z⊤y =

1

1 + λ
γ̂OLS,

the shrinkage effect is uniform over all variables. This standardizing procedure is automatically done by any
good R package.

c) We provide two solutions, one using calculations of the norm, and one using the definition of ridge regression.

• Let Z = UΩV⊤ be the singular value decomposition of Z with D = diag(ω1, . . . , ωp−1). This gives us
the eigendecomposition of Z⊤Z = VΩ2V⊤, thus

γ̂λ = V(Ω2 + λIp−1)
−1ΩU⊤y =

p−1∑
j=1

ωj

ω2
j + λ

(u⊤
j y)vj .

Since a (p− 1)× (p− 1) matrix V is orthogonal,

∥∥γ̂λ∥∥22 = y⊤UΩ(Ω2 + λIp−1)
−2ΩU⊤y =

p−1∑
j=1

(
ωj

ω2
j + λ

)2

(u⊤
j y)

2,

Since λ 7→ (w/(w2 + λ))2 is a decreasing function for any w > 0, the expression above is decreasing in
λ.

• It suffices to show that for any λ1 > λ2, ∥γ̂λ1∥22 ≤ ∥γ̂λ2∥22. Since

γ̂λ = argmin
γ

∥y − 1ny − Zγ∥22 + λ∥γ∥22,

we have

∥y − 1ny − Zγ̂λ1
∥22 + λ1∥γ̂λ1

∥22 ≤ ∥y − 1ny − Zγ̂λ2
∥22 + λ1∥γ̂λ2

∥22,
∥y − 1ny − Zγ̂λ1∥22 + λ2∥γ̂λ1∥22 ≥ ∥y − 1ny − Zγ̂λ2∥22 + λ2∥γ̂λ2∥22.

Then the difference of two inequalities becomes

(λ1 − λ2)∥γ̂λ1
∥22 ≤ (λ1 − λ2)∥γ̂λ2

∥22,

hence ∥γ̂λ1
∥22 ≤ ∥γ̂λ2

∥22.

Problem 38. Let λ∗ = 2max1≤j≤q |Z⊤
j y|. Show that{

λ > λ∗ =⇒ γ̂lasso = 0,

λ < λ∗ =⇒ γ̂lasso ̸= 0.

Hint: Use the convexity for the first part.
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Solution. Let ỹ = y − ȳ1 be the centered response. Then γ̂ = γ̂lasso minimizes function f defined as

f(γ) = g(γ) + λ∥γ∥1 with g(γ) =

n∑
i=1

(
ỹi −

q∑
j=1

Zijγj

)2
.

We will study what happens with the two parts of f close to 0. For g, this will be done via derivative, while the
non-differentiable term ∥γ∥1 we will be inspected directly (another approach would be to use the sub-gradient,
an optimization-theory notion generalizing the concept of a derivative).

The partial derivatives of g at 0 are

∂g

∂γj
(0) = −

n∑
i=1

2
(
ỹi −

q∑
j=1

Zij0
)
Zij = −2Z⊤

j ỹ = −2Z⊤
j y, j = 1, . . . , q,

where the last equality comes from the fact that Z⊤1 = 0.

For the case λ < λ∗, we will show that there exist v such that f(v) < f(0). Let j be the coordinate for which
λ < 2|Z⊤

j y|, and let ej denote the j-th vector of the standard basis (i.e. zero but 1 in the j-th coordinate). For
t small we have

f(tej) = g(tej) + λ∥tej∥ = g(tej) + λ|t| = g(0) + t
[
− 2Z⊤

j y + λsign(t) + o(1)
]
.

If Z⊤
j y > 0, f(tej) < g(0) = f(0) for t > 0 small enough. If Z⊤

j y < 0, the same is true for t < 0 small enough.
Hence 0 is not the minimizer of f .

Now let λ > λ∗. We can estimate, using the Taylor expansion for g at 0, that for any v:

f(v) = g(0) + [∇g(0)]⊤v + o(v) + λ∥v∥1 ≥ g(0) +
(
λ− ∥∇g(0)∥∞︸ ︷︷ ︸

λ∗

)
∥v∥1 + o(v).

Recall that o(v)/∥v∥1 → 0 for v → 0. Hence, since λ > λ∗, 0 must be a strict local minimum of f . Since f is
convex, 0 must be the only minimum.

Problem 39. Let X = [1n Z] be an n× p design matrix with centered inputs Z, meaning that Z⊤1n = 0p−1.
Consider the model y = 1nβ0 + Zγ + ε, where Eε = 0n and Var (ε) = σ2In. The ridge estimators are defined
by

(β̂0, γ̂λ) = argmin
(β0,γ)

∥y − 1nβ0 − Zγ∥22 + λ∥γ∥1.

We know that β̂0 = y regardless of the smoothing parameter λ ≥ 0, thus

γ̂λ = argmin
γ

∥y − 1ny − Zγ∥22 + λ∥γ∥1.

Unlike the ridge regression, lasso solution may not be unique. Nonetheless, the adjusted values are unique: let
γ̂1 and γ̂2 be two lasso solutions (for the same smoothing parameters λ).

a) Show that Zγ̂1 = Zγ̂2, using convexity.

b) Show that, if λ > 0, then ∥γ̂1∥1 = ∥γ̂2∥1 .

Solution. Since both the estimators estimate the intercept the same (as the mean), so we can only focus on Z
and γ estimates, denoted as γ̂1 and γ̂2. Also, denote y∗ = y − 1ny.

a) Assume that γ̂1 and γ̂2 both give an optimal objective value, henceforth denoted as α. Note first that
∥Y − Zγ∥22 is strictly convex in Zγ, hence for t ∈ (0, 1), we have

∥y∗ − tZγ̂1 − (1− t)Zγ̂2∥22 ≤ t∥y∗ − Zγ̂1∥22 + (1− t)∥y∗ − Zγ̂1∥22. (12)

By the strict convexity, the equality holds if only if Zγ̂1 = Zγ̂2. Also, L1-norm is convex, hence

∥tγ̂1 + (1− t)γ̂2∥1 ≤ t∥γ̂1∥1 + (1− t)∥γ̂2∥1.

Owing to the optimality of γ̂1 and γ̂2, we obtain

α ≤ ∥y∗ − tZγ̂1 − (1− t)Zγ̂2∥22 + λ∥tγ̂1 + (1− t)γ̂2∥1
≤
(
t∥y∗ − Zγ̂1∥22 + (1− t)∥y∗ − Zγ̂2∥22

)
+ λ (t∥γ̂1∥1 + (1− t)∥γ̂2∥1)

= t
(
∥y∗ − Zγ̂1∥22 + λ∥γ̂1∥1

)
+ (1− t)

(
∥y∗ − Zγ̂2∥22 + λ∥γ̂2∥1

)
= tα+ (1− t)α = α.

Hence equalities must be preserved in the previous chain, and the equality of (12) holds, i.e. Zγ̂1 = Zγ̂2.
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b) This is evident from the previous part, because in the last inequality we used two upper estimates. If the
inequality should be equality, both of the upper estimates must be sharp. From the sharpness of the first
one we deduced part a), from the second one we can deduce part b), provided λ > 0.

Problem 40. (Median regression)
Let Yi = β0 + β1xi + ϵi, i = 1, . . . , n. Note that the median of a random variable Y is defined as

med(Y ) = argmin
c∈R

E|Y − c| .

Let Xi = (1, xi)
⊤ and

β̂ = argmin
β

∑
(Yi − β⊤Xi)

2 , β̃ = argmin
β

∑
|Yi − β⊤Xi|

1. Show that E|Y − β⊤X| is minimized for β⊤X = med(Y ) and conclude why β̃ is sometimes called the
”median regression estimate”.

2. Compare what are the estimators β̂ and β̃ actually estimating in the cases of ϵ ∼ N(0, 1) and ϵi ∼ Exp(1).

Solution. 1. This is clear from how median is defined. β̃ is modeling median of the response variable in the
same way as β̂ is modeling the expectation.

2. Since both the median and expectation of a standard gaussian is zero, in the gaussian case the two
estimators are estimating the same:

EYi = β0 + β1xi = med(Yi) .

In the second case, med(Exp(1)) ̸= EExp(1) and both of them are non-zero, hence β̂0 is estimating a

different constant than β̃0, and neither is really estimating β0. β1 is being estimated the same, since both
the median and the expectation are linear. Hence the effect of the covariate on the response is the same
in both cases.

Problem 41. (Naive kernel density estimator)
Let X1, . . . , Xn be a random sample from a distribution function F . Let f = F ′ be the density. For every
x ∈ R, the estimator of f is given as

f̂(x) :=
Fn(x+ h)− Fn(x− h)

2h
,

where Fn is the empirical distribution function. Show that f̂ is a kernel density estimator (check out “kernel
density estimation” on Wikipedia for definition), i.e. specify the weighting function, also known as the kernel.

Solution. Write Fn(x) =
1
n

∑n
i=1 1[Xi,∞)(x). Then

f̂(x) =
1

2nh

n∑
i=1

1[xi−h,Xi+h)(x) =
1

2nh

n∑
i=1

1[−h,h)(x− xi) =
1

nh

n∑
i=1

1

2
1[−1,1)

(
x− xi

h

)
=:

1

nh

n∑
i=1

K
(x−Xi

h

)
,

where K(y) = 1
21[−1,1). So the kernel corresponds to U [−1, 1) distribution.

Problem 42. (Generalized least squares)
Consider the linear model Y = Xβ + ε, where y is an n × 1 vector of responses, X is an n × p full-rank non-
stochastic design matrix and the error vector ε ∼ Nn(0n,Σ) for Σ ̸= σ2In a known positive definite covariance
matrix. Let y be the observed response vector.

1. Show that the maximum likelihood estimator (MLE) of β is the vector that minimizes

(y −Xβ)⊤Σ−1(y −Xβ).

2. Show that the maximum likelihood estimator of β, known as generalized least squares estimator (GLS),
is of the form

β̂GLS = (X⊤Σ−1X)−1X⊤Σ−1y.
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3. Derive the distribution of β̂GLS.

4. Show that the ordinary least squares (OLS) estimator β̂ is an unbiased estimator of β, but is not the best
linear unbiased estimator (BLUE) of β. State carefully any result you use.

Solution. 1. The maximum likelihood estimator of β is

argmax
β

L(y;X) = argmax
β

|Σ|−1/2

(2π)n/2
exp

{
−1

2
(y −Xβ)⊤Σ−1(y −Xβ)

}
.

and thus finding the MLE amounts to minimization of (y −Xβ)⊤Σ−1(y −Xβ).

2. Since Σ = UΛU⊤ is positive definite, its inverse Σ−1 is well-defined and positive definite and by the
spectral theorem admits a square root Σ−1/2 = UΛ−1/2U⊤.

One can rewrite the regression as the classical linear model setting by premultiplying by Σ1/2. The normal
equation can also be derived using vector calculus, by differentiating (y−Xβ)⊤Σ−1(y−Xβ) with respect
to β and setting the derivative to zero. The normal equations are

X⊤Σ−1Xβ = X⊤Σ−1y

and sinceX⊤Σ−1X is a quadratic form and Σ is positive definite, the inverse is well-defined. Differentiating
twice gives 2X⊤Σ−1X and since the Hessian is positive, β̂GLS minimizes the distance and is therefore the
maximum likelihood estimator of β.

3. By the transformation property, the estimator β̂GLS is Gaussian because ε is also Gaussian. Its mean and
variance are

Eβ̂GLS = (X⊤Σ−1X)−1X⊤Σ−1EY = (X⊤Σ−1X)−1X⊤Σ−1Xβ = β

and

Var
(
β̂GLS

)
= (X⊤Σ−1X)−1X⊤Σ−1Var (Y ) Σ−1X(X⊤Σ−1X)−1

= (X⊤Σ−1X)−1X⊤Σ−1ΣΣ−1X(X⊤Σ−1X)−1

= (X⊤Σ−1X)−1.

4. First, the ordinary least square (OLS) estimator is unbiased,

Eβ̂OLS = (X⊤X)−1X⊤EY = β.

Let Y ∗ = Σ−1/2Y . Then, the linear model with Y ∗ = Σ−1/2Xβ + ε∗ satisfies the hypothesis of the
Gauss–Markov theorem with ε∗ ∼ Nn(0n, In) and the OLS estimator of this regression is BLUE. Since
we premultiply by the matrix Σ−1/2, the design matrix becomes Σ−1/2X and so the BLUE estimator is
β̂GLS.

Alternatively, proceed as in the proof of Gauss–Markov theorem to show that β̂GLS is BLUE.

Let β̃ be any linear unbiased estimator of β, necessarily of the form AY with AX = In. Write Var
(
β̃
)
=

AΣA⊤ and the difference between the variance of the estimators as

Var
(
β̃
)
− Var

(
β̂GLS

)
= AΣA⊤ − (X⊤Σ−1X)−1

= A
{
Σ−X(X⊤Σ−1X)−1X⊤}A⊤

= AΣ1/2
{
In − Σ−1/2X(X⊤Σ−1/2Σ−1/2X)−1X⊤Σ−1/2

}
Σ1/2A⊤

= AΣ1/2MΣ−1/2XΣ1/2A⊤.

Since MΣ−1/2X is a projection matrix, it is idempotent and the difference Var
(
β̃
)
− Var

(
β̂GLS

)
is a

quadratic form and hence positive semi-definite. Since β̂OLS is a linear unbiased estimator (with A =
(X⊤X)−1X⊤), it is not the BLUE in this particular example.

35



Problem 43. Consider the linear model y = Xβ + ε, with εj
iid∼ g(·); suppose that E(εj) = 0 and var(εj) =

σ2 < ∞ is known. Suppose that the MLE of β is regular, with

ig =

∫
−∂2 log g(u)

∂u2
g(u)du =

∫ {
∂ log g(u)

∂u

}2

g(u)du.

1. Show that the asymptotic relative efficiency (ARE) of the leas squares estimator of β relative to MLE of
β is

1

σ2ig
.

2. What is it reduced to if g is the gaussian density?

3. What about if g is the density of the Laplace distribution?

Solution. Some preliminary remark:

a) In this exercise, we will denote j-th row of X by x⊤
j , thus X

⊤ =
(
x1 x2 · · · xn

)
.

b) Let us recall that under regularity assumptions, the MLE of θ is asymptotically Gaussian, with
covariance matrix the inverse of the Fisher information matrix.

1. The model is y = Xβ + ε, with ε of zero mean and known variance σ2. The variance of the LSE is thus
σ2(X⊤X)−1.

The density of yj is g(yj − x⊤
j β), with g the density of εj . Therefore, we have

ℓ(β) =

n∑
j=1

log g(yj − x⊤
j β), β ∈ Rp.

Let us notice that hj(β) = log g(yj − x⊤
j β). From the “chain-rule”, we have

∂hj

∂β
= −xj

d log g(u)

du

∣∣∣∣
u=yj−x⊤

j β

thus
∂2hj

∂β2
=

∂

∂β

∂hj

∂β
= − ∂

∂β

(
d log g(u)

du

∣∣∣∣
u=yj−x⊤

j β

)
x⊤
j = xjx

⊤
j · d

2 log g(u)

du2

∣∣∣∣
u=yj−x⊤

j β

.

We used the fact that if A is a matrix and f(β) is a vectorial function such that Af(β) is defined, then
∂(Af(β))

∂β = ∂(f(β))
∂β A⊤ (from the “chain-rule”).

Hence,

− ∂2ℓ

∂β2
= −

∑
j

xjx
⊤
j

d2 log g(u)

du2

∣∣∣∣
u=yj−x⊤

j β

and so,

I(β) = E
{
− ∂2ℓ

∂β2

}
=

n∑
j=1

xjx
⊤
j E

{
− d2 log g(u)

du2

∣∣∣∣
u=yj−x⊤

j β

}
,

where the expectation becomes ∫
−d2 log g(u)

du2
g(u)du = ig,

with the change of variable yj−x⊤
j β = u. That implies I(β) = igX

⊤X, and so the MLE has as asymptotic

variance i−1
g (X⊤X)−1.

The asymptotic relative efficiency of least squares with respect to the MLE is thus{
|i−1
g (X⊤X)−1|
|σ2(X⊤X)−1|

}1/p

=
1

igσ2
.
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2. We have g(u) = (2πσ2)−1/2e−u2/(2σ2) for u ∈ R, thus ig = 1/σ2, which give an efficiency of 1. That is not
surprising, since the LSE is exactly the MLE in this case.

3. Let λ =
√
2/σ, where σ2 is the variance. The Laplace density is g(u) = (λ/2) exp(−λ|u|), u ∈ R. Let us

remark that, since the MLE is regular, we have

ig =

∫
−d2 log g(u)

du2
g(u)du =

∫ {
d log g(u)

du

}2

g(u)du =

∫
{−λsgn(u)}2 (λ/2) exp(−λ|u|)du = λ2.

So, the asymptotic relative efficiency is 1/(λ2σ2) = 1/2.

Problem 44. Give the equivalent of the H matrix for non-parametric regression with kernel smoothing.

Solution. The adjusted values are

ŷi = ĝ(xi) =

n∑
j=1

yj
K
(

xj−xi

λ

)
∑n

k=1 K
(
xk−xi

λ

) .
By defining

Sλ,ij =
K
(

xj−xi

λ

)
∑n

k=1 K
(
xk−xi

λ

) ,
we have ŷ = Sλy, where Sλ is called the smoother matrix. In non-parametric regression, this is the analogue of
the hat matrix.

Problem 45. (Cubic spline)
Let n ≥ 2 and a < x1 < x2 < · · · < xn < b. Denote by N(x1, x2, . . . , xn) the space of natural cubic splines with
knots x1, x2, . . . , xn. The goal of this exercise is to show that the solution to the problem

min
f∈C2[a,b]

L(f), where L(f) =

n∑
i=1

(yi − f(xi))
2 + λ

∫ b

a

{f ′′(x)}2dx, λ > 0, (13)

must belong to N(x1, x2, . . . , xn). In order to show this, we need the following theorem

Theorem. For every set of points (x1, z1), (x2, z2), . . . , (xn, zn), there exists a natural cubic spline g
interpolating those points. In other words, g(xi) = zi, i = 1, . . . , n, for a unique natural cubic spline
g. Moreover, the knots of g are x1, x2, . . . , xn.

1. Let g the natural cubic spline interpolating the points (xi, zi), i = 1, . . . , n, and let g̃ ∈ C2[a, b] another
function interpolating the same points. Show that∫ b

a

g′′(x)h′′(x)dx = 0,

where h = g̃ − g.
Hint: integration by parts

2. Using point (1) show that ∫ b

a

{g̃′′(x)}2dx ≥
∫ b

a

{g′′(x)}2dx

when the equality holds if and only if g̃ = g.

3. Use point (2) to show that if the problem (13) has a solution f̂ , thenf̂ ∈ N(x1, x2, . . . , xn).

Solution. 1. Using integration by parts, we obtain that∫ b

a

g′′(x)h′′(x)dx = g′′(x)h′(x)
∣∣∣b
a︸ ︷︷ ︸

=0, car g′′(a)=g′′(b)=0

−
∫ b

a

g′′′(x)h′(x)dx

= −
n−1∑
i=1

g′′′(x+
i )

∫ xi+1

xi

h′(x)dx

= −
n−1∑
i=1

g′′′(x+
i ){h(xi+1)− h(xi)} = 0.
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Here, the second equality comes from the fact that g′′′(x) = 0 inside the intervals (a, x1) and (xn, b) and
that g′′′(x) equals to the constant limx→x+

i
g′′′(x) = g′′′(x+

i ) inside the interval (xi, xi+1). To obtain the

last equality finally, observe that g̃(xi) = g(xi) = zi hence h(xi) = 0 for every i.

2. By direct computation we obtain that∫ b

a

{g̃′′(x)}2dx =

∫ b

a

{g′′(x) + h′′(x)}2dx

=

∫ b

a

{g′′(x)}2dx+ 2

∫ b

a

g′′(x)h′′(x)dx+

∫ b

a

{h′′(x)}2dx

=

∫ b

a

{g′′(x)}2dx+

∫ b

a

{h′′(x)}2dx ≥
∫ b

a

{g′′(x)}2dx.

where we have equality if and only if h′′(x) ≡ 0, so we must have h(x) = kx+ c. But since h(xi) = 0 for
every i, it must be thath(x) ≡ 0. In particular we have equality if and only if g̃ = g.

3. Let f̃ ∈ C2[a, b]\N(x1, . . . , xn) and let f ∈ N(x1, . . . , xn) the spline which is interpolating the points
(xi, f̃(xi)), i = 1, . . . , n. By point (2)∫ b

a

{f̃ ′′(x)}2dx >

∫ b

a

{f ′′(x)}2.

Moreover
n∑

i=1

(yi − f̃(xi))
2 =

n∑
i=1

(yi − f(xi))
2.

Hence, L(f̃) > L(f) and we notice that if the minimum exists, it must belong to N(x1, . . . , xn).

Remark. Using the properties of splines, it it possible to show that a minimum always exists and is unique.
Hence the problem minf∈C2[a,b] L(f) admits always a unique solution and this solution is a natural cubic spline.

Problem 46. Prove the proposition on slide 29:

Let Ω ∈ Rp×p be a real symmetric matrix. Then Ω is non-negative definite if and only if Ω is the covariance
matrix of some random vector Y .

Solution. For the if part, let Ω be the covariance matrix of a random vector Y ∈ Rp. Then, for any a ∈ Rp,
a⊤Ωa is the variance of the random variable a⊤Y . This shows that a⊤Ωa ≥ 0 for every a ∈ Rp and hence Ω is
non-negative definite.

Conversely, let Ω be non-negative definite. So, we can write Ω = UΛU⊤, where U ∈ Rp×p and Λ =
diag(λ1, . . . , λp) with λi ≥ 0 ∀ i. Now, we can always find a random vector X ∈ Rp such that Λ is the co-
variance matrix of X (take independent random variables with variances given by the eigenvalues, and use them
to form random vector X). Then, Ω is the covariance matrix of Y = UX.

Problem 47. Show that the two definitions of a positive (semi-)definite matrix on lecture slide 26 are equivalent:

For a real symmetric p× p matrix Ω, show that the statements

a) for all x ∈ Rp \ {0}, x⊤Ωx > 0 (or x⊤Ωx ≥ 0), and

b) all eigenvalues of Ω are positive (or non-negative)

are equivalent, defining Ω as a positive definite (or semi-definite) matrix.

Solution. • not b) ⇒ not a):
Assume the jth eigenvalue of Ω is λj ≤ 0 (or λj < 0) with eigenvector uj , then so is u⊤

j Ωuj = λj , which
contradicts positive definiteness (or semi-definiteness, respectively).

• b) ⇒ a):
Note that you can write singular value decomposition Ω = UΛU⊤ also as Ω =

∑p
i=1 λiuiu

⊤
i where the

λi are the diagonal entries of Λ and the ui are the column vectors of U which form an orthonormal basis

(ONB) of Rp. Hence, x⊤Ωx =
∑p

i=1 λi (u
⊤
i x)

2︸ ︷︷ ︸
≥0

λ1,...,λp≥0

≥ λj(u
⊤
j x)

2 for any j. For x ̸= 0, we can further

choose j such that also u⊤
i x ̸= 0 since the ui form an ONB. Thus, we have that from λ1, . . . , λp(>) ≥ 0

immediately implies x⊤Ωx(>) ≥ 0.
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Problem 48. Let Y be a random variable with covariance Σ =

(
5/2 3/2
3/2 5/2

)
.

1. Calculate the principal components v1 and v2.

2. Verify your calculation in R.

3. In R, simulate n = 100 data points from a distribution with mean zero and covariance Σ.

4. In R, find the principal components of the sample from the previous point, denoted by v̂1 and v̂2.

5. In R, plot the simulated data points together with the population and sample principal components.

Solution. For the manual calculation, we begin by calculating the eigenvalues of Σ as roots of the characteristic
polynomial:

det(Σ− λI) = (5/2− λ)2 − (3/2)2 = 0 ⇝ λ1 = 4 & λ2 = 1.

Then we can easily calculate the principal components, i.e. the eigenvectors:

(Σ− 4I)v = 0 ⇝ v1 = (1, 1)⊤ & (Σ− I)v = 0 ⇝ v2 = (1,−1)⊤.

For points 2.-5. we give the code:

# 2.

Sigma <- matrix(c(5,3,3,5)/2, ncol=2)

EIG <- eigen(Sigma)

EIG$vectors[,1] # v_1

EIG$vectors[,2] # v_2

# 3.

sqrt_Sigma <- EIG$vectors %*% diag(sqrt(EIG$values)) %*% t(EIG$vectors)

n <- 100

X <- matrix(rnorm(2*n),ncol=2) %*% sqrt_Sigma # the data matrix

# 4.

SVD <- svd(X)

SVD$v[,1] # \hat{v}_1

SVD$v[,2] # \hat{v}_2

# 5.

plot(X[,1],X[,2],col="gray")

sign1 <- sign(sum(EIG$vectors[,1]*SVD$v[,1]))

sign2 <- sign(sum(EIG$vectors[,2]*SVD$v[,2]))

arrows(0,0,sqrt(EIG$values[1])*EIG$vectors[1,1],sqrt(EIG$values[1])*EIG$vectors[2,1],col="gray60")

arrows(0,0,sqrt(EIG$values[2])*EIG$vectors[1,2],sqrt(EIG$values[2])*EIG$vectors[2,2],col="gray60")

arrows(0,0,sign1*SVD$d[1]/sqrt(n)*SVD$v[1,1],sign1*SVD$d[1]/sqrt(n)*SVD$v[2,1])

arrows(0,0,sign2*SVD$d[2]/sqrt(n)*SVD$v[1,2],sign2*SVD$d[2]/sqrt(n)*SVD$v[2,2])

The code for point 5. looks quite complicated for the following reasons:

• Signs of eigenvectors and singular vectors are irrelevant. For example, the software can produce either
v1 = (1, 1)⊤ or v1 = (−1,−1)⊤. If we want to ensure that v1 and its estimator v̂1 are facing in a similar
direction, we have to take care of the signs manually.

• The eigenvalue λ1 captures variance in the direction of the first principal component. Note that variance
is not useful for plotting, standard deviation is preferred with this respect. By multiplying v1 by

√
λ1, we

are including the information on the data spread in the plot, making it look more natural.

• What is the relation between the eigenvalues of Σ and the singular values of the data matrix X? Recall
that the squared singular values of X are eigenvalues of X⊤X. However, X⊤X is not the estimator of Σ,
X⊤X/n is! Putting everything together, the corresponding scale to

√
λ1 is σ1/

√
n.

Problem 48b. Let {x1, . . . , xn} ⊂ Rp, and X be a matrix with x⊤
i in its i-th row. Let X = UDV⊤ be the

SVD of X. Show that for q < p the optimization problem

min
Q∈Rp×q,Q⊤Q=I

n∑
i=1

∥xi −QQ⊤xi∥22
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is equivalent to
max

Q∈Rp×q,Q⊤Q=I
tr(Q⊤VD2V⊤Q)

and conclude that Q = (v1, . . . , vq) is a solution, where vi is the i-th column of V.

A note on the SVD: The full SVD of X ∈ Rn×p refers to the decomposition X = UDV⊤, where U ∈ Rn×n is an
orthogonal matrix with its columns forming a basis of Rn, V ∈ Rp×p is an orthogonal matrix with its columns
forming a basis of Rp and D ∈ Rn×p has non-zero entries only on the “diagonal”. However, some authors
(including us in this exercise) understand by SVD the compact SVD, which refers to the same decomposition
X = UDV⊤, while (let m = min(n, p)) U ∈ Rn×m and V ∈ Rm×p has orthogonal columns (but may not be
full bases anymore), and D ∈ Rm×m is a diagonal matrix. Intuitively, going from the full SVD to the compact
one, one just trims off an all-zero block of D to make it a square matrix and discards the corresponding parts of
U or V. The compact SVD is often the default in software packages, since one is seldom interested in the full
SVD. It is often clear from the context, whether the full SVD or the compact SVD is considered. In the exercise
above, the meaning of D2 would be unclear unless the compact SVD was considered. Recall that neither the
full SVD nor the compact SVD are unique.

Solution. We can rearrange the objective as

n∑
i=1

∥xi −QQ⊤xi∥22 = ∥X−XQQ⊤∥2F = tr
[
(X−XQQ⊤)⊤(X−XQQ⊤)

]
= tr(X⊤X)− 2tr(X⊤XQQ⊤) + tr(QQ⊤X⊤XQQ⊤)

= tr(X⊤X)− tr(Q⊤X⊤XQ) = tr(X⊤X)− tr(Q⊤VD2V⊤Q)

where we used the cyclic permutation property of the trace and the fact that Q is orthogonal. The first term
of the final expression does not depend on Q and hence it can be dropped. The minus in front of the second
term then changes the minimization problem to the maximization one, hence the problems are equivalent.

Now, if we choose Q = (v1, . . . , vq), the objective value is
∑q

i=1 d
2
i . Given the order of the singular values,

d1 ≥ d2 ≥ . . ., and the the required orthogonality of Q, this is the highest objective value one can obtain.

Problem 49. In R, generate a random vector (a regressor) x ∈ R100 such that xj ⊂ [0, 2], and a random vector
of errors e ∈ R100 such that ej ∼ N(0, 1/10). Then create the dependent random variable as

yj = 10 + 2 sin(π ∗ xj) + ej .

Plot the dependent random variable against the regressor. Secondly, find a transformation of the x-axis which
reveals the approximate linear relationship between x and y. Can you see how the constants (10 and 2) affect
the plots? Go through the same for the following dependent variable:

yj = exp(15 + 3 log(x) + ej).

Solution. We can create and plot the data using the following code:

x <- runif(100)*2

e <- rnorm(100)/sqrt(10) # notice the square-root

y <- 10 + 2*sin(pi*x) + e

plot(x,y)

Since we know how we generated the data, it is clear how to transform the x-axis to obtain a clear linear
relationship:

plot(sin(pi*x),y)

So the transformation is x̃ = sin(π ∗ x). Once we have the transformed plot, one can see that the constant 10
is the intercept, i.e. the value of the (imaginary) line at x̃ = 0, while 2 is the slope of that line.

Similarly for the second dependent variable, the transformation of the x-axis is x̃ = log(x), only this time, we
also have to transform the y-axis as ỹ = log(y).

Note that the first dependent variable follows a linear model. The second one doesn’t, it does only after a log-
transformation. In the case of the first dependent variable, we could have probably guessed the transformation
even without knowing how the data were generated. In the case of the second dependent variable, we probably
would have been lost. But still, in the latter case, the variance seems to be increasing with increasing values of
y, which points towards log-transformation of the response.
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Problem 50. Let yi = β1 cos(x− β2) + ϵ for i = 1, . . . , 100.

a) Can you obtain estimates for β = (β1, β2)
⊤ directly by solving a sequence of least squares problems? How

do the design matrices and responses for this sequence look like?

b) Can you obtain estimates for a suitable transformation of β by solving only a single least squares problem?

c) Simulate data in R using the following code:

x <- 1.5*pi*runif(100)

y <- 1*cos(x - (-1)) + rnorm(100)/2

data1 <- data.frame(x=x,y=y)

i.e. β = (1,−1)⊤ here. Treat β as unknown and estimate it using both (a) and (b). Find the fitted values
using approach (a) and approach (b). Plot the raw data and both sets of fitted values to check if they are
the same.

Solution. (a) This is a nonlinear model with η(β) = β1 cos(x− β1). So, we can use Newton-Raphson method

(slide 253 in the lecture notes). We start with an initial choice β(0) = (β
(0)
1 , β

(0)
2 )⊤. For h = 0, 1, 2, . . .,

we iteratively fit linear regression with design matrix D(h) = ∇βη(β) and response y − η(β(h)), that is

find u(h) = (D(h)⊤D(h))−1D(h)⊤(y − η(β(h))), and update β(h+1) = β(h) + u(h). For this specific problem,
∂η(β)
∂β1

= cos(x− β2),
∂η(β)
∂β2

= β1 sin(x− β2). So,

D(h) =


cos(x1 − β

(h)
2 ) β

(h)
1 sin(x1 − β

(h)
2 )

cos(x2 − β
(h)
2 ) β

(h)
1 sin(x2 − β

(h)
2 )

...
...

cos(xn − β
(h)
2 ) β

(h)
1 sin(xn − β

(h)
2 )

 , y − η(β(h)) =


y1 − β

(h)
1 cos(x1 − β

(h)
2 )

y2 − β
(h)
1 cos(x2 − β

(h)
2 )

...

yn − β
(h)
1 cos(xn − β

(h)
2 )

 .

This is repeated until convergence.

(b) The problem can be reformulated as follows.

y = β1 cos(x− β2) + ϵ = β1 cos(β2)︸ ︷︷ ︸
β∗
1

cos(x)︸ ︷︷ ︸
x1

−β1 sin(β2)︸ ︷︷ ︸
β∗
2

sin(x)︸ ︷︷ ︸
x2

+ϵ = β∗
1x1 + β∗

2x2 + ϵ

This is a simple linear regression problem with x1 = cos(x), x2 = sin(x) and no intercept term.

(c) Here is the code:

### part (b):

m3 <- lm(y~I(cos(x)) + I(sin(x))-1,data=data1)

summary(m3)

plot(data1$x,data1$y)

points(x,fitted(m3),col="red",pch=0)

### part(a): Newton-Rhanpson for NLLS

# mean function

nu_cos <- function(x,beta) beta[1]*cos(x-beta[2])

# fitting algorithm

NNLS_cos <- function(beta, n_iter, data){

# data - data frame

# beta - starting value for the algorithm (in this case a vector)

# maxiter - no. of iterations, we do not check any stopping criterion for simplicity

for(k in 1:n_iter){

data_akt <- data.frame(x1=cos(data$x - beta[2]),

x2=beta[1]*sin(data$x - beta[2]),

y=data$y-nu_cos(data$x,beta) )

m_akt <- lm(y~x1+x2-1, data=data_akt)

u <- unname(coef(m_akt))

beta <- beta + u

}
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return(beta)

}

beta_0 <- c(0.5,-0.5) # starting point - try out different ones!

( beta_hat <- NNLS_cos(beta_0,100,data1) ) # let it run for 100 iterations, that should be enough

fitted_val <- beta_hat[1]*cos(data1$x - beta_hat[2])

# do we really get the same estimates?

plot(data1$x,data1$y)

points(x,fitted(m3),col="red",pch=0)

points(data1$x, fitted_val, col="blue", pch=4)

# yes! you can also verify it analytically
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