Problem 1. Define H := X(X "X)"!X ", where X is a non-stochastic n x p full rank matrix with p < n. Show
that

1. H is idempotent and symmetric, meaning that H> = H and H' = H.
2. the eigenvalues of H are either 0 or 1.

3. H is a projection matrix onto the column space of X, #(X). Is this still the case if the columns of X are
not linearly independent?

4. the trace of H, tr(H), is equal to p and thus rank(H) = p.

Solution. 1. Symmetry is trivial. For idempotency,

HxHx = X(X'X)7!'XTX(X"X)"'X" = XI,(X"X)"'X" = Hx.

2. If v is an eigenvector of H associated to the eigenvalue A, then Hv = Av by definition. But H is
idempotent, so H*>v = AHv = A?v and the only solutions of A> = X are {0, 1}.

3. The matrix H is symmetric and idempotent. It remains to show its image is ./(X). For any y € R",
Hy = X3 with 8 = (XTX)"'XTy € RP. Thus im(H) C .#(X), while at the same time HX = X, so
im(H) 2 .(X).

H is not well-defined if X does not have rank p since the inverse X "X does not exist. (but the solution
in this case is rather simple: replace the matrix inverse by the pseudoinverse)

4. The trace is invariant to cyclic permutations of its arguments, so
tr(H) = tr (X' X(X"X) ™) = tx(I,) = p.

The trace is also equal to the sum of the eigenvalues of H, which are either 0 or 1. There must be p
non-zero eigenvalues, so by the spectral theorem rank(H) = p.

If the columns of X are linearly dependent, there exists a non-zero vector v € RP such that Xv = 0,, so
XTXv =0, and XX is not injective, thus not invertible.
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Problem 2. Show that orthogonal projection matrices® are unique: if P and Q are orthogonal projection

matrices onto a subspace ¥ of R", then P = Q.

Solution. There are many ways to prove this. First, the column vectors of P are elements of V. Consider a
basis V of p orthogonal vectors in V and a basis of n — p vectors W for V+. We can express the ith column
vector of P as p; = Va + W for some coeflicients o € RP,v € R""P. Because P is idempotent, Pp; = p;
and so v = 0,,—,. This shows columns of P € V, so QP = P since Q is a projector. Similarly, PQ = Q. Using
symmetry,

Q=PQ=P'Q'=(QP)" =P' =P.

Alternatively: for any v € ¥, v = P for some . Pre-multiply both sides by P and use the idempotency of
projection matrices to get Pv = PPS =Pg = v.

We thus have Pv = v = Qv for any v € V. Since any vector x € R™ can be uniquely decomposed into two
orthogonal vectors x = v +w, where v € V and w € Y+, Qx = v = Px for any x € R” and thus P = Q.

Problem 3. Suppose the n x p full-rank design matrix X (n > p) can be written as [X; Xy] with blocks
X1, an n X p; matrix, and Xy, an n X py matrix. Show that H — H; is an orthogonal projection matrix.
(Hy = X1(X{ X1)7'XY)

Solution. The key is to note that HX; = X; since the columns of X; are in .(X). It follows that HH; = H;
and, by transposing, that Hi{H = H;. The matrix H — H; is symmetric since both H and H; are symmetric.

1Note: the projection is orthogonal, not the matrix — the latter is not invertible if p < n! The three defining properties of an
orthogonal projection matrix onto V are (1) Pv = v for any v € V, (2) symmetry and (3) idempotency.



The idempotency follows from the observation that

(H-H,)(H-H,) =HH - H,H - HH, + H,H,
=H-H, +HH,
—H-H,.

Problem 4. Suppose that A, X € R"*" z € R". Show that
il _ AT
2. a%xTAx = (A+AT)z; [Note the special case %mT:v = 2z. |

3. Ztr(X) = 1I,.

Solution. a) Denote y = Az. Hence, y; = 2?21 Aijz; and thus %yi = A;;. We obtain
J
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b) Denote y = 2" Az = Y > A;;z;x;. We have

i=1j=1

0
aTcky = #Zk Apiz; + Z; Az + 2Akkxy

= ZAM@- + ZAikxi = (Ax) + (ATx)k = (Az + ATx)k.
i=1 i=1

Thus

52V = Az + ATz =(A+ ATz

n

¢) Denote y = tr(X) = > X;;. Then %y = 0;;, where
: y

=1
by =40 T (1)
0, ifiz#jy

is the Kronecker delta. Thus 6%3/ =1,.

Problem 5. Let X be an n X p full rank real matrix with p < n and 2 an n X n positive definite matrix,
meaning that v Qv > 0 for all v € R\ {0,}.

1. Show that B = XTQX is positive definite and thus invertible. Deduce from this fact that XX is
invertible.

2. Show that B is not necessarily invertible if we only assume that €2 is real, symmetric and invertible.
Solution. (a) Recall that X is full rank if and only if X is injective and if and only if ker(X) = {0,}. If

veRP\ {0,},
v Bv =v'XTOXv = (Xv) QXv >0

since Xv # 0,, and 2 is positive definite. It follows that B is also positive definite and thus invertible. The
second part follows from the first upon taking {2 = I,,, which is positive definite.

(b) Counter-example. With X = (1,1)T and Q = ((1) _(1)), we get XTQX = 0. In general, if Q has one positive
eigenvalue a and one negative eigenvalue b, one can find a matrix X such that X QX = 0.



Problem 6. Let Y7,...,Y, beiid. from N (u,0o?).
Show that the log-likelihood satisfies

1 1 «
Up, %) = 3 nlogo? + ) ;(% — p)? 3 4 const
and the maximum likelihood (ML) estimates of y and o are

. . 1 _
p=y and %= (y;—9)”

Solution. An easy calculation.

Problem 7. Let ¥ be an p x p positive definite covariance matrix. We define the precision matrix Q = ¥~
Suppose the matrices are partitioned into blocks,

v (5 52) mav=a=(31 g2
with dim(X1) = k x k and dim(X92) = (p — k) X (p — k). Prove the following relationships
(a) 12X = —Qp1 Quo
(b) $11 — £12555 To1 = QY

(C) det(Z) = det(zgz) det(Em) where 21‘2 = 211 — 21222_21221.

Solution. By writing explicitly the relationship QX =1,,, we get

Q11¥11 + Qu2¥01 = I
Q21X12 +Q22Xo = I,
Q21%11 +Q22¥21 = Op_ii
QY12+ Q12X = O pi.

Recall that we can only invert matrices whose double indices are identical and that both Q and ¥ are symmetric,
50 Y15 = %g;. One easily obtains

(a) L1255 = —Q; Q2 making use of the last equation.

(b) X417 — 2122521221 = Qfll by substituting Q2 from the last equation into the first.

(c) One can cleverly choose B = ((I) *21222721 ), noting that det(B) = det (B") = 1. Computing the quadratic

form BYBT, we get det(X) = det(Xa2) det(X;)2) where Xy = X1q — 21222_21221.

Problem 8. Let Y ~ N, (1, X) and consider the partition

Y, 1 Y11 X2
Y = ) = ) E = )
<Y2> a (,Uz Y91 Yo
where Y7 is a k x 1 and Y3 is a (n — k) x 1 vector for some 1 < k < n. Show that the conditional distribution
of Y1 | Yo = yo is Np(u1 + 21222_21 (y2 — p2), X1j2) and ¥y)5 is the Schur complement of Y.

Hint: write the joint density as p(y1,y2) = p(y1 | y2)p(y2) and express the joint density in terms of the precision
matrix Q. It suffices to consider terms in p(y1,y2) that depend only on y, (why?). The conditional distribution
can then be identified by its functional form directly.



Solution. Without the loss of generality, assume means are 0. It is easy to generalize the solution below for
the case of a non-zero mean. Following the hint, we write:

1

Fanlye) Sl F(0m) = Flono) o exp (= 50000 Qn )" )

1 1
o exp <27J1TQ112J1 — 9! Qi2ys — 22/2TQ22?J2>

1
X exp <—2(yl + Q' Qu2y2) " Qui(y1 + Q1_11Q12y2)>

Firstly, we are using proportionality signs in our calculation, which is often convenient, and here it is almost
necessary to keep the solution of this exercise simple. Note that every density has to integrate into one, so
whatever factors that do not depend on the variable y; can be discarded. Secondly, on the first line of the
calculation, we just wrote the density of multivariate normal using the precision matrix, discarding constants
as described above. On the second line, we just developed the expression w.r.t. to the blocks of the precision
matrix. On the final line, we completed the square in y; and separated the term depending on y; from the rest.
And voila! Up to proportionality we have a Gaussian in y; considering ys as fixed. This means that we know
the conditional distribution of Y7 given Y5.

Once we established that the conditional distribution is Gaussian, we can just read the mean and variance from
the exponential. We see the precision matrix is Q11 which by Problem 7 (¢) is exactly the Schur complement
and Problem 7 (a) gives us an expression for the mean:

fi12 = — Qi1 Quay2
= Y1255, Y2
Yy =311 — Z51222721221.

Finally, go through the argument again to see what changes when the means are not assumed to be zero.

Problem 9. Let Z ~ N,,(0,,,1,) and Y ~ N,,(u, 2) with X positive definite.
(a) Let A be an orthogonal matrix. Show that ATZ ~ N, (0,,1,).

(b) Show that C™1(Y — u) ~ N, (0,,1,) where C is the Cholesky root of 3, the unique lower triangular matrix
with positive diagonal elements such that ¥ = CC".

(c) Let H be a n x n projection matrix of rank k < n with real entries. Show that ZTHZ ~ x2(k).
(d) Show that (Y — pu) T2~HY — p) ~ x2(n).
(e) Let A be a non-negative definite matrix. If AXA = A, then show that (Y — u) " A(Y — u) ~ x2(k), where
k =tr(AY).
Solution. Recall the affine transformation property of the normal distribution:
Y ~N(u,Y) = BY +0~N(6+Bu,BEB"). (S1)
The Gaussian distribution is a location-scale family.
(a) Follows from (S1) and the fact that A is orthogonal, so AT A = I,,.

(b) The matrix C is invertible because its diagonal elements are all strictly positive. Since C™1(Y — u) =
C~ 'Y — C 1y, it follows from (S1) that C~}(Y — p) is normal with mean C~!'y — C~ !y = 0, and
covariance C~1XC-T =C-cCc'c T =1,.

(c) By definition, the y2(k)-distribution is the distribution of X T X for X ~ Ny (0x,Iz). We rewrite ZTHZ in
the form X " X by using the spectral decomposition

n k
H=UAU' = Z)\iuiuj Aiefo.1) uiu;r = U U'
‘ Prob. 1.2 4 ~~~
i=1 =1 nxk
to set
Z'HZ=2"UU"Z=X"X.



And indeed B B o
cov(X) =cov(U'Z)=U"cov(Z) U=U'U =1,
N——

=I,
such that X has the desired distribution, which shows that ZTHZ = X T X ~ x2(k).

(d) Since ¥ is invertible it is positive definite. Write its Cholesky decomposition ¥ = CCT, where C is
invertible. From b), Z :== C™YY — p) ~ N,,(0,,1,) and

Y- y-p=F-p'c'CrY-pn=2"2=2"1,2
The result now follows from c) since the identity matrix I,, is a projection matrix of rank n.

(e) Using the solution in part d), we can write
Y —p)"A(Y —p)=(CZ2)TACZ=2Z"C"ACZ = Z"HZ.
Note that H is a symmetric matrix. Also,
H>=C'ACC'AC=C'AXAC=C'AC=H.

So, H is idempotent. This shows that H is a projection matrix. So, by part c), Z HZ ~ x?(k), where k is
the rank of H. Now,

rank(H) = tr(H) = tr(CTAC) = tr(ACC ") = tr(AY).
Note: Part d) can be seen as a special case of part e).

Problem 10. Consider a singular value decomposition (SVD) of the design matrix X = UDV ", where U is
an n x p orthonormal matrix (meaning U' U = I, and the columns of U are orthogonal vectors), D is an p x p
diagonal matrix and V is an p x p orthogonal matrix. Show that the hat matrix H = X(X"X)"!X T does not
depend on V.

Solution. The fact that both U and V are orthonormal means that UTU =V TV = I,. The hat matrix is
H=UDV' (VDU'UDV'")"'VvDU' =UQvV'VD2vTVDU' =UU",

since D=D" and V! = VT thus (VD*VT)"l = VD2V,

Problem 11. (Non-linear « linear models). This exercise has the goal of showing that a non-linear model can
(sometimes) be transformed into a linear one. For instance, the model y = 31 (z + B3)72(¢2 + 1) can be written
as

log(y) = log(B1) + B2 log(z + B3) + log(e? + 1),

—— = ——
BT B3 e*

with 33 fixed, and [1 log(z + ﬁg)] as design matrix. Moreover, we need 31 > 0,z + 53 > 0 in order to do the
transformation.

Write, when possible, the following models as linear regressions, either by transforming and/or by fixing some
parameters. Specify the new parameter (8*), the new error (¢*), restrictions (e.g. 81 > 0) and give the design
matrix, as in the example above:

a) y=fo+fi/r+ Pafr® +¢ e) y=PBo+ B2’ +¢

b) y=pBo/(1+ Prz) +¢ f) y= B0+ frzy* + B3xy" +e€

¢) y=Po/(Brx) +e g) y = Biy? cos(wy) e

d) y=1/(Bo + iz +¢) h) y =B+ 272(2 + cos(x2))% (2 + 1)

Solution. Here is an example of solution (there could be others). The fixed parameters are underlined (e.g.

Bo)-
a)y=(1 L 1)By B B)T +ewitha#0



b) y:(@)(ﬁo)-i-s with  # 0
¢) y=(1/z)(v) + e with vy = Bo/B1 or y = (%&)(Bo) + & with z # 0

Vy=( D) )T+
y=1 22)(8 B1)" +¢

d)
)
f)y=(_1 mfz 55[214)(50 B B3)'
)
)

e

g) log(y) = (1 log(z1) logcos(x2)])(log(B1) B2 Bs)' +log(e) with x1,e > 0 and cos(zs) > 0

h) log(y — B1) = (log(x1) log[2 + cos(x2)])(B2 B3) " +log(e? + 1) with z1 > 0.

Problem 12. Let Y; = 5o + f1z; + €, =1...,n
a) Write down the design matrix X. Calculate the elements of X "X, XTY and (XTX)™!

S m Y nzY

b) Show that B; = S, Where T = IS w;and Y = L3 Y, How do you interpret the

estimate?

Solution. a) The design matrix is

1 T
X — 1 To
1 =z,

One can straightforwardly calculate
XTX = n D Ti XTy — > i1 Yi
YT Y %3)] i1 1Y
and use the 2 X 2 matrix inversion formula to get

XIX)™ = j(zx) <22n?ji ZZ_IW)

b) Formula for B follows easily by multiplying 3 = (XTX)~'XTY, though we are only interested in the second
element of the resulting vector.

Assume now that the data are standardized, i.e. both x and Y have (empirical) mean zero and (empirical)

variance one. Then 31 reduces to the empirical correlation coefficient between x and Y, and it is the slope of
the regression line when data are plotted. When we alleviate the assumption that our data are standardized,
the interpretation of 51 as the slope of the regression line is retained.

Problem 13. (Factors and Interactions — Linear Models in R)

In R, a model formula has the following general form response~expression. The right-hand side expression
follows certain rules. For example, intercept is present unless removed by -1 and powers have to be designated
with I(x"2). For example, y ~ x+I(x"2)-1 defines a model where y depends on x quadratically and the
intercept is set to zero.

For this exercise, suppose that

217 1 1 1
143 0 1 2
186 2 1 3
V=121 | *T o> 2T 2| P71
157 1 2 2
143 0 2 3

We can assign a toy meaning to this toy data set for illustration purposes: let y; be the stress level of the
j-th measured individual. We would like to model the mean stress level based on the number of children the
individual has (denoted x;), the sex of the individual (denote a; and labeled 1 for female and 2 for male), and
the marital status of the individual (denoted b; and labeled 1 for single, 2 for married and 3 for divorced).
Notice that the values in vectors a and b are only labels here (denoting groups, classes, or levels).



a) A factor is a categorical/qualitative variable, which may not have a numerical meaning (e.g. a group-
allocating variable such as a and b). For example, consider the following model of stress value based on
sex only:

yj =Po+a1+e;, Jj=1,23; yj = Bo+az+ej, J=4,506;

i.e. the mean stress value is allowed to be different for males and females. We can write the model in a
single equation using indicators:

Yj = Bo + a1l(g,=1) + a2l(4,=2) + €, (2)
where 15 = 1 if the expression E is true, and 0 otherwise.
I. Give the design matrix corresponding to model (2).
II. Notice that this matrix is not full-rank. What is the consequence on the parameters estimation?

III. Suppress the column corresponding to «; of this matrix in order to have a full-rank matrix. What
is now the interpretation of the parameters 5y and as?

IV. When the model includes the constant 5y, R automatically suppresses the first level of each factor.
Give the design matrix corresponding to the following models:

(i) y7, (ii) y"x+a, (iil) y~a+b
b) An interaction of two variables (say a and x) is written in R as a:x or a*x. Adding the interaction

term a:x to the model y~a+x, i.e. forming the model y~a+x+a:x adds product effect(s) between the two
variables into the model, e.g.

yj = Bo + a2l(q;=2) + f12; + Bowjl(a;=2) + €5,

where the term [ox;1(4;—2) was added by the interaction. Note that a*x is a shorthand for y~a+x+a:x,
i.e. the operator ‘*’ adds both the main terms and the interaction term to the model. This is convenient,
because one is very rarely interested in having the interaction term without the main terms.

Assuming existence of a new continuous regressor (a new continuous variable) z = (0,1, 5,2, 1, 1)T, write
down the regression function (a mathematical expression for Ey;) of the following models and find the
design matrices corresponding to those models.

(i) y™x*b, (ii) y~x*z (iii) y~a*b, (iv) y"z+I(x"2).

¢) Assuming further that we have many more observations than those n = 6 given above, write down the
regression function of y~x*axb.

d) Explain the difference between considering an ordinal variable (such as b) as a factor and considering it
as a numerical variable:

(i) y~as.factor(b), (ii) y as.numeric(b).

What happens when we use variable a instead of b?
Solution. a) 1. From the model equation (2), the regression function is
Ey; = fo + anla =1 + aly;=2

from which we can easily read the regression matrix. The first vector of ones corresponds to the
intercept. The second vector is vector of ones followed by zeros, because our dataset is ordered that
way: group 1 precedes group 2 in vector a. The third vector is then the complement of the second one.

1 1 0
1 1 0
1 1 0
X = 1 0 11 ﬁ = (6070115052)—r
1 0 1
1 0 1

II. Superposition of the second and third columns is exactly the first column, hence the matrix is not full
rank. The consequence is that we cannot invert XX, so our usual (unique) estimator

B=X"X)"'XTy

is not defined.



Let us provide a brief explanation. We model the mean stress value and this model only allows it to
be different for the two groups (female/male). So there are only two quantities the mean stress value
can attain, say pp for females and ps for males. But the model has 3 parameters, so there is too
much freedom and multiple values of the parameters lead to the same fit (more precisely, to the same
fitted values), so the model has no means to distinguish between these values of the parameters. This
behavior is, of course, undesirable. One way to remedy is to get rid of one of the parameters.

III. X =

e e T
== -0 O O

Suppressing the column corresponding to o corresponds to leaving the parameter from the regression
function, which now becomes:

Ey; = Bo + agly;=2

Now, By is the mean of each observation in the group a; = 1 and as is the difference between the
average of group a; = 2 and the average of group a; = 1.

Any other parameter could have been suppressed instead of o;. However, suppressing the first level of
a factor to obtain the interpretation in the previous paragraph is the default in R, and we will always
take this approach.

IV. (i) Regressing y on b is similar. We again suppress the first level of b to have a full-rank design
matrix, so this time, X will have 3 columns: 1 for intercept and 3-1=2 for factor b. The regression
function and the design matrix are:

Ey; = Bo +v2l(p,—2) + 13lp,—3 , X =

e e
O = OO O
_ o O = OO

ii) Model y~x+a is almost like the one we had before (y~a), with the difference that there will be
y y
now one extra parameter and thus one extra column corresponding to the linear term in x:

Ey; = Bo + b1z + aol(q;=2) , X =

e
O = O DN O =
e il e e N e R )

(iii) The final model y~a+b contains two factors. The first level will be suppressed for both.

1 0 0 0
1 0 1 0
1 0 0 1
By; = Bo + asl(a;=0) + 12l;=2) +mle=3) » X=|[] | § |
1 1 1 0
1 1 0 1

Notice that the design matrix of y~a+b is the “union” of the design matrices for models y~a and
y~b.

b) Here we just provide the regression functions. You can verify the answers about the design matrices in R
using the code below.

(i) Ey; = Bo+Brzj +y2lp,—2) +731(s,=3) + Baxjl(y,—2) + B32;15,—3), where (x) denotes the extra terms

=:(%)
added by the interaction compared to model without the interaction: y = x + b.




(ii) Ey; = Bo + Brz; + B2zj + B3xj2)
(i) Ey; = fo + azll(a;=2) +72L;=2) +18L05,=8) + 5L (a,=2) Loy =2) + 061 (a;=2) L(v,=3)
(iv) Ey; = Bo + P1zj + B’
You can verify the answers about the design matrices in R. First, import the data set manually (just copy-
paste the code below):
y <- ¢(217,143,186,121,157,143)
X <- matrix(c(1,0,2,0,1,0,1,1,1,2,2,2,1,2,3,1,2,3,0,1,5,2,1,1), 6, 4)
dfX <- data.frame(y = y, x = X[,1], a = as.factor(X[,2]), b = as.factor(X[,3]1), z = X[,4])

Now you can use the command
model .matrix(y~expression, data = dfX)
where you specify properly the expression to check your answers:

model .matrix(y~“x*b, data = dfX) # (i)
model .matrix(y~x*z, data = dfX) # (ii)
model .matrix(y~a*b, data = dfX) # (iii)
model .matrix(y~z+I(x"2), data = dfX) # (iv)

Notice that model (iv) does not contain the main effect of x. Such a model can be rarely useful.

The triple interaction term may be too hard to just write down the formula from the top of the head. Note
that the model is equivalent toy ™ x + a + b + x:a + x:b + a:b + x:a:b. I recommend reading this
developed expression left to right and writing down the regression function in steps, writing it first only for
y ~ x,then fory ~ x + a, etc. It leads to the following:

Ey; = Bo + brxj + ael(q;=2) + Yo lp;=2) + V3l (p;=3) + B2xjL(a,=2) + B3 L(p;=2) + Baz;j L5, =3)
S S——
X a b x:a x:b

+ 051 (a;=2) L (b, =2) + 061 (a;=2) L (b,=3) T P52 L (a;=2)L(p;=2) + Be@jL(a;=2)L(b;=3)

a:b x:a:b

Several notes are in order here. Firstly, we can use whatever symbols and subscripts to denote the parameters.
Try to find your own system. Secondly, the triple interaction term x:a:b corresponds to multiplying the
simpler interaction a:b with z;. The applied meaning of this will hopefully become clear later.

Model (i) has 3 parameters while model (ii) only has 2 parameters. One can in fact show that model (i) is
more general. Model (i) has the regression function

Ey; = Bo + aal(p,=2) + azl(p,=2)

from which we can deduce

1 = Ey; = Bo
2 = Eyj = 50 —+ o
3 = Ey; = Bo + as

bj
bj
bj

so we can see that the difference between b; = 1 and b; = 2 is given by s, while the difference between
b; =1 and b; = 3 is given by a3, which has no relationship with ap. Hence the sample is split into 3 groups
by variable b, and every group is allowed to have a different mean.

On the other hand, with the model (ii) we have

Ey; = Bo + B1b;
from which we can deduct

by =1 = Ey; = Bo + 51
bj =2 = Ey; = Bo + 254
b 3 = Eyj = ﬁo + 3B1

so we can see that the difference between b; = 1 and b; = 2 is given by 1, while the difference between b; =1
and b; = 3 is given by 28;. This model thus linearly constrains the differences between the three groups: the



difference between the mean of the third group and the first group is exactly double the difference between
the second group and the first group.

Note: When building a linear model and an ordinal variable such as b is available, one has to decide whether
to include that variable as a factor or as a numerical variable based on the consideration in the previous
paragraph. In our toy example, can we assume that the effect of being single vs. being married is exactly
the same as the effect of being divorced vs being married? In this case, for sure not. So we should start with
b as a factor first, and maybe later simplify the model to b being numeric, based on what the data actually
suggest.

Problem 14. (Confounders and Simpson’s paradox) In this exercise, we are interested in the dependence of
a standardized test percentile on the grade point average (GPA) of students of a certain high school in the
US. The data file percentile.RData also contains the variable grade, which determines the study age of the
students.

2)
b)

)

d)

Load the data and create a scatterplot of percentile on GPA.

Fit the linear model percentile”GPA and add the regression line to your scatterplot from part a). What
would be your conclusion about the relationship of percentile on GPA based on this model? How does the
model quantify this relationship? Does this make sense?

Add the variable grade to the model as a factor. How does this change your qualitative conclusions? How
does the new model quantify the dependency? Are the conclusions sensible now?

Add the interaction term between GPA and grade to your model. What is now different compared to part
c)?

Solution. The plots for every subquestion are given in the figure below.

a)

b)

The data are stored as an .RData file, hence it can be simply loaded as load ("percentile.RData"). Then
one can form the scatterplot using plot (DATA$percentile ~ DATA$GPA).

ml <- lm(percentile ~ GPA, data=DATA)
summary (m1)
abline(mi$coefficients[1] ,m1$coefficients[2])

The previous commands tell us that the correlation between percentile and GPA is negative (estimated
regression coefficient is -3.773). Improving a student’s GPA by 1 leads to a decrease in his percentile by
3.773. This seems somewhat counterintuitive. One would expect that better GPA should be associated with
better percentile, provided that the education system is working.

m2 <- lm(percentile ~ GPA+as.factor(grade), data=DATA)

summary (m2)

plot (DATA$percentile [DATA$grade==8] ~ DATA$GPA[DATA$grade==8],
col="blue",xlim=c(1,4), ylim=c(10,100), main="c)")

points(DATA$percentile [DATA$grade==12] ~ DATA$GPA[DATA$grade==12],

col="red",pch=0)
abline(m2$coefficients[1] ,m2$coefficients[2],col="blue")
abline (m2$coefficients[1]+m2$coefficients[3] ,m2$coefficients[2],col="red")

Once the variable grade is accounted for by the model, not only GPA becomes significant but the negative
dependence from part b) suddenly becomes positive, as one would expect. Since grade has only 2 levels
(students are either from the 8th grade or 12th) it makes sense to treat different classes like two different
groups (hence the coloring in the plot). Quantitatively, the model says that if student A has GPA larger
by 1 than the GPA of student B, student A’s percentile is expected to be higher than that of student B by
16.884.

The code here is only a slight modification of the previous one. Note that if one naturally wants both the
interaction and the main terms, the * operator can be used as

m3 <- Im(percentile ~ GPA*as.factor(grade), data=DATA)

While the model from part ¢) only allowed for the intercept to be different for the two groups of students and
the slope was fixed to be the same, model m3 allows for both the intercept and the slope to be different for
the two groups of students. Qualitative conclusions remain roughly the same, but one can notice that GPA
has a slightly stronger effect among the 8th grade students. To put it in numbers, if student A has GPA
larger by 1 than GPA of student B, student A’s percentile is expected to be higher by 20.626 (respectively by
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20.626-7.862=12.764) than that of student B in the case of both students being in the 8th grade (respectively
the 12th grade).

The variable grade is the so-called confounder of the relationship between percentile and GPA. If grade is not
accounted for, the model produces completely wrong results. In this case, including grade changes the negative
relationship to a positive one, which is called Simpson’s paradox. Paradox, because even though higher values
of GPA are naturally associated with higher values of percentile in both of the two classes appearing in our
data set, it seems at the first glance that the overall correlation between GPA and percentile is negative. A
sensible explanation of this could be the following: younger students usually have better GPA’s because they
put more effort into their studies, but they are not yet educated enough to be able to score higher than their
older colleagues on a standardized test.

Often, a confounder is not taken into account in a study, which then leads to insensible conclusions and
subsequent tabloid headings such as “Want to go to Harvard? Fail high school first!”.
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Figure 1: Standardised residuals as a function of values adjusted for four Gaussian models.

Problem 15. Assume a linear model was developed for the blood glucose concentration (Y') of a patient after
giving u units of a medicament to the patient with weight w and sex g (0=male, 1=female). In this model, the
effect of weight w and the medicament dose u on the glucose concentration Y is different for males and females.
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Contrarily, the increase of the medicament dose u by 1 has (for two patients of the same sex and weight) the
same effect on Y regardless of the (actual value of the) weight of the patient.

a) Write down the regression function of the model, such that the model has the interpretation above.

b) Assume the first observation is based on a male, 80 kg, who was given 10 units of the medicament. The
second observation is based on a female, 60 kg, who was given 8 units of the medicament. Write down the
first two rows of the design matrix.

¢) How would you test whether weight w has different effect on Y based on the sex g7

Solution. The solutions are not unique, they depend on the ordering of variables.

a) A possible regression function can be
EY = Bo + Sru + Baw + B39 + Baug + Bswg.

Note that since g attains only two values, it does not matter in this case whether it is considered as a factor
or as a continuous variable. But it would be more natural to consider it as a factor:

EY = Bo + Siu + Bow + B30[y=1] + Baudjg=1) + Bswi[y=1],
where ¢ is the identifier operator.
b) The following matrix is the design matrix corresponding to the regression function from part a):

1 10 8 0 0 O
x—=|1 8 60 1 8 60

¢) One would like to test Hy : 85 = 0 against Hy : 85 # 0. One possibility is to form the confidence interval for
b5 based on the t-distribution (see slide 87) and check whether 0 is contained in this confidence interval.

Note: Generally, the F-test is preferable to the t-test described above, but we will only learn about the F-test
later.

Problem 16. Suppose the n x p full-rank design matrix X can be partitioned into two blocks as [X; Xa] and
let Mx, =1, — Hx,. Show that Hx = Hx, + Hwiy, x,, where Hniy x, is the projection on to the span of
Mx, Xs. (Draw a 3D picture to visualize what this result actually says.)

Solution. We need to show that Hx, + Hmy x, is an orthogonal projection matrix, i.e., it is idempotent,
symmetric and it spans .#(X). Note that X] Mx, X5 = O, so Hx,Hmy, x, = O also. Since both Hwmy x,
and Hx, are orthogonal projection matrices, the first two statements are obvious.

It remains to show that any vector z € .#(X) is invariant under the action of Hx, + Hmy x, and that
any vector orthogonal to this span is annihilated by Hx, + HMxlxz' Since X is full rank, we can write
z = Xy = X171 + Xave for some vector v and subvectors v and 72. Then
(Hx, + HMmy, x,)z = (Hx, + Humyx, x,) (X171 + X272)
= Hx, (X171 + X272) + Humk, x, (X171 + X272)
= Xim + Hx, Xo72 + Mx, X272
= X171 + Xoe
upon noting that
Hpy, x, X1 = Mx, X (X5 Mx, X5) "X, Mx, X; = O,
Hw,, x, X2 = Mx, X2(X] Mx, X3) ' X, Mx, Xp = Mx, Xo.

Take now w € .+ (X). We have

(Hx, +Hnix, x,)Ww = Hx, w + Hny x, W
=0+ Mx, X2(X, Mx, X2) ' X, Mx,w
= Mx, X5(Xg Mx, X5) ' X, (I - Hx,)w = 0.

Indeed, Hx,w = 0 because w is orthogonal to X, thus also orthogonal to X;. At the same time, XJ w = 0 by
orthogonality. By the uniqueness of projection matrices, the result follows.
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Problem 17. (Forecast and confidence intervals).

The following table gives the estimations, the standardised errors and the correlations for the model y =
Bo + B1x1 + Boxs + B3xs + € adjusted for n = 13 cement data of the example given at the course.

Estimate SE Correlations of Estimates
(Intercept) 48.19 3.913 (Intercept) x1 x2
x1 1.70 0.205 x1 -0.736
x2 0.66 0.044 x2 -0.416 -0.203
x3 0.25 0.185 x3 -0.828 0.822 -0.089

Solution. a) The covariance of 3 is given by Var§ = 02(X T X)~!. Since we do not know o

a) Explain how we can compute the standardised errors and correlations in the table above.

b) For this model, what is the forecast of y for 1 = zo = x3 = 17 How much would the prediction increase

if 1 =57 And if 1 = 29 = 57

¢) For this model, compute, using only the information above and the fact that the quantiles are t9(0.975) =
2.262 and t9(0.95) = 1.833, the 0.95 confidence intervals for 8y, 1, B2 and B3. Compute also a 0.90
confidence interval for B — f3.

g 2. we estimate the

covariance with var(8) = S?(X T X)~!. Denoting v;; = (X" X)), 4 =0,1,2,3, 5 = 0,1,2,3 (note that

we start by the 0 indices). Hence, the i-th standardised error is estimated by S/I\E(Bl) = \/var(B)i; = V5%vs.
For the correlation, we have
3). . 2. .
CO/I‘\I.(B717 /3]) = \f\ar(ﬁ)zj A = 2 S /Ulj 2 = /UZJ — "
V@), VS

We recall that the forecast is given by
U+ = IIB
Here, we have
J1 = Bo + Przy + Boxs + B3as.

For z; = z9 = z3 = 1, the expectation would increase of 4,5’1 = 4 x 1.70 = 6.80 if z; = 5, and of
485 = 4 x 0.66 = 2.64 if x5 = 5. Explicitly,

21 =20 =x3=1 = G = Bo+ P1+ Bo+ f3 = 48.19 4+ 1.70 4 0.66 + 0.25 = 50.80
1 =519 =23 =1 = §; =48.19 + 1.70 x 5+ 0.66 + 0.25 = 57.60
1 =29 =523 =1 = G, =48.19+ 1.70 x 5+ 0.66 x 5 + 0.25 = 60.24

Let us denote here (X TX)~! = (’Uij)’ij=0' The entries v;; can be read out of the R output provided in the
assignment.

Recall that for the i-th coordinate of 3, the confidence interval is
Bi £/ S2viitn_p(a)2) = B; £ SE(B;) t_p(/2), i=0,1,2,3.
Here, n =13, p = 4, a = 0.05, t9(0.975) = 2.262, so we have the four intervals:
[39.34,57.04], [1.236,2.164], [0.5605,0.7595], [—0.1685,0.6685].

For the test 85 = 0 against 85 # 0 we do not reject the null hypothesis because 0 € [—0.1685, 0.6685].

More generally, if ¢ € RP, the confidence interval for ¢’ is given by

"Bt p(a)2),/S2T(XTX) e
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Here we want a confidence interval for ¢ 3 with ¢ = (0,0,1,—1)T. We find

S2CT(XTX) c= S2U22 + S V33 — 2\/@\/ 521}22\/ 52’033

(SE(ﬁz ) ( E(f3) ) — 2 corr( 52753>SE(52)SE(53)
=0.044% 4+ 0.185% — 2- (—0.089) - 0.044 - 0.185

Thus we have

1/2

[0.66 — 0.25 + {0.0442 + 0.185% — 2 0.044 - 0.185 - (—0.089) } "/~ £4(0.95)] = [0.055,0.765]

as 0.90 confindence interval for 8y — 3.
In R,

library (MASS)
fit<-Im(y~1+x1+x2+x3, data=cement)
confint(fit)

donne

2.5 % 97.5 Y%

(Intercept) 39.3411244 57.0461442
x1 1.2330935 2.1586869
x2 0.5568501 0.7569797
x3 -0.1678276 0.6678628

for the confidence intervals of each coordinate of 3.

Problem 18. (Linear Gaussian models and space rotations) Let
Y =X8+c¢,

be a Gaussian linear model, where X is injective, and ¢ ~ N (0, o2I). We know that if A is an orthogonal matrix,
then Y = AY follows a linear Gaussian model as well,

Y ~ N(XB,0%I),
with X = AX. We will consider some particular cases of the orthogonal matrix A:
I. A=UT, where X = UAV'T is the singular values decomposition of X.
II. A=QT, where X = QR is the QR decomposition of X
For each of these cases,

a) Compute the adjusted values y as functions of §. What can we say about their first p coordinates? And
about their last n — p coordinates?

b) Compute the residuals of model Y. What can we say about their first p residuals? And about their last
n — p residuals?

¢) Recall that residuals are usually dependent. What do we notice here?

Hint: Start by computing the hat matriz H for both cases L. and L.

Solution (a)). Let us compute H for each case:

I. The singular values decomposition of X, v, is UAVT, with Anxp diagonal, i.e.,

_ (M
=)
where A; is a p x p diagonal matrix. Since X = AX = AV,
XTX =VAVT,

and its inverse is given by VA2V " (A; is invertible since X is injective) and

= XETH)1ET = ({; 8) .

14



II. Since X = R = (R1,0)7, we have

Hence, in the two cases
U= (U1, 9p0,...,0)7
and
=10,y 0, Ppi1y--esTn) -

The first p coordinates of § are equal to those of §, the last n — p are zeros. The first p coordinates of € are
zeros, and its last n — p coordinates are y;, ¢ =n — p,...,n. De plus,

e=(I—-H)j~N ((1 — H)XB, (I — H)o?I(I — ﬁ)) —N (07 (8 021(1_13)) :

and thus the residuals are independent in this case (indeed, the first p are all 0 and the last n — p are all i.i.d.
Gaussians). Notice that, usually, the residuals are not independent!

Problem 19. (The best design)

Let us consider the simple regression model
yi = Po+ Prxs +ei, i=1,...,n,

where (9, 51 € R, E[¢] = 0 and var(e) = %1, (and n > 2).

a) Find the design matrix corresponding to this model and give a necessary and sufficient condition for it to be
full rank.

b) Find the covariance matrix of the least squares estimator 3 = (8o, 81) 7.
c¢) Let us suppose that we can design the experiment by choosing x; € [—1, 1] arbitrarily. Which is the best
choice of x; that minimises the variance of £ 7

Solution. a) The model can be written as

1 I

y = [X] (g‘;) +e,  with X =

1 =z,
The necessary and sufficient condition for the matrix X to be full rank is that the x;’s are not all the same.
b) From the model assumption we know that var(y) = o2I,,. We recall that {3 is a linear transformation of y,
ie. f= Ay with A= (X"X) !XT, Thus (recall that X " X is symmetric, so (X' X)" = X " X)
var(f) = Avar(y)AT
=AXTX)T'XT [(XTx)'XT
=X X)) XTx(xTx)!
=o2(XTX)?

]T

¢) The variance of By is the second diagonal element of the variance matrix of /3 which is

2

AN A _ 2 Tyyv-11 g T
var(f1) = [var(Bi)la2 = o”[(X ' X) a2 = W[X Xli1.
From the form of X we have
1 T Z”
X = = XxTx = | i=1 T
1 : Zz:l T Zz*l JI?
Tn
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So, the determinant of X ' X as a function of z = (z1,...,7,)" is

n n 2

Summarizing, we have the dependence of var(f1) as a function of z is

P a n

var(f)(z) = ,

and finding the arg min Var(Bl)(x) is equivalent to finding the arg max f(x). Being convex, f(z) attains its
minimum if z; = ¢ for any ¢ = 1,...,n and its maximum is attained on the boundary of the domain [—1,1]™,
more specifically for z; € {—1,1}. (Double differentiation shows that the Hessian of f is H,, = 2(nl,, —1,1,)
for all x, with I,, the n by n identity matrix and 1,, = (1,...,1)T. The null space of H,, is span{1,,}, its first
(n — 1) eigenvalues are 2n and the last is 0. Thus, H,, is always positive semi-definite.) As a consequence,
S x?=nand >, x; =n4 —n_, where n is the number of z;’s attaining the value +1 and n_ is the
number of x;’s attaining the value —1.

When 7 is even the optimal value can be attained for n, =n_ =n/2, so f(z) = n? and var(5;) = o2/n.
When n is odd we have a sub-optimal case and the maximum value is attained for ny —1=n_ = (n—1)/2
(or alternatively ny =n_ —1 = (n—1)/2), so f(z) =n? — 1 and var(41) = o2n/(n% —1).

We can interpret the result in the following way: Bl is the slope of the line that best fits the data according
to the linear regression. If all values of x; are close to a single value (say 0) there will be “many” acceptably
good linear fitting of the data and the slope can take values in a large set of values. Alternatively, small
changes in the values of the y;’s can lead to large changes in the slope of the fitting line. On the contrary,
if the x;’s are as spread as possible then even large changes in the values of the y;’s will have little effect on
the value of the slope of the fitting line.

Problem 20. (Reformulation of the Gauss-Markov theorem)

Let Y = X3 + ¢ with E(¢) = 0, var(e) = o2I. Let B be the least squares estimator of 3, and 3 another linear
and unbiased estimator of [3.

Show that

MSE(c¢' 8) > MSE(¢"3), Ve eRP,

is equivalent to the conclusion of the Gauss-Markov theorem. Here, MSE(6) = E((f — 6)?) is the mean square
error of 6.

Recall: MSE() = bias(6)2 + var(6).

Solution. We have

So

MSE(c¢"8) = bias(c' §)? + var(c'B) = ¢ var(B)e,
————

=0, as [3’ unbiased
MSE(c"3) = bias(c"8)? + var(c¢' ) = ¢! var(B)ec.
—_———

=0, as B unbiased

MSE(CTB) — MSE(CTB) = char(B)c — char(B)c = CT(Var(ﬁ) - var(B))c.

Hence, we have

MSE(c"8) > MSE(¢' ), VceR?
& MSE(c"3) —MSE(¢'8) >0, VeeRP
& ¢ (var(B) —var(B))e >0, VeeRP

< var(B) — var(p) = 0.

Problem 21. (Diagnostic graphics)
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a) Figure 2 represents the standardised residuals as a function of values adjusted for the linear model derived
from four different datasets. For each case, discuss the adjusting and explain briefly how you would try
to remedy the possible insufficiency.

b) Figure 3 shows four Q-Q Gaussian plots. In all the cases, the data do not follow the Gaussian distribution.

In fact, the data are generated from a distribution with

i) tails haevier than Gaussian tails;

ii) tails lighter than Gaussian tails;

iii) a positive skewness coefficient;

iv) a negative skewness coefficient.

Associate each case i)-iv) with a Q-Q plot of Figure 3.

Standardized residual

Standardized residual

A

Standardized residual

1.0

1.5 2.0 2.5

Fitted value

C

Standardized residual

3 4 5 6

Fitted value

0.5

1

.0 15 20 25

Fitted value

D

1

2 3

Fitted value

Figure 2: Standardised residuals as a function of values adjusted for four Gaussian models.

Solution.

a) We know that cov(e, ) = 0 and that the standardised residuals are standard Gaussian random

variables (i.e. around 95% of the residuals must take values between -2 and 2 independently from the

values of ;) if model assumptions are fulfilled (¢ ~ N(0,021), ...).

e Plot A : OK.

e Plot B : Problem = An outlier.

e Plot C : Problem = dependence between the fitted values and the standardised residuals. (see

Example 8.24, page 390, Statistical Models, Davison).
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Sample Quantiles
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Figure 3: Four Q-Q Gaussian plots where the data do not follow a Gaussian law.
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Plot D : Problem = The variance of the residuals is not constant, heteroscedasticity.

Plot A: negative skewness coefficient.

Plot B: tails lighter than Gaussian tails.

Plot C: tails heavier than Gaussian tails.

Plot D: positive skewness coeflicient.

Problem 22. (QQ plots)

The goal of this exercise is to justify the use of the QQ plot to “see” whether a sample z1,...,x, comes from
the normal distribution. Let Xi,...,X,, ~ N(0,1) be i.i.d, and let ® be the cumulative distribution function
of the normal law N(0,1).

1.
2.

Show that ®(Xy),...,P(X,) ~ U([0,1]) are i.i.d., where U([0,1]) denotes the uniform law on [0, 1].

(Bonus, i.e. this part can be skipped, we just need the form of the density below.)
For the kth order statistic V{3, of a sample of n uniform variables on [0, 1], as given in subproblem 3 below,
prove that V(;y ~ Beta(k,n + 1 — k) with probability density function:

n—1

fe(z) = n(k . 1>xk1(1 —2)"k  zelo1].

Hint: Even though there are not many calculations, it is not an easy exercise. Let A = {0 < vy < -+ <
vy, < 1} C [0,1]™. For (vy,...,v,) € A, use the symmetry of the problem to write

]P(‘/(l)gvlw"a‘/(n)gvn)

as a n variables multiple integral. It is not advisable to compute explicitly this integral, but we can find
a (very!) easy explicit formula for the joint distribution

an

mP(W1)§U1,~--aWn)§Un)~

Then, the marginal density of V) is found by integrating the joint density over all other variables.
Let Vi,...,V, ~U([0,1]) be i.i.d., and let

Vi sViyy <- < Vi)
be the associated order statistics. Compute the expectation of V(3.
Let z, be the quantile o of the normal law N (0, 1), defined by

D(zq) = .

Explain why E[X ()] & 2i/(n+1)- A rigorous justification is not necessary. Link it with the QQ plot.
Hint: It is necessary to approximate E[f(X)] ~ f(E[X]) for a function f slightly non linear.

Solution. 1. z+ ®(z) is strictly increasing, and ®(R) = (0,1). So, ®(X;) € (0,1). If z € (0,1), then

Pr[®(X;) < 2] =Pr[X; <& (2)] = (@ '(2)) =z,

hence ®(X;) ~ U([0, 1]).

We start by computing P (V(l) <o, Vi < vn) under the assumption that (v1,...,v,) € A. We first
observe that
{‘/(1) <y, 7Vv(n) < Un} — U {V'/r(l) <, -7V7r(n) < Un}a
mell
where II is the set of all possible permutations of {1,...,n} (if this does not convince you, think about the
simplest case with n = 2). Since the events in the union are disjoint and there are n! possible permutations,
we conclude that

P (Vi) S v1,ee, Vi S 0n) = D P (Ve S 01,0, Ve < o) "=t [ o
mell i=1
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By formula
a’I’L
fV(l),...,V(")(Ula cee 7vn) = WP (V(l) < V1,0, V(n) < Un) = n!IA;

we derive that the joint probability density function is constant on A (|A| = 1/(n!)) and vanishes outside
A. Finally, in order to calculate the density function for the k-th order statistics we integrate over all
other variables:

fviy (V) = / nlladvy ... doy,
[0,1]"

Vk+1
= n'/ / / dvg_1 ... dvy dvl/ / / dvy, . .. dUgys dvgs

n! n—1

:vai_l(l—yk)"’ﬂ:n<k—1> F=1(] g )nk  (3)

3. Here fr(z) = mx “1(1 — 2)"7k, for z € [0,1], and zero otherwise. Since f is a density, 1 =
J fx(x)dz, (here and then, [ = fo ) and thus

k—1)(n— k)

/zk71(1 _ l‘)nikdzc — ( ) (n )

n!

)

or, more explicitly:

/xa(lx)bdzm_’z!fil)!, a,beN.
Hence . k »
E[V(k)]Z/xfk(x)dx:m/x (1—2)" *de=-- - =k/(n+1).

4. E[X )] = E[@H(P(X (1)) = & H(E[®(X(1))]) = 1 (k/(n+ 1)) = 2/(n+1)- Thus, when X1,..., X,, are
N(0,1) i.i.d, we expect that their QQ normal plot is, “on average”, on the line y = z.

Problem 23. We consider the linear model with n > 8 and p = 2, where
E[yj]zﬁo, j:l,...7n—2,
E[y]]ZBO"’_Bh J:n_]-vn
a) Writing the model in the form y = XS + ¢, find the least squares estimator B of § as a function of
~ _ n—2 ~
g1=(n—2)"" 370" Ty and o = (Yn—1 + Yn)/2.
b) Calculate the hat matrix for this model, verify that its trace is equal to p and find the fitted values g.
c¢) Suppose Yp—1 = Yn = Yo. Find the leverages h;;, the standardised residuals, and Cook’s statistics. Comment

on this.

Solution. a) From the fact that E[y] = X8 we conclude that

1 0
B : o (n 2 B T
X = 1 0 :>XX<2 2):>(XX) 2’[7,—4(_2 n .
1 1
1 1

The least squares estimator B is computed as
B _ (XTX) 1XT 1 2 —2 (n - 2)?4:1 + 29~2 — ~3/~1 ~ .
T m—4\-2 n 212 —Y1 + Y2

b) Note that the column space .7 (X) of the design matrix X can be spanned by two orthogonal vectors

1 0
U1 = 1 ) Vg = 0
0 1
0 1
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Therefore, the hat matrix H = X (X "X)7!X T can be decomposed to the sum of two projection matrices
H = Hy + H,, where

1 ... 1.0 0
Toy-1,T 1
Hy = vi(vy v1) i = oo | 1 1 0 0>

0 0 0
0 0 0 O

0 0 0 O

T.o\-1,T _ 1 : :

Hy = vy(vy v2) V2 =510 00 0}

0O ... 011

0O ... 011

and the trace of H is tr(H) = tr(H;) + tr(Hz) = 2 = p. The fitted values are calculated as

U1 0 1
g=Hy=Hy+Hy=|g5|+|0o|=|n
0 Y2 Y2
0 U2 Y2

c¢) The leverages are the diagonal values of the hat matrix. So,

1/(n=2) forj=1,...,n—2,
hjj = -
1/2 forj=n—1,n.

Using the rule of thumb on slide 138 (h;; > 2p/n), z,—1 and z,, are leverage points. Next, we proceed to the
standardised residuals. Since y,—1 = yn = 92, i.e. en_1 = e, = 0, the estimator for the variance o2 is

- yl )
]:1 j=1
the standardised residuals are given by
e; e g(yi—y])/s fori=1,...,n—2,
'[‘,L- = — =
sV 1 —hi; 0 fori=n-—1,n.
Cook’s statistics are
o rihy €l hi; J(n=2)(yi —1)?/(2(n = 3)%s?) fori=1,...,n—2,
"op(l=hy) ps*(L—ha) |0 fori=n—1,n.

Therefore, even though (,,—1,Yn—1), (Tn,yn) are leverage points, they have no influence on any other data as
their Cook’s statistics are zero. Why? The fitted values g, = --- = §,—2 = y1 are totally independent on the
values of y,_1 and y,.

Problem 24. (t-test)

Let Y = X + € with € ~ N(0,0%) and X € R™*P of full column rank. Let us denote the t-statistic for the
j-th parameter as

where se(Bj) = (var(Bj))l/ 2 is the standard deviation of the estimator Bj and éé(ﬁj) is a suitable estimator of
thereof. Show that ¢ ~ t,_,.

Solution. Firstly, recall that t,-distribution arises as
N(0,1)

Vv,
VX2
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where the two random variables in the previous symbolic expression are independent.

Secondly, by the lemma on slide 105

Var(Bj) = a2vjj ,

where v;; = (X" X)7!, and by the theorem on slide 81 we have g—j(n —P) ~ X,

Ji>

Combining the two facts, it is natural to estimate 52 = S? to get the estimator of the standard error. Note that
by the theorem on slide 81 we also have the independence needed. Hence

B: — B; N(0,1

T N T LN JOT
0.,/Uj; Syn—p 2
—_——— n—p

~N(0,1) —— L
(0,1) [ -

Problem 25. When we adjust the model y = 8y + 121 + 222 + B33 + € to the cement data set (n=13, slide
55), R gives us the following table:

x1
x2

Estimate Std. Error t value Pr(>ltl)

(Intercept) 48.19363 3.91330 12.315 6.17e-07 **x*
1.69589 0.20458 8.290 1.66e-05 *x*x*
0.65691 0.04423 14.851 1.23e-07 **x*
0.25002 0.18471 1.354 0.209

x3

Signif. codes: 0 ‘*x*x’> 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ > 1

a)

b)

Explain in details how we compute the values in the columns “t value” and “Pr(>|tl)”. Which is the
significance of these values? Comment the observed values.

Knowing that ort(fs, 3) = —0.08911, which is the p value for the null hypothesis 2 — 5 = 07 Try to
find the value of the test statistics without using R. For a test with a threshold of 5%, can we reject the null
hypothesis?

Solution. a) The column “t value” gives the statistics ¢ for the hypothesis §; = 0 defined by

i A
VS%ui;i  SE(B;)
where v;; is the i-th diagonal element of the matrix V = (X T X)~!. When the hypothesis 3; = 0 is true, we

have that T; follows Student’s t-distribution with n —p degrees of freedom. We will reject the null hypothesis
B; = 0 when the value of |T;] is large.

T, =

The column “Pr(>|t|)” gives the p-values for the bilateral tests ¢t above. When we denote the observed
value of T; by 7;, the p-value for thei-th test is given by

pi = P(Ti] > |7il) = 2(1 = tn—p(|7il)) = 2tn—p(=|7:))-
If p; < 0.05, we reject the i-th hypothesis with a significance threshold of 5%.

For this example, with a significance threshold of 5%, we can reject the hypothesis 3; = 0 for s = 0,1, 2, but
not for ¢ = 3.

In this case, the statistics ¢ is given by
B

VS (X T X) e

for ¢ = [0,0,1,—1]7. We know that

N2 e N2
$2T(XTX) e = (SB(B2)) + (SB(Bs)) — 260m(Bz. Bs) SE(B2) SE(By)
= 0.044237 + 0.18471% — 2 - (—0.08911) - 0.04423 - 0.18471 = 0.03753.

Hence
L 0.65691 — 0.25002

= 2.10033
v/0.03753
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and we find the p-value
p=2-1t9(—2.10033) = 0.06508.

Thus, we do not reject the null hypothesis with a significance threshold of 5%.

Problem 26. [REDUNDANT] Suppose the n x p full-rank design matrix X can be partitioned into two blocks
as [ Xy Xz and let Mx, =1, — Hx,. Show that Hx = Hx, + Hmy, x,, where Hymy x, is the projection on
to the span of Mx, Xs.

Solution. We need to show that Hx, + Hmy x, is an orthogonal projection matrix, i.e., it is idempotent,
symmetric and it spans .#(X). Note that X] Mx, X5 = O, so Hx,Hmy, x, = O also. Since both Hwmy x,
and Hx, are orthogonal projection matrices, the first two statements are obvious.

It remains to show that any vector z € .(X) is invariant under the action of Hx, + Hmy x, and that
any vector orthogonal to this span is annihilated by Hx, + HMxlxz' Since X is full rank, we can write
z = Xv = X171 + Xsys for some vector v and subvectors v and 5. Then

(Hxl + HMx1X2)Z = (HXI + HMx1X2>(X1’Vl + X272)
= Hx, (X171 + X272) + Hmy, x, (X171 + X272)
= Xim + Hx, Xo72 + Mx, Xo72
=Xim + X272
upon noting that
Hw,, x, X1 = Mx, X5(X] Mx, X5) "' X, Mx, X = O,
Hi,, x, X2 = Mx, X(Xg Mx, X5) 7' X, Mx, Xp = Mx, Xo.
Take now w € .#+(X). We have
(Hx, + Hmy, x,)Ww = Hx, w + Huny x, W
=0+ Mx, X»(Xj Mx, X2) !X, Mx, w
= Mx, X5(Xg Mx, X5) ' X, (I - Hx,)w = 0.
Indeed, Hx, w = 0 because w is orthogonal to X, thus also orthogonal to X;. At the same time, X4 w = 0 by

orthogonality. By uniqueness of projection matrices (Exercise 1.2), the result follows.

Problem 27. (Frisch-Waugh-Lovell theorem) Consider the linear regression y = X;8; + Xo82 + € with
Ee = 0,,. Let y be the observed response and suppose the n x p full-rank design matrix X can be written as the
partitioned matrix [X; Xsa] with blocks X;, an n X p; matrix, and Xa, an n X ps matrix. Let 5, and B2 be the
ordinary least square (OLS) parameter estimates from running this regression. Suppose we run least squares
on this model to obtain

y=X1B1 + Xofa + e, (E1)

Define the orthogonal projection matrix Hx = X(XTX) !XT as usual and Hx, = X,(X;X,)"!X] for
¢ = 1,2. Similarly, define the complementary projection matrices Mx, =1,, — Hx, and Mx, =1, — Hx,.

Prove the Frisch—-Waugh—-Lovell (FWL) theorem, i.e., show that the ordinary least square estimates 32 and the
residuals e from (E1) are identical to those obtained by running ordinary least squares on the regression

Mx,y = Mx, X235 + residuals. (E2)

Hint: starting from (E1) assuming B\g has been computed, pre-multiply both sides so as to obtain an expression

in terms of 32 only on the right-hand side and show the latter coincides with the least square estimate from
(E2).

Solution. The coefficient estimates of (E2) is
By = (X3 Mx, X,) "' X Mx, y. (S1)
Let 31 and 32 denote the OLS estimates from running regression (E1). The orthogonal decomposition of y gives

y = X151 + X282 + Mxy. (52)
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Premultiplying both sides of (S2) by X4 Mx, yields
X) Mx,y = X; Mx, X2, (S3)

since MxMx, Xo = Mx X, = O. Solving (S3) gives back (S1), showing that 52 = 52.
By premultiplying (S2) by Mx,, we obtain instead

Mx,y = MXIXQBQ + Mxy (84)

since Mx, Mx = Mx. The regressand in (S4) is the same as that of regression (E2). The first term, Mxlxgag,
must be the fitted value since 35 is the OLS estimate of S2. Thus, Mxy must be the vector of residuals of (E2).

Deriving the expression for BQ in the presence of multiple regressors involves tedious calculations with partitioned
matrices. Use Frisch-Waugh-Lovell theorem when you have multiple regressors, but are only interested in a
sub-vector of coefficient estimates such as (5.

Problem 28. (t-test vs. F-test for model-submodel testing, requires the previous problem)

Consider the linear regression y = X, + X282 + € under the assumption that X = (X ,x,)" is an n x p
full-rank non-stochastic design matrix with x5 an n x 1 column vector and & ~ N,,(0,,,0%I,)). We are interested
in testing whether the parameter S5 = 0: the Wald test ¢-statistic W and the Fisher test statistic F' for this
hypothesis are, respectively,

b _ RSS,—RSS
se(fBa)’ ~ RSS/(n—p)’

where se(Bg) = [SQVar (Bg) /02] 72 Under the null hypothesis Ho : B2 =0, W ~ T(n—p) and F ~ F(1,n—p).
Show algebraically that W2 = F.

Note that the two statistics lead to the same inference because the square of a 7 (n — p) distributed random
variable has distribution F(1,n — p).

Solution. By the FWL theorem, we can write the arguments of W as
. _ - _q171/2
ﬂQ = (X;MX1X2) IX;—MX1y7 Se(ﬁ?) = [82(X;MX1X2) 1] / .
Clearly, RSS/(n — p) = s? and thus it remains only to show that the numerator of F is
2
RSSy — RSS = [(X;MXIXQ)il/QX;MXIy} = yTHMxl,Qy.
First, we have
RSSo — RSS = [ Mx, y[|* — [[Mxyl* = [|(Mx, — Mx)y|*.
Using an orthogonal decomposition, this expression can be further simplified to

RSSp — RSS = ||Mx, Hxy||* = [Mx, (Hx, + Hyix, x,)¥l* = [Hnv, <17

because Hyiy, x, € 4 (X1). Noting that ||Hniy, x,y]* = yTHMxley, completes the proof.

Problem 29. We consider the cement data with n = 13. The residuals sum of squares (RSS) for all the possible
models (containing always the denoted variables and the intercept) are given below:

Model RSS Model RSS Model RSS
---- 27158 12-- 57.9 123- 481
1--- 1265.7 1-3- 1227.1 12-4 480
-2-- 906.3 1--4 74.8 1-34 508
--3- 19394 -23- 415.4 -234 738
---4 8839 -2-4 8689

--34 175.7 1234 479

Calculate the analysis of variance table (as in slide 163) adding x4, x3, 22 and z; to the model in this order,
and test which term should be included in the model for the threshold o = 0.05. Compare with slide 164.
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Solution. Since the ordering of the variable is different, the number in the table will be different from the ones
in slide 168. Namely:

Df Red Sum Sq F value p-value

Ty 1 2715.8-883.9 = 1831.9 306.3 1077

Z3 1 883.9 -175.7 = 708.2 118.4 1076

T 1 175.7 -73.8 = 101.9 17.04 0.003

1 1 73.8 -47.9 = 26 4.3 0.07
Residual 8 47.9

For calculation of the F-values one calculates the numerator as the correspondent reduction in the sum of
squares (third column of the table) divided by the degrees of freedom added (in this case only 1) and the
denominator as the residual sum of squares divided by the residual degrees of freedom (47.9/8 = 5.98). Notice
that the denominator stays always the same (which is quite irrelevant now in the computer era :). To calculate
the p-values, use R.

Adding variables in this (reverse) order would lead to a model with x4, x3 and x4, while in the slide 164 variables
z1 and x2 would be in the model instead.

Problem 30. (Orthogonal variables) Let us consider the regression
y:Xﬁ+E: (Xla X2) ( g; ) +e,

where X = (X1, X5), BT = (8,585 ), X1 is n x p1, X is n x py (both injective) such that
X Xo = 0pyxps-
Let H; be the hat matrix associated to X;.
1. What is the geometrical interpretation of X; Xy = 07
2. Calculate H as a function of X; and of H;, then, calculate the products
HHy,HoH,HH,,H{H.
What do you notice, which is the geometrical interpretation?
3. Show that each of the following quantities are equal to Hy:
(a) Hiy + Hay;
(b) Hyy + Haey, with ey = (I — Hy)y;
(¢c) Hiy+ Hey.
4. Interpret these equalities in relation to the models
y=XpB+e (M)

and to its submodels
y=X181 +e, (My)

y=Xofs +e. (M3)

Solution. 1. This means that all columns of X; are orthogonal to all columns of X5. Le., M(X;) L M(X3).

2. We notice first that
XTx — (Xf X 0 )

0 XJXy
S0
_ (X;er)_l 0 T
H = (X1, X>) ( 0 (XT X5)? (X1, X2)

= X (X X)X + Xo(X) Xo)7IX) = Hy + Ho.
Then. since X| Xy = 0, we have HyHy = 0. Thus, HoHy = Hy H{| = (H,H,)" =0,

HH, = (H, + Hy))H, = H: = H,
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et HHH=HH" = (HH,)" = H = H,.

Interpretation: HiH>; = 0 comes from the fact that the space of columns of X; and X, are orthogonal,
thus if we project them on M(X3) and then on M(X7), we obtain the null vector. The interpretation for
HyHy = 0 is similar. HH; = H; comes from the fact that to project on M(X;) and then on M(X) is
equivalent to projecting only on M(X;), because M(X;) is a subspace of M(X). For the same reason,
H,H = H; because we project on M(X) and then on M(X}), so it is the same as projecting on M(X3).
Intuitively, We notice that if X;—Xg # 0, We have HH, = Hy = H1H, but HyHy # 0 and HoH; # 0.

3. Using the fact that Hy = (Hy + H2)y,
(a) trivial;
(b) comes from HyH; = 0;
(c) comes from H(I — H,) = H— Hy = H».
4. The fitted values under (M) (with (y, X) as data) are equal to
(a) the sum of the fitted values under (M;) and (Ms). (the model data (M;) are (y, X;))

(b) the sum of the fitted values under (M;) (given (y, X;)) and of residuals of (M;) fitted under (Ms)
(the data are (e1, X2)).

(¢) the sum of the fitted values under (M;) (given (y, X)) and of residuals of (M;) fitted under (M)
(the data are (e1, X)).

Problem 31. (Orthogonal variables and ANOVA)
Let us consider the regression
B
y=Xf+e=(X1,....,Xp) | * | +¢
Br
where X; is n X p;, all the X; are injective, and

i#j = X/X;=0.

Let H be the hat matrix associated to X, H; the hat matrix associated to X; and § = (X X)) 'X Ty =
(B7,...,B])T. We denote by 0;; Kronecker’s delta: d;; = 1 if i = j, O otherwise. For an ordered set L C
{1,...,k} wedefine X, = (X;:i € L) and B = (B;' :i € L)". For example, if L = {1,2,4}, X1 = (X1, X2, X4)
and .
. (5
Br=| P2
Ba
We define RSSy, = ||y — Hyy|®, where Hp = X(X] X)) ' X].
1. ShOVVthatI{:]{]_—i-—i—]‘]]c andthatHL:Z Hi~

. Show that HiHj = 6in,-.

i€L

2
3. Show that Bj = (ijer)qu‘.ry.
4

. For j &€ L, calculate
RSSp, — RSSruy,

and show that this expression does not depend on L.

5. Which is the interpretation of point 4. with respect to ANOVA?

Solution. 1. since
(Xier)_1 0 0
(XTX)71 — 0 (X;—XQ)il 0
: 0 0
0 0 (X,;FX;C)_1
and

(X[ X)) ! = diag((X,” X;)" ' :i e L).

26



Son

H=X(X{ X)) 'Xx] +

and

X'X;=0.
3.
(X X)7!
- _ 0
B=(XTX)"'XTy= .
0

4. First of all, we notice that

and

Moreover,

H; = ZX (X, X)X =

erufjy =Y —Hpogny =y — Z Hy.

1€L

0
(X3 X2)™' 0
0 .
0

e X (X X)X = H

> H,.

1€EL

0 XIT
Xy

0 :
(XTXp)™) \Xd

ieL

epi=y—Hy=y—> Hy

i€LU{j}

(I— HLu{j})eL = (I - HLU{j})(I_ HL)y
= —Hp — Hrugy + HoogyHey

Then ery;y is a orthogonal projection of ey, so er, —epug;y L epuy;y and

So

RSSy, — RSSpugy = llec|? —

is independent of L.

lezognll? + llez — erugyI? =

= (I — Hpugy)y

€Lu{j}-

llez .

lezugll? = Jlew — 6Lu{j}H2 =

Hy

= 0 because

I

~ o~ o~
(=23
—_ = D

EN|

2
1 H;yll

5. The interpretation with respect to ANOVA is that in this case, the addition of a variable X; does not
depend on the variables that we already have in the model (this is not the general case).

Problem 32. (Automatic model selection)

We consider the cement data. The residuals’ sum of squares (RSS) and the Mallows’ C, for the model containing

the ordinate at the origin are the following:

Model RSS Cp | Model RSS Cp | Model RSS Cp
---- 27158 44258 | 12-- 57.9 123- 481
1--- 12657 20239 | 1-3- 12271 19794 | 12-4 48.0
-2-- 906.3 1--4 74.8 549 | 1-34 5038
--3- 19394 31490 | -23- 4154 6238 | -234 738 7.325
---4 8839 13862 |-2-4 8689 138.12

--34 1757 2234|1234 479 5

1. Utilise the selection methods forward selection and backward elimination to chose some models for these
data, including the significant variables at level 5%. Utilise the F-test

_ RSS(By) -

RSS(Brugiy)

RSS B/ (13— 5)

to decide if the addition of the j-th variable is significant.
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2. Another selection criterion is the Mallow’s C):

SS,
CPZ?;+2p—n

Notice that here s? is the variance estimator in the complete model.
(a) How could we use this criterion? Calculate the missing C),.

(b) Which is the model selected by this criterion using the forward selection, and then backward elimi-
nation? Among all the models considered, which one is the best, according to this criterion?

Solution. 1. Here we will use the following test to add or not the j-th variable to the model y = Sy +
Yier Biwi: 5 3
e RSS(Br) — RSS(Brugy)
RSS(Bgyp)/ (13 = 5)

where Bfull represents the estimator of 3 for the complete model. Since RSS(8L) — RSS(BLU{j}) ~ a?x3
under the hypothesis Hy : 8; = 0, and that RSS(Bfuu) ~ azx%_p and it is independent of RSS(BL) —
RSS(Brugjy), F ~ Fig under Hy. In particular, the distribution of I does not depend on the size of L.
The critical value of this test at level 5% is 5.32.

Forward selection
e Initial model : y = By + ¢
o Stage 1 : y =Py + faxs +e€, F = 2;;3;3(7;38333;’ = 305.95 > 5.32.
e Stage 2 : y= By + Baxq + f1x1 + €, F =135.13 > 5.32.
e Stage 3: y = By + Baxs + frx1 + Boxo + €, F =4.47 < 5.32.
Final model : y = By 4+ B4x4 + 121 + €.
Backward selection
e Initial model: y = By + B1x1 + Baxo + B33 + Bazg + €
e Stage 1: y = By + P11 + Boxo + Baxy + ¢, F = % =0.0167 < 5.32.
e Stage 2 : y= By + B1x1 + Poxs + €, FF = 1.65 < 5.32.
e Stage 3: y= By + Boxs + €, F =141.70 > 5.32.
Final model : y = By 4+ Boxo + [121 + €.

2. (a) Mallow’s C}, work as AIC: we choose the model with the minimal C,. Here’s the table with all the

Cp:
Model RSS C), | Model RSS Cp | Model RSS C,
---- 27158 44258 | 12 - - 57.9 267 | 123- 48.1 3.03
1--- 1265.7 202.39 | 1-3- 1227.1 19794 | 12-4 48.0 3.02
-2-- 906.3 14237 | 1--4 74.8 549 | 1-34 50.8 3.48

--3- 19394 31490 | -23- 4154 6238 | -234 738 7.325
---4 8839 13862 | -2-4 8689 138.12
--34 1757 2234|1234 479 5

(b) With forward selection, we choose y = fo + >, (1,2,4y Bi®i, while the backward selection gives the
model y = By + f121 + P2x2 + €. This last model is the one with the smallest C,, among all others.

Problem 33. (AIC and Gaussian linear models)

Show that the AIC criterion for a Gaussian linear model, base on a response vector of size n, with p covariates
and o2 unknown, can be written as :

AIC = n log 62 + 2p + const,

where 6% = SS,/n is the maximum likelihood estimator of o2
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Solution. For the Gaussian linear models y ~ N (X3, 021I,), the likelihood of (3, 0?) is given by

L(B.0%) = ooz o0 5oal -~ X6 (- X5)).

Then, the log-likelihood is

o3y~ XB)T(y — XB).

We have that the maximum likelihood estimator of 8 and o2 are

1(8,0%) = —glog(27ro'2) —

F=(XTX)TXTy, 6=y XB)(y - XB)

So, the maximum of log-likelihood is

3

(v - XA (y ~ XB) = — T log(2m) — T log&” - 7.

5 A2 n ~2 1
1(3.5%) = 2 log(2md?) — 1 .

=né?
From the AIC definition, we obtain that
AIC = —21(/3’, 62) + 2p = nlog(27) + nlog6* + n + 2p = nlog 62 + 2p + const.

Problem 34. (Cross validation and number of regressions)

Let y = X3+¢, and B denote the OLS estimator of 5. The (leave-one-out) cross validation uses one observation
(zk,yr) as the validation set and the remaining observations (X_g,y_x) as the training set and repeating the
procedure for each k = 1,...,n. With the k-th observations z; € R? and y; € R deleted, let X_; € R(»=1xp,
y_r € R"1 and ﬁ,k € RP denote the corresponding design matrix, the responses, and the OLS estimator,

respectively (symbolically, y_x = X_pB_r + €_g)-
a) Use the Sherman-Morrison formula
—1 A"ty T AT
A T —_At = = &
( +uv ) 1 + ,UTA—lu

to show that

_ (XTX)_lxkxT -1
(XX )™t = <I+1_hkkk (xXTx) .

b) Noting that x;— is the k-th row of the original design matrix X, show that
Xyr=X"y—ypex and 2l (X X)X yp = (1= hu)ye — e,

to conclude that )
~ ~ €k XTX h Tk
Bk =0— e (XTX)

1 — by

c¢) Use the previous formula to deduce that the cross-validation criterion

n

CV = (yx — ) B_i)*. (8)

k=1

can be written as .
cV = Z e = PRl 5 . (9)

What is the advantage of using (9) instead of (8)?

Solution. a) First note that Xij_k =XTX— zkazz and :ckT(XTX)’lxk = hg. By the Sherman-Morrison
formula, we have
(XTX) el (XTX)E
Ty P (XTX) oy,

Tx)-1ly T
=(I+ (X X) LrLy, (XTX)—I
1— hgp

Tx)-1, T
=(I+ (X X) Lk (XTX)71
1 — hgg

(XL XT) ' =(XTX o) = (XTX) 4
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b) First, we can calculate

Xy = (21, wn)y =Y viwi = Xy g + yp, (10)
=1

hence
o (XTX) X Ly =y (X TX)THX Ty — 2yr) = Gk — harye = Yk — ex — haryn
= (1 — hik)yr — ex- (11)
Using (a) together with two equations (10) and (11) above, we get
B = (XTI X ) X Dy

(a) <I N (XTX) o]

(@) Tyy-1xT
s I ) (XXX T

10
W (XTX) X Ty — gean) + (1= hae) (X TX) ] (XTX) Xy

W5 (XTX) agyi + (1= hy) ™ (X T X) " 2 [(1 — i)y — ex]
=B — (1= hg) ten(XTX) Ly,

¢) From (b), we know

Y — T Bk = yp — 4 (5 -(1- hkk)_lek(XTX)_lxk)
= (ye —xf B) + (1 — hy) el (X T X)Ly,

hik o —
1=l 1= hgg ©

:eky+

If we use formula (8) we have to conduct n regressions to estimate all the f_;, 7 = 1,...,n, and then
proceed to n adjustments. On the other hand, if we use formula (9) only the adjustment of the model with
the complete data is required. This makes it feasible to actually perform “leave-one-out” cross-validation for
a linear model.

Problem 35. Let us suppose that y = u + ¢ where ¢ ~ N(0,021,) and that we adjusted to y a linear model
with the full rank design matrix X, x,, n > p, and the corresponding hat matrix H. Let D be the diagonal
matrix with elements 1 — hy1,...,1 — hy,,. Using the previous exercise, show that

E[CV]=u" (I — HYD2(I — H)p + otr(D™1),
and deduce that if ;1 belongs to the space generated by the columns of X, then E[CV] ~ (n + p)o?.

Solution. From the previous exercise, we know that the “leave-one-out” cross-validation is given by

In matrix notation, this is equivalent to
CV =e'D %
=y (I-H)D*(I-H)y

To calculate its expectation, we make use of the well-known formula E[y " Ay] = E[y] " AE[y] +tr(A - cov[y]) with
E[y] = p and cov[y] = covle] = 021,,. To see why the formula holds,

Ely" Ay] = Eftr(y " Ay)] = E[tr(A - yy )] = tr(A-Efyy ')
= tr(A(E[y] "E[y] + cov[y])) = E[y] T AE[y] + tr(A - cov[y]).
Applying the formula above, we now have
E[CV]=pu"(I — HYD (I — H)u + o*tr((I — HYD *(I — H))
=u' (I -H)D*(I - H)p+ o*tr(D2(I — H)),
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since I — H is a projection matrix (symmetric and idempotent). As the final step of the calculation, we prove

(1 — hkk)_2 . (1 — hkk)

NE

tr(D2(I — H)) =

=~
Il
_

(]. — hkk)_l = JEI‘(.D_l)7

I
M=

E
I
-

hence the result follows. Note that p € M(X) only if the model is correct, so that (I — H)p = 0! In the case
where the model is correct,

E[CV] = o*tr(D ng 1—hgg)” NJQZ(l-i-hkk):02(n+tr(H))202(n+p),
k=1 k=1
since 0 < hgr < 1 are usually small (influential points having high leverages pose issues for the model) and
(1—2)"! =~ 1+ a for small z ~ 0 as the Taylor expansion of f(z) = (1 —z) tatx=01is 1 +z.
Problem 36. (Model selection in R )

a) Use the criteria backward stepwise and forward stepwise to choose a model for the data“Supervisor Perfor-
mance” (SPD) from R package RSADBE

Which model has the best AIC value?
b) Using the package leaps, find the model with the best BIC value among all submodels.

Solution. a) library(RSADBE)

data(SPD)
ml <- Im(Y ~ ., data = SPD)
m.backward <- step(ml, direction = "backward")

m0 <- 1m(Y ~ 1, data = SPD)
my.scope <- formula(SPD)
m.forward <- step(mO, scope = my.scope, direction = "forward", data = SPD)

The forward/backward stepwise give the model Y ~ X1 + X3 with AIC of 118.00.

b) install.packages("leaps")
library(leaps)
library(car)

leaps <- regsubsets(formula(SPD), data = SPD)
plot(leaps)
subsets(leaps)

The model with the best BIC value is Y ~ X1 with BIC of -27.50.

Problem 37. (Ridge regression)

Let X = [1,, Z] be an n x p design matrix with centered inputs Z, meaning that Z'1,, = 0,_1. Consider the
model y = 1,80 + Zv + €, where Ee = 0,, and Var () = 0°1,,. The ridge estimators are defined by

(Bos ) = af%““i“ ly — 1080 — Zy|13 + |13
0,7

From slide 211, we know that the ridge estimators are given by
(Bos4n) = (5. (Z7Z + A1) "'ZTy)
a) Show that the fitted value of the ridge regression are

=T, zw (),

where u; and w; are the left singular column vectors and the singular values of Z, respectively. Discuss what
happens to ¢, when some of the {w]2 ?;} are close to zero.
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b) What happens to the ridge estimates if the columns of Z are orthogonal, i.e. ZTZ = I,_1? Explain why it
is preferable to standardize the columns of Z so they have approximately unit variance.

c¢) Show that A — H’y,\Hi is a decreasing function.

Solution. a) Using the SVD decomposition Z = UQV', we have

p—1 2
ws
Ziy=Z(ZTZ+ M, 1) 'ZTy = UL+ 2L, 1) 'QU Ty =) — () u.
j=1 "7

Note that ZZ' = UQ?UT has the eigenvectors u; with corresponding eigenvalues wf—. The coefficients

associated to the basis vectors u; with the smallest eigenvalue w? get shrunk the most towards zero.

b) First, note that the OLS corresponds to the case where A = 0, and qors = (Z'Z)"'ZTy = ZTy. Also, we
know that the fitted values with the OLS method is invariant to the scale of the variables: a rescaling of a
column, say z; — kz; leads to the solution 4; — 4;/k, so that the fitted values § = 1,7 + Zors remains
unchanged (To rephrase it, we have not changed the column space of the design matrix). However, this is
not the case for penalized methods: rescaling amounts to the different amount of shrinkage to the covariates,
which can be seen from (a), and the fitted values § = 1,7 + Z4, change. Therefore, imposing a uniform
criteria ZTZ = I,_1 ensures that the penalty is consistent, and in this case,

1 1
N=(Z"Z+ N, ) ' ZTy=——ZTy = 5
a = ( + A1) Y T A Y 1+)\’70st

the shrinkage effect is uniform over all variables. This standardizing procedure is automatically done by any
good R package.

¢) We provide two solutions, one using calculations of the norm, and one using the definition of ridge regression.

e Let Z =UQVT be the singular value decomposition of Z with D = diag(ws,...,w,—1). This gives us
the eigendecomposition of Z'Z = VQ?V T, thus

p—1
A _ W
n=V(Q*+ AL, QU Ty = :wz i )\(ujTy)Vj.
j=1"7J

Since a (p — 1) x (p — 1) matrix V is orthogonal,

p—1 ' 2
Bl = 5 TURE? L, ) PUTy = S (w;j A) wlop,
j=1 \J

Since A — (w/(w? + \))? is a decreasing function for any w > 0, the expression above is decreasing in

A

e It suffices to show that for any A1 > Ao, [|9a, |3 < |9, [13. Since
Ax = argmin [y — 1,7 — Z7]3 + Allv[13,
v
we have

ly — 1a7 — ZAn, 113 + MlAn 3 < 1y — 107 — ZA |13 + M l9113,
ly = 1a7 — ZAn, 13 + A2llAn, 113 > 1y — 107 — ZA 113 + X240, 113-

Then the difference of two inequalities becomes
(A =221 )13 < O = 22) [ I3

hence [, [13 < 119, 3
Problem 38. Let \* = 2max;<;<q |Z; y|. Show that

A> N = ’?Iasso = 07
A< N = 'AYIaLsso 7é 0.

Hint: Use the convexity for the first part.
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Solution. Let y = y — 71 be the centered response. Then 5 = Aj,s50 minimizes function f defined as
n q 2
F) =g + Al with g(y)=>_ (.17 -3 ij) -
i=1 j=1
We will study what happens with the two parts of f close to 0. For g, this will be done via derivative, while the

non-differentiable term ||y||; we will be inspected directly (another approach would be to use the sub-gradient,
an optimization-theory notion generalizing the concept of a derivative).

The partial derivatives of g at 0 are
dg = I

877-(0) = —22(271 - ZZijO)Zij =27]y=-2Z]y, j=1,....q,

J i=1 j=1

where the last equality comes from the fact that Z™1 = 0.

For the case A < A*, we will show that there exist v such that f(v) < f(0). Let j be the coordinate for which
A< 2|ZjTy|, and let e; denote the j-th vector of the standard basis (i.e. zero but 1 in the j-th coordinate). For
t small we have

f(te;) = g(te;) + Altej|| = g(te;) + Alt| = g(0) + t[ — 2Z]Ty + Asign(t) + 0(1)].

If Z]Ty >0, f(te;) < g(0) = f(0) for ¢ > 0 small enough. If Z]Ty < 0, the same is true for ¢t < 0 small enough.
Hence 0 is not the minimizer of f.

Now let A > \*. We can estimate, using the Taylor expansion for g at 0, that for any v:
f(©) = g(0) + [Vg(0)] "v + o(v) + Aljv[l > g(0) + (A = [[Vg(0)loc ) [[0]]1 + o(v).
)\*

Recall that o(v)/||v]]1 — 0 for v — 0. Hence, since A > \*, 0 must be a strict local minimum of f. Since f is
convex, 0 must be the only minimum.

Problem 39. Let X = [1,, Z] be an n x p design matrix with centered inputs Z, meaning that Z'1,, = 0,_1.
Consider the model y = 1,8y + Z~v + €, where Ee = 0,, and Var (¢) = 0I,,. The ridge estimators are defined
by

(Bo,4n) = argmin ||y — 1,80 — Z7||2 + Ay
(Bo,y)

We know that BQ = 7 regardless of the smoothing parameter A > 0, thus
Ay = argmin ||y — 1,5 — Zv[|5 + Allv]l1.

¥
Unlike the ridge regression, lasso solution may not be unique. Nonetheless, the adjusted values are unique: let
41 and 49 be two lasso solutions (for the same smoothing parameters \).
a) Show that Z9; = Z4s, using convexity.
b) Show that, if > 07 then H’AYIHl = ||’A}/2||1 .
Solution. Since both the estimators estimate the intercept the same (as the mean), so we can only focus on Z
and v estimates, denoted as 7; and 73. Also, denote y* =y — 1,,7.

a) Assume that 74; and 75 both give an optimal objective value, henceforth denoted as «. Note first that
|Y — Z~||3 is strictly convex in Z+, hence for ¢ € (0,1), we have

ly* = tZ3 — (1 = ) Z%|5 < tly* = 235 + (1 = Olly* = Z7l3. (12)

By the strict convexity, the equality holds if only if Z3; = Z7,. Also, L'-norm is convex, hence
1171 + (1 = O)72lls < tFll + (L= E)[Fzl
Owing to the optimality of 7; and 75, we obtain
a <yt =tz — (1= 1) Z%[5 + Mt + (1~ )%2]h

< (tly" = 20l + @ = Olly" = Z7%03) + A EA ) + (1= 8)]F32]1)

= t(ly* — 23+ AA L) + (=0 (" ~ 2515 + MAa 1

=ta+ (1 —t)a= .

Hence equalities must be preserved in the previous chain, and the equality of (12) holds, i.e. Z4; = Z7s.
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b) This is evident from the previous part, because in the last inequality we used two upper estimates. If the
inequality should be equality, both of the upper estimates must be sharp. From the sharpness of the first
one we deduced part a), from the second one we can deduce part b), provided A > 0.

Problem 40. (Median regression)
Let Y; = Bo + f1x; + €, i = 1,...,n. Note that the median of a random variable Y is defined as

med(Y) = argminE|Y — ¢|.
ceR

Let X; = (1,z;)" and
B = argmin Z(Y’ - BT X;)?, B= argminz IV; — BT X,
B B

1. Show that E|Y — 8T X| is minimized for T X = med(Y) and conclude why 3 is sometimes called the
”median regression estimate”.

2. Compare what are the estimators 3 and B actually estimating in the cases of € ~ N(0,1) and ¢; ~ Exp(1).

Solution. 1. This is clear from how median is defined. B is modeling median of the response variable in the
same way as (3 is modeling the expectation.

2. Since both the median and expectation of a standard gaussian is zero, in the gaussian case the two
estimators are estimating the same:

EY; = Bo + Bix; = med(Y;) .

In the second case, med(Exp(1)) # EExp(1) and both of them are non-zero, hence Bo is estimating a
different constant than 50, and neither is really estimating Sy. (; is being estimated the same, since both
the median and the expectation are linear. Hence the effect of the covariate on the response is the same
in both cases.

Problem 41. (Naive kernel density estimator)
Let X1,...,X, be a random sample from a distribution function F. Let f = F’ be the density. For every
z € R, the estimator of f is given as

F.(x+h)— F,(x —h)
2h ’

fla) =

where Fj, is the empirical distribution function. Show that fis a kernel density estimator (check out “kernel
density estimation” on Wikipedia for definition), i.e. specify the weighting function, also known as the kernel.

Solution. Write F,,(z) = 237" | 1|, o)(x). Then

n

~ ZT; 1
f@) = thz i Xt (@ thzﬂ[“‘) hz “”( >_'hz (

where K(y) =

%),

%1[—1,1) So the kernel corresponds to U[—1,1) distribution.

Problem 42. (Generalized least squares)

Consider the linear model Y = X + €, where y is an n X 1 vector of responses, X is an n x p full-rank non-
stochastic design matrix and the error vector e ~ N, (0,,%) for ¥ # 021, a known positive definite covariance
matrix. Let y be the observed response vector.

1. Show that the maximum likelihood estimator (MLE) of § is the vector that minimizes
(y—XB) 'S (y - Xp).

2. Show that the maximum likelihood estimator of 8, known as generalized least squares estimator (GLS),
is of the form

Bors = (XTe X)X e 1y
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3. Derive the distribution of EGLS.

4. Show that the ordinary least squares (OLS) estimator 3 is an unbiased estimator of 3, but is not the best
linear unbiased estimator (BLUE) of /. State carefully any result you use.

Solution. 1. The maximum likelihood estimator of [ is

~1/2
argmax L(y; X) = arg max | exp {—1(y —XB)TuHy - Xﬁ)} .
5 g (2m)n/? 2

and thus finding the MLE amounts to minimization of (y — X3) "X~ (y — X}3).

2. Since ¥ = UAUT is positive definite, its inverse X! is well-defined and positive definite and by the
spectral theorem admits a square root ¥~1/2 = UA~1/2UT.

One can rewrite the regression as the classical linear model setting by premultiplying by ¥'/2. The normal
equation can also be derived using vector calculus, by differentiating (y — X3) "X~ (y — X3) with respect
to B and setting the derivative to zero. The normal equations are

X2 IXg=XTx"1y

and since X T ¥ 71X is a quadratic form and ¥ is positive definite, the inverse is well-defined. Differentiating
twice gives 2X "X 71X and since the Hessian is positive, Sgrg minimizes the distance and is therefore the
maximum likelihood estimator of (.

3. By the transformation property, the estimator Sgps is Gaussian because € is also Gaussian. Its mean and
variance are

Efcrs = (X' 'X) ' X2 'EY = (X 27'X)" !X 2 'X3 = 4
and
Var (Bas ) = (X8 71X) X T8 Var (v) 271 X(X T2 1X)
= X' X)Xyl X (X T X)) !
= (X' 1x)~ 1

4. First, the ordinary least square (OLS) estimator is unbiased,

EBos = (X'X)'XTEY = 8.

Let Y* = X~Y2Y. Then, the linear model with Y* = X~1/2Xj + * satisfies the hypothesis of the
Gauss-Markov theorem with €* ~ A,;(0,,1I,) and the OLS estimator of this regression is BLUE. Since
we premultiply by the matrix »~1/2, the design matrix becomes ¥~/2X and so the BLUE estimator is

BaLs-

Alternatively, proceed as in the proof of Gauss-Markov theorem to show that BGLS is BLUE.

Let E be any linear unbiased estimator of 3, necessarily of the form AY with AX =1,,. Write Var (B) =

AYAT and the difference between the variance of the estimators as
Var (B) — Var (BGLS) —AYAT - (XTy X))
=A{Z-XX'S'X)"'XT}AT
— ANL/2 {In _ 271/2X(XT271/2271/2X)71XT271/2} T2 T
= ASY2My 1o SV2AT.

Since My,—1/2x is a projection matrix, it is idempotent and the difference Var (E) — Var (BGLS) is a

quadratic form and hence positive semi-definite. Since EOLS is a linear unbiased estimator (with A =
(XTX)~1XT), it is not the BLUE in this particular example.
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Problem 43. Consider the linear model y = X + ¢, with ¢; “d g(-); suppose that E(e;) = 0 and var(e;) =
0% < 0o is known. Suppose that the MLE of 3 is regular, with

i :/—Wg(u)du:/{abgg(u)}Qg(u)du.

1. Show that the asymptotic relative efficiency (ARE) of the leas squares estimator of 3 relative to MLE of
[ is

2
0%

2. What is it reduced to if g is the gaussian density?
3. What about if g is the density of the Laplace distribution?

Solution. Some preliminary remark:
a) In this exercise, we will denote j-th row of X by xT thus X T = ( xr1 Xog - xn) .

b) Let us recall that under regularity assumptions, the MLE of 6 is asymptotically Gaussian, with
covariance matrix the inverse of the Fisher information matrix.

1. The model is y = X3 + ¢, with ¢ of zero mean and known variance o2. The variance of the LSE is thus
o2(XTX)!

The density of y; is g(y; — =, TB), with g the density of ;. Therefore, we have
=Y logg(y; —x; B), BERP.
j=1

Let us notice that h;(8) = logg(y; — x;rﬁ) From the “chain-rule”, we have

Oh; — dlogg(u)

98 ~ T

u=y;—2] B

thus

] du?

Bz 9B aB B du

We used the fact that if A is a matrix and f(8) is a vectorial function such that Af(8) is defined, then
a(AgéB)) 8(f N AT (from the “chain-rule”).

ohy 9 ohy 9 (dlogg(w) i e Plosgl)
u=y;—z, B

u=y;—z| B

Hence,

0%l _Z T d*log g(u)

“op T g

U=Y; *froB

b
u—ij;rﬁ}

and so,

169~ 862} ij TE{ S

where the expectation becomes

du?

with the change of variable y; —ijﬁ = u. That implies I(8) = i, X " X, and so the MLE has as asymptotic
variance i, 1 (X T X) ™!

/—d2 1Ogg(u)g(u)du =i,

The asymptotic relative efficiency of least squares with respect to the MLE is thus
1
i X))
o (X T X))~ igo?
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2. We have g(u) = (27702)’1/26*“2/(2"2) for u € R, thus i; = 1/02, which give an efficiency of 1. That is not
surprising, since the LSE is exactly the MLE in this case.

3. Let A = v/2/0, where o is the variance. The Laplace density is g(u) = (A\/2) exp(—A|u|), u € R. Let us
remark that, since the MLE is regular, we have

, d*log g(u) dlog g(u) \° 2 2
ig = —Tg(u)du = —du gluw)du = [ {=Xsgn(u)}” (A\/2) exp(—Au|)du = N°.
So, the asymptotic relative efficiency is 1/(\20?) = 1/2.
Problem 44. Give the equivalent of the H matrix for non-parametric regression with kernel smoothing.

Solution. The adjusted values are

By defining

XTi—XT;
ICY
ANij — —Ti )\’
X K (B57)
we have § = Syy, where S is called the smoother matriz. In non-parametric regression, this is the analogue of
the hat matrix.

Problem 45. (Cubic spline)
Letn >2and a < x1 < 29 < -+ <z, <b. Denote by N(z1,xa,...,x,) the space of natural cubic splines with
knots x1, s, ..., z,. The goal of this exercise is to show that the solution to the problem

n

b
min L(f), where L(f) = Z(yl — f(x:)* + )\/ {f"(x)}Y2dz, >0, (13)

fec?a] Pt

must belong to N(z1,z2,...,2,). In order to show this, we need the following theorem

Theorem. For every set of points (1, 21), (€2, 22), - - - , (Tn, 2, ), there exists a natural cubic spline g
interpolating those points. In other words, g(x;) = z;, i = 1,...,n, for a unique natural cubic spline
g. Moreover, the knots of g are x1,x2,...,Ty,.

1. Let g the natural cubic spline interpolating the points (z;,2;),i = 1,...,n, and let § € C?[a,b] another
function interpolating the same points. Show that

/b g"(z)h" (z)dx = 0,
a

where h = g — g.

Hint: integration by parts
2. Using point (1) show that

[ @@y [ ey

when the equality holds if and only if ag =g. ’

3. Use point (2) to show that if the problem (13) has a solution f, thenf € N(x1,zy,...,2,).

Solution. 1. Using integration by parts, we obtain that

b

b b
/g"<x>h"<x>dx= @@ - / ¢ @) (2)de

=0, car g’ (a)=g"" (b)=0

n—1 Tit1
— - @) / W ()da
i=1 Ti

a

i

n—1
==> " @H{h(@it1) = h(z:)} = 0.
=1
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Here, the second equality comes from the fact that ¢’”’(z) = 0 inside the intervals (a,z1) and (z,,b) and

that ¢"’(z) equals to the constant lim__, + ¢"’(z) = ¢"’(z]) inside the interval (x;, z;41). To obtain the

K2

last equality finally, observe that g(x;) = g(x;) = z; hence h(x;) = 0 for every i.

2. By direct computation we obtain that
b b
/ (7 (2)2de = / (g" () + W'(x)}2da
¢ ab b b
- / (¢ (2)Y2dx 12 / o (@) (x)dz + / (W' (2)}2dz

-/ o))+ / ) > / (@)

where we have equality if and only if A”(xz) = 0, so we must have h(x) = kz + c¢. But since h(x;) = 0 for
every i, it must be thath(z) = 0. In particular we have equality if and only if g = g.

3. Let f € C%a,b\N(z1,...,2,) and let f € N(z1,...,z,) the spline which is interpolating the points
(4, f(z3)), i =1,...,n. By point (2)

/ @) > / @

Moreover . .
D = @) = (i — f:)*
i=1 i=1
Hence, L(f) > L(f) and we notice that if the minimum exists, it must belong to N (z1,...,z,).

Remark. Using the properties of splines, it it possible to show that a minimum always exists and is unique.
Hence the problem minsec2(q,) L(f) admits always a unique solution and this solution is a natural cubic spline.

Problem 46. Prove the proposition on slide 29:

Let ©Q € RP*P be a real symmetric matrix. Then € is non-negative definite if and only if €2 is the covariance
matrix of some random vector Y.

Solution. For the if part, let 2 be the covariance matrix of a random vector Y € RP. Then, for any a € RP,
a'Qa is the variance of the random variable a"Y. This shows that a'Qa > 0 for every a € RP and hence (Q is
non-negative definite.

Conversely, let € be non-negative definite. So, we can write @ = UAU'", where U € RP*? and A =
diag(A1,...,Ap) with A; > 0Vi. Now, we can always find a random vector X € RP such that A is the co-
variance matrix of X (take independent random variables with variances given by the eigenvalues, and use them
to form random vector X). Then, Q is the covariance matrix of Y = UX.

Problem 47. Show that the two definitions of a positive (semi-)definite matrix on lecture slide 26 are equivalent:
For a real symmetric p x p matrix €2, show that the statements

a) for all z € RP\ {0}, 27Qx > 0 (or 2" Qz > 0), and

b) all eigenvalues of € are positive (or non-negative)

are equivalent, defining € as a positive definite (or semi-definite) matrix.

Solution. e 1ot b) = not a):

Assume the jth eigenvalue of £ is A\; <0 (or A; < 0) with eigenvector u;, then so is u;rﬂuj = )\j, which
contradicts positive definiteness (or semi-definiteness, respectively).

e b) = a):
Note that you can write singular value decomposition @ = UAUT also as Q = P Alulu;r where the
); are the diagonal entries of A and the u; are the column vectors of U which form an orthonormal basis

A1y Ap >0
(ONB) of RP. Hence, z' Qz = >0 |\ (u] x)? > Y (u;'—x)z for any j. For x # 0, we can further
>0
choose j such that also u, z # 0 since the ;LZ form an ONB. Thus, we have that from Ai,...,A,(>) >0

immediately implies 2 " Qx(>) > 0.
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Problem 48. Let Y be a random variable with covariance ¥ = (gg gg)

Calculate the principal components v; and vs.
Verify your calculation in R.
In R, simulate n = 100 data points from a distribution with mean zero and covariance 3.

In R, find the principal components of the sample from the previous point, denoted by v; and vs.

A

In R, plot the simulated data points together with the population and sample principal components.

Solution. For the manual calculation, we begin by calculating the eigenvalues of ¥ as roots of the characteristic
polynomial:
det(X — ) = (5/2 — \)?> — (3/2)> =0 s M=4 & =1

Then we can easily calculate the principal components, i.e. the eigenvectors:
E-4w=0 ~ v=1L1D"T & E-Dv=0 ~ wv=(,-1".

For points 2.-5. we give the code:

# 2.

Sigma <- matrix(c(5,3,3,5)/2, ncol=2)
EIG <- eigen(Sigma)

EIG$vectors[,1] # v_1
EIG$vectors[,2] # v_2

# 3.

sqrt_Sigma <- EIG$vectors %*) diag(sqrt(EIG$values)) %x’ t(EIG$vectors)
n <- 100

X <- matrix(rnorm(2#n),ncol=2) ¥x*}, sqrt_Sigma # the data matrix

# 4.

SVD <- svd(X)

SVD$v[,1] # \hat{v}_1

SVD$v[,2] # \hat{v}_2

# 5.

plot(X[,1],X[,2],col="gray")

signl <- sign(sum(EIG$vectors[,1]*SVD$v[,1]))

sign2 <- sign(sum(EIG$vectors[,2]*SVD$v[,2]))

arrows(0,0,sqrt (EIG$values[1])*EIG$vectors[1,1],sqrt (EIG$values[1])*EIG$vectors[2,1],col="gray60")
arrows(0,0,sqrt (EIG$values [2] ) *EIG$vectors[1,2] ,sqrt (EIG$values[2])*EIG$vectors[2,2],col="gray60")
arrows(0,0,sign1*SVD$d[1]/sqrt (n)*SVD$v[1,1],sign1*SVD$d[1]/sqrt (n) *SVD$v[2,1])

arrows (0,0,sign2*SVD$d [2] /sqrt (n) *SVD$v [1,2],sign2+SVD$d [2] /sqrt (n) *SVD$v [2,2])

The code for point 5. looks quite complicated for the following reasons:

e Signs of eigenvectors and singular vectors are irrelevant. For example, the software can produce either
vy = (1,1)T or v; = (—=1,—1) . If we want to ensure that v; and its estimator 7, are facing in a similar
direction, we have to take care of the signs manually.

e The eigenvalue \; captures variance in the direction of the first principal component. Note that variance
is not useful for plotting, standard deviation is preferred with this respect. By multiplying v, by v/A1, we
are including the information on the data spread in the plot, making it look more natural.

e What is the relation between the eigenvalues of % and the singular values of the data matrix X? Recall
that the squared singular values of X are eigenvalues of X X. However, X "X is not the estimator of ¥,
X TX/n is! Putting everything together, the corresponding scale to v/A; is o1//n.

Problem 48b. Let {x1,...,2,} C RP, and X be a matrix with =, in its i-th row. Let X = UDV " be the
SVD of X. Show that for ¢ < p the optimization problem

n

min_ >z - QQ i3

QeRrr*1,QT Q=1 £
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is equivalent to

max tr(Q'VD?*V'Q)
QERPX2,QT Q=1

and conclude that Q = (v1,...,vq) is a solution, where v; is the i-th column of V.

A note on the SVD: The full SVD of X € R"*P refers to the decomposition X = UDV T, where U € R™*" is an
orthogonal matrix with its columns forming a basis of R, V € RP*P is an orthogonal matrix with its columns
forming a basis of R? and D € R™*P has non-zero entries only on the “diagonal”. However, some authors
(including us in this exercise) understand by SVD the compact SVD, which refers to the same decomposition
X = UDVT, while (let m = min(n,p)) U € R"*™ and V € R™*P? has orthogonal columns (but may not be
full bases anymore), and D € R™*™ is a diagonal matrix. Intuitively, going from the full SVD to the compact
one, one just trims off an all-zero block of D to make it a square matrix and discards the corresponding parts of
U or V. The compact SVD is often the default in software packages, since one is seldom interested in the full
SVD. It is often clear from the context, whether the full SVD or the compact SVD is considered. In the exercise
above, the meaning of D? would be unclear unless the compact SVD was considered. Recall that neither the
full SVD nor the compact SVD are unique.

Solution. We can rearrange the objective as

>l - QQT @il = IX - XQQT|} = tr[(X - XQQT) (X - XQQ")]
=1

=tr(X'X) - 2tr(X"XQQ") +tr(QQ'X'XQQ")
=tr(X'X) - tr(Q'X"XQ) = tr(X'X) — tr(QTVD2V'Q)

where we used the cyclic permutation property of the trace and the fact that Q is orthogonal. The first term
of the final expression does not depend on Q and hence it can be dropped. The minus in front of the second
term then changes the minimization problem to the maximization one, hence the problems are equivalent.

Now, if we choose Q = (v1,...,v,), the objective value is Y.7_, d?. Given the order of the singular values,
dy > ds > ..., and the the required orthogonality of Q, this is the highest objective value one can obtain.

Problem 49. In R, generate a random vector (a regressor) x € R!% such that z; C [0,2], and a random vector
of errors e € R199 such that ej ~ N(0,1/10). Then create the dependent random variable as

y; = 10 + 2sin(m * x;) + e;.

Plot the dependent random variable against the regressor. Secondly, find a transformation of the z-axis which
reveals the approximate linear relationship between x and y. Can you see how the constants (10 and 2) affect
the plots? Go through the same for the following dependent variable:

y; = exp(15+ 3log(x) +e;).

Solution. We can create and plot the data using the following code:

x <- runif (100)*2

e <- rnorm(100)/sqrt(10) # notice the square-root
y <= 10 + 2xsin(pi*x) + e

plot(x,y)

Since we know how we generated the data, it is clear how to transform the z-axis to obtain a clear linear
relationship:

plot(sin(pi*x),y)

So the transformation is T = sin(m * ). Once we have the transformed plot, one can see that the constant 10
is the intercept, i.e. the value of the (imaginary) line at = 0, while 2 is the slope of that line.

Similarly for the second dependent variable, the transformation of the z-axis is = log(x), only this time, we
also have to transform the y-axis as y = log(y).

Note that the first dependent variable follows a linear model. The second one doesn’t, it does only after a log-
transformation. In the case of the first dependent variable, we could have probably guessed the transformation
even without knowing how the data were generated. In the case of the second dependent variable, we probably
would have been lost. But still, in the latter case, the variance seems to be increasing with increasing values of
y, which points towards log-transformation of the response.
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Problem 50. Let y; = 1 cos(x — B3) + € for i = 1,...,100.

a) Can you obtain estimates for 8 = (81, 32) " directly by solving a sequence of least squares problems? How
do the design matrices and responses for this sequence look like?

b) Can you obtain estimates for a suitable transformation of 8 by solving only a single least squares problem?
¢) Simulate data in R using the following code:
x <- 1.5xpixrunif (100)

y <= lxcos(x - (-1)) + rnorm(100)/2
datal <- data.frame(x=x,y=y)

ie. B=(1,—1)" here. Treat 3 as unknown and estimate it using both (a) and (b). Find the fitted values
using approach (a) and approach (b). Plot the raw data and both sets of fitted values to check if they are
the same.

Solution. (a) This is a nonlinear model with 7(3) = 51 cos(x — 81). So, we can use Newton-Raphson method
(slide 253 in the lecture notes). We start with an initial choice 5(*) = (550)’550))1 For h =0,1,2,...,
we iteratively fit linear regression with design matrix D™ = Vgn(B3) and response y — n(3"), that is

find v = (D(h)TD(h))_lD(h)T(y n(ﬁ(h))) and update S+ = (M) 4 (M) For this specific problem,

825) = cos(x — fa2), aﬁf) = Py sin(z — B2). S

cos(xy — ﬂ%i) B%:; sin(xy — ﬂ%i) B% N cos(z B%Z;)

cos(xo — By ") sin(xe — By ") Yz — cos(zg — )
D Cr PRIy gy = [T R

cos(zy, ﬂ(h)) 5§h) sin(z,, — éh)) ﬁl cos( éh))

This is repeated until convergence.

(b) The problem can be reformulated as follows.

y = By cos(z — Ba) + € = B cos(f2) cos(x) — By sin(Bs) sin(x) +€ = fia; + Boxa + €
——— ] ——— N ——

Bi* 1 ﬂ; To
This is a simple linear regression problem with 2y = cos(x), x2 = sin(z) and no intercept term.
(c) Here is the code:

### part (b):

m3 <- 1lm(y“I(cos(x)) + I(sin(x))-1,data=datal)
summary (m3)

plot(datal$x,datal$y)
points(x,fitted(m3),col="red",pch=0)

### part(a): Newton-Rhanpson for NLLS
# mean function
nu_cos <- function(x,beta) betal[l]*cos(x-betal[2])
# fitting algorithm
NNLS_cos <- function(beta, n_iter, data){
# data - data frame
# beta - starting value for the algorithm (in this case a vector)
# maxiter - no. of iterations, we do not check any stopping criterion for simplicity
for(k in 1:n_iter){
data_akt <- data.frame(xl=cos(data$x - betal[2]),
x2=beta[l]l*sin(data$x - betal[2]),
y=data$y-nu_cos(data$x,beta) )
m_akt <- 1m(y~“x1+x2-1, data=data_akt)
u <- unname (coef (m_akt))
beta <- beta + u

}
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return(beta)

}

beta_0 <- ¢(0.5,-0.5) # starting point - try out different ones!

( beta_hat <- NNLS_cos(beta_0,100,datal) ) # let it run for 100 iterations, that should be enough
fitted_val <- beta_hat[l]*cos(datal$x - beta_hat[2])

# do we really get the same estimates?

plot(datal$x,datal$y)

points(x,fitted(m3),col="red",pch=0)

points(datal$x, fitted_val, col="blue", pch=4)

# yes! you can also verify it analytically
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