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What is a Regression Model?

Statistical model for:

Y (random variable)
depending on � x (non-random variable)

Aim: understand the effect of x on the random quantity Y

General formulation1:
Y � Distributionfg(x )g

Statistical Problem: Estimate (learn) g(�) from data f(xi ; yi )gni=1. Use for:

Description

Inference

Prediction

Data compression (parsimonious representations)

: : :

1Often books/people write Y j x � Distributionfg(x )g but this implies that (X ;Y ) have a
joint distribution; this assumption is unnecessary (e.g., in a designed experiment we choose values
for x ). Despite this, we write Y j x to remind ourselves that the distribution of Y depends on x .
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Example: Honolulu tide

Figure: Recorded tide heights in HonoluluVictor Panaretos (EPFL) Linear Models 3 / 309



Example: Gas mileage Histogram of Auto$mpg
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Figure: Miles per gallon for 392 car models
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Example: Honolulu tide with time covariate
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Example: Gass mileage with horsepower covariate
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Great Variety of Models

Remember general model:

Y � Distributionfg(x )g

x can be:

continuous, discrete, categorical, vector : : :

arrive randomly, or be chosen by experimenter, or both

however x arises, we treat it as constant in the analysis

Distribution can be:

Gaussian (Normal), Laplace, binomial, Poisson, gamma, General exponential
family, . . .

Function g(�) can be:

g(x ) = �0 + �1x , g(x ) =
PK

k=�K �ke
�ikx , Cubic spline, . . .
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Fundamental Case: Normal Linear Regression

Y ; x 2 R, g(x ) = �0 + �1x , Distribution = Gaussian

Y j x � N (�0 + �1x ; �
2)

m
Y = �0 + �1x + �; � � N (0; �2)

The second verson is useful for mathematical work, but is puzzling statistically,
since we don’t observe �.

Also, x could be vector (Y ; �0 2 R, x 2 Rp , � 2 Rp):

Y j x � N (�0 + �>x ; �2)

m
Y = �0 + �>x + �; � � N (0; �2)
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Example: Professor’s Van
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Example: Professor’s Van
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Example: Professor’s Van
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Tools of the trade : : :

Start from Normal linear model �! gradually generalise : : :
Important features of Normal linear model:

Gaussian distribution

Linearity

These two combine well and give geometric insights to solve the estimation
problem. Thus we need to revise some linear algebra and probability . . .

Will base course on the Gaussian assumption, but relax linearity later:

linear Gaussian regression

nonlinear Gaussian regression

nonparametric Gaussian regression

Many further generalisations are possible . . .
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Projections, Spectra, Gaussian Law
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Reminder: Subspaces, Spectra, Projections

If Q is an n � p real matrix, we define the column space (or range) of Q to be
the set spanned by its columns:

M(Q) = fy 2 Rn : 9� 2 Rp ; y = Q�g:

Recall that M(Q) is a subspace of Rn .

The columns of Q provide a coordinate system for the subspace M(Q)

If Q is of full column rank (p), then the coordinates � corresponding to a
y 2M(Q) are unique.

Allows interpretation of system of linear equations

Q� = y :

[existence of solution $ is y an element of M(Q)?]
[uniqueness of solution $ is there a unique coordinate vector �?]

Victor Panaretos (EPFL) Linear Models 15 / 309



Reminder: Subspaces, Spectra, Projections

Two further important subspaces associated with a real n � p matrix Q :

the null space (or kernel), ker(Q), of Q is the subspace defined as

ker(Q) = fx 2 Rp : Qx = 0g;

the orthogonal complement of M(Q), M?(Q), is the subspace defined as

M?(Q) = fy 2 Rn : y>Qx = 0; 8x 2 Rpg
= fy 2 Rn : y>v = 0; 8v 2M(Q)g:

The orthogonal complement may be defined for arbitrary subspaces by using the
second equality.
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Reminder: Subspaces, Spectra, Projections.

Theorem (Singular Value Decomposition)

Any n � p real matrix can be factorised as

Q
n�p

= U
n�n

�
n�p

V
p�p

>;

where U and V > are orthogonal with columns called left singular vectors and
right singular vectors, respectively, and � is diagonal with non-negative real
entries called singular values.

1 The left singular vectors corresponding to non-zero singular values form an
orthonormal basis for M(Q).

2 The left singular vectors corresponding to zero singular values form an
orthonormal basis for M?(Q).
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Proof.

Since the statement is invariant to transposition, assume wlog that n � p. We
will prove the statement by induction on p. Assume that p = 1 so that Q is a
column vector. Then the statement holds true trivially, by taking

Un�1 = Q=kQk �1�1 = kQk V > = V = 1:

Thus the statement is true for all n � p when p = 1. This is the base case for
our induction. For the inductive step, assume that the statement is true for some
p > 1 and all n � p. Let us prove that it is also true for p + 1 and all n � p + 1.

Let Sp+1 = fx 2 Rp+1 : kxk = 1g and q(x ) = kQxk. Since q(�) is continuous
and Sp+1 is compact, we have that q(x ) is bounded over Sp+1 and attains its
bounds. So there exists v1 2 Sp+1 such that

q(v1) = maxx2Sp+1 q(x ) = �1 <1:
and let v1 2 Sp+1 be maximiser of q(x ), i.e. such that q(v1) = maxx2Sp+1 q(x ).
Define u1 = ��11 Qv1 so ku1k = 1. Given any orthonormal bases fuj gnj=2 for

span?(u1) and fvj gpj=2 for span?(v1) define U and V to be orthogonal matrices

U = (u1 u2 : : : un) = (u1 U1) & V = (v1 v2 : : : vn) = (v1 V1):
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Using block matrix multiplication, we see that

U>
n�n

Q
n�(p+1)

V
(p+1)�(p+1)

=
�

u>1
U>1

�
Q ( v1 V1 ) =

�
u>1 Qv1 u>1 QV1

U>1 Qv1 U>1 QV1

�

=

 
�1
1�1

�>
1�p

0
(n�1)�1

Z
(n�1)�p

!
:

Now we claim that � = 0. To see this, first observe that

�1 = max
x2Sp+1

kQxk = max
x2Sp+1

kU>Qxk = max
x2Sp+1

kU>QVxk:

Next, let’s consider the norm of U>QV
�
�1
�

�
,





� �1 �>

0 Z

��
�1
�

�



 = 



� �21 + �>�
Z �

�



 =q(�21 + �>�)2 + kZ �k2

� �21 + �>� = (�21 + �>�)1=2




� �1

�

�



 :
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Dividing across by k(�1 �)>k, we see that we must necessarily have

(�21 + �>�)1=2 � max
x2Sp+1

kU>QVxk = �1 = (�21 + 0)1=2:

and so it must be that �>� = 0. We conclude that

U>QV =

�
�1 01�p

0(n�1)�1 Z

�
thus
=) Q = U

�
�1 01�p

0(n�1)�1 Z

�
V >:

But Z is an (n � 1)� p matrix, and since n � p + 1 it holds that n � 1 � p. So
by our inductive hypothesis

Z(n�1)�p =W(n�1)�(n�1)
(n�1)�pR>p�p :

where W ;R are orthogonal and 
 is diagonal. Thus

Qn�p = Un�n

�
�1 01�p

0(n�1)�1 W
R>

�
V >
p�p =

= U

�
1 01�(n�1)

0(n�1)�1 W(n�1)�(n�1)

�
| {z }

orthogonal

�
�1 01�p

0(n�1)�1 
(n�1)�p

�
| {z }

diagonal

�
1 01�p

0p�1 R>p�p

�
V>| {z }

orthogonal

�
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Reminder: Subspaces, Spectra, Projections

Theorem (Spectral Theorem)

A p � p matrix A is symmetric if and only if there exists a p � p orthogonal
matrix U and a real diagonal matrix � such that

A = U�U>:

In particular:

1 the columns of U = (u1 � � � up) are eigenvectors of A, i.e.

Auj = �juj ; j = 1; : : : ; p

where diag(�1; : : : ; �p) = � are the corresponding (real) eigenvalues of A.

2 the rank of A is the number of non-zero eigenvalues.

3 if the eigenvalues are distinct, the eigenvectors are unique (up to re-ordering
and sign flips).
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Proof.

If A = 0, the statement holds trivially, so let A = A> 6= 0.

First note that the SVD of A guarantees the existence of a singular vector pair
(u ; v) with non-zero singular value �, so that

A(v + u) = Av +Au = Av +A>u = �u + �v = �(u + v):

hence w = u + v is an eigenvector of A with real eigenvalue �.
Now the theorem is obviously true for 1� 1 matrices (scalars). So use induction.
Assume any non-zero p � p symmetric matrix satisfies the theorem statement.
Let A = A> 6= 0 be (p + 1)� (p + 1). By (1), A has at least one eigenvector
w 2 Rp with real eigenvalue � 6= 0.
Let W = (w R) where R has p orthonormal columns spanning span?(w). Then

W >AW =

�
w>

R>

�
A
�
w R

�
=

�
w>Aw w>AR
R>Aw R>AR

�

=

�
�2 (Aw)>R

R>Aw R>AR

�
=

�
�2 01�p

0p�1 R>AR

�
=

�
�2 01�p

0p�1 B

�
where B = R>AR is a symmetric p � p matrix.
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Since B is symmetric, we have B = V
V > for Vp�p orthogonal and 
p�p
diagonal by our induction hypothesis. In summary

A =W

�
�2 01�p

0p�1 B

�
W >

=W

�
1 01�p

0p�1 Vp�p

�
| {z }

orthogonal

�
�1 01�p

0p�1 
p�p

�
| {z }

diagonal

�
1 01�p

0p�1 V >
p�p

�
W >

p�p| {z }
orthogonal

= U�U>

�

Combining the SVD and the spectral theorem, we notice that:

1 The left singular vectors of Q are eigenvectors of A = QQ>.

2 The right singular vectors of Q are eigenvectors of A = Q>Q .

3 The squared singular values of Q are eigenvalues of both QQ> and Q>Q .
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Reminder: Subspaces, Spectra, Projections.

A matrix Q is called idempotent if Q2 = Q .

An orthogonal projection (henceforth projection) onto a subspace V is a
symmetric idempotent matrix H such that M(H ) = V.

Proposition

The only possible eigenvalues of a projection matrix are 0 and 1.

Proposition

Let V be a subspace and H be a projection onto V. Then I �H is the projection
matrix onto V?.

Proof.

(I �H )> = I �H> = I �H since H is symmetric and,
(I �H )2 = I 2 � 2H +H 2 = I �H . Thus I �H is a projection matrix.

It remains to identify the column space of I �H . Let H = U�U> be the
spectral decomposition of H . Then I �H = UU> �U�U> = U (I � �)U>.
Hence the column space of I �H is spanned by the eigenvectors of H
corresponding to zero eigenvalues of H , which coincides with M?(H ) = V?.
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Reminder: Subspaces, Spectra, Projections.

Proposition

Let V be a subspace and H be a projection onto V. Then Hy = y for all y 2 V.

Proposition

If P and Q are projection matrices onto a subspace V, then P = Q .

Proposition

If x1; : : : ; xp are linearly independent and are such that span(x1; : : : ; xp) = V, then
the projection onto V can be represented as

H = X (X>X )�1X>

where X is a matrix with columns x1; : : : ; xp .
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Reminder: Subspaces, Spectra, Projections.

Proposition

Let V be a subspace of Rn and H be a projection onto V. Then

kx �Hxk � kx � vk; 8v 2 V:

Proof

Let H = U�U> be the spectral decomposition of H , U = (u1 � � � un) and
� = diag(�1; : : : ; �n). Letting p = dim(V),

1 �1 = � � � = �p = 1 and �p+1 = � � � = �n = 0,

2 u1; : : : ;un is an orthonormal basis of Rn ,

3 u1; : : : ;up is an an orthonormal basis of V.
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Reminder: Subspaces, Spectra, Projections.

(proof continued)

kx �Hxk2 =

nX
i=1

(x>ui � (Hx )>ui )2 [orthonormal basis]

=

nX
i=1

(x>ui � x>Hui )2 [H is symmetric]

=

nX
i=1

(x>ui � �ix>ui )2 [u’s are eigenvectors of H]

= 0 +

nX
i=p+1

(x>ui )2 [eigenvalues 0 or 1]

�
pX

i=1

(x>ui � v>ui )2 +
nX

i=p+1

(x>ui )2 8v 2 V

= kx � vk2:

�
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Proposition

Let V1 � V � Rn be two nested linear subspaces. If H1 is the projection onto V1

and H is the projection onto V, then

HH1 = H1 = H1H :

Proof.
First we show that HH1 = H1, and then that H1H = HH1. For all y 2 Rn we
have H1y 2 V1. But then H1y 2 V, since V1 � V.
Therefore HH1y = H1y . We have shown that (HH1 �H1)y = 0 for all y 2 Rn ,
so that HH1 �H1 = 0, as its kernel is all Rn . Hence HH1 = H1.

(Or, take n linearly independent vectors y1; : : : ; yn 2 Rn , and use them as columns of the n � n

matrix Y . Now Y is invertible, and (HH1 �H1)Y = 0, so HH1 �H1 = 0, giving HH1 = H1.)

To prove that H1H = HH1, note that symmetry of projection matrices and the
first part of the proof give

H1H = H>
1 H

> = (HH1)
> = (H1)

> = H1 = HH1:
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Positive-Definite Matrices

Definition (Non-Negative Matrix – Quadratic Form Definition)

A p � p real symmetric matrix 
 is called non-negative definite (written 
 � 0) if
and only if x>
x � 0 for all x 2 Rp . If x>
x > 0 for all x 2 Rp n f0g, then we
call 
 positive definite (written 
 � 0).

An equivalent definition is:

Definition (Non-Negative Matrix – Spectral Definition)

A p � p real symmetric matrix 
 is called non-negative definite (written 
 � 0) if
and only the eigenvalues of 
 are non-negative. If the eigenvalues of 
 are strictly
positive, then 
 is called positive definite (written 
 � 0).

Lemma (Exercise)

Prove that the two definitions are equivalent.

Victor Panaretos (EPFL) Linear Models 29 / 309



Covariance Matrices

Definition (Covariance Matrix)

Let Y = (Y1; : : : ;Yn)
> be a random n � 1 vector such that EkY k2 <1. The

covariance matrix of Y , say 
, is the n � n symmetric matrix with entries


ij = cov(Yi ;Yj ) = E[(Yi � E[Yi ])(Yj � E[Yj ])]; 1 � i � j � n :

That is, the covariance matrix encodes the variances of the coordinates of Y (on
the diagonal) and the covariances between the coordinates of Y (off the
diagonal). If we write

� = E[Y ] = (E[Y1]; : : : ;E[Yn ])
>

for the mean vector of Y , then the covariance matrix of Y can be written as

E[(Y � �)(Y � �)>] = E[YY >]� ��>:

Whenever Y is a random vector, we will write cov(Y ) or var(Y ) for the
covariance matrix of Y .
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Covariance Matrices

Lemma

Let Y be a random d � 1 vector such that EkY k2 <1. Let � be the mean
vector and 
 be the covariance matrix of Y . If A is a p � d real matrix, the
mean vector and covariance matrix of AY are A� and A
A>, respectively.

Proof.
Exercise.

Corollary (Covariance of Projections)

Let Y be a random d � 1 vector such that EkY k2 <1. Let �; 
 2 Rd be fixed
vectors. If 
 denotes the covariance matrix of Y ,

the variance of �>Y is �>
�;

the covariance of �>Y with 
>Y is 
>
�.
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Non-negative Matrices � Covariance Matrices

Proposition (Non-Negative and Covariance Matrices)

Let 
 be a real symmetric matrix. Then 
 is non-negative definite if and only if 

is the covariance matrix of some random variable Y .

Proof.
Exercise.
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Principal Component Analysis

Let Y be a random vector in Rd with covariance matrix 
.

Find direction v1 2 Sd�1 such that the projection of Y onto v1 has maximal
variance.

For j = 2; 3; : : : ; d , find direction vj ? vj�1 such that projection of Y onto
vj has maximal variance.

Solution: maximise Var(v>1 Y ) = v>1 
v1 over kv1k = 1

v>1 
v1 = v>1 U�U>v1 = k�1=2U>v1k2 =
dX

i=1

�i (u
>
i v1)

2 [change of basis]

Now
Pd

i=1(u
>
i v1)

2 = kv1k2 = 1 so we have a convex combination of the f�j gdj=1,

dX
i=1

pi�i ;
X
i

pi = 1; pi � 0; i = 1; : : : ; d :

But �1 � �i � 0 so clearly this sum is maximised when p1 = 1 and pj = 0
8j 6= 1, i.e. v1 = �u1.

Iteratively, vj = �uj , i.e. principal components are eigenvectors of 
.
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Principal Component Analysis

Theorem (Optimal Linear Dimension Reduction Theorem)

Let Y be a mean-zero random variable in Rn with n � n covariance 
. Let H be
the projection matrix onto the span of the first k eigenvectors of 
. Then

EkY �HY k2 � EkY �QY k2

for any n � n projection operator Q or rank at most k .

Intuitively: if you want to approximate a mean-zero random variable taking values
Rn by a random variable that ranges over a subspace of dimension at most
k � n , the optimal choice is the projection of the random variable onto the space
spanned by its first k principal components (eigenvectors of the covariance).
“Optimal” is with respect to the mean squared error.

For the proof, use lemma below (follows immediately from spectral decomposition)

Lemma
Q is a rank k projection matrix if and only if there exist orthonormal vectors
fvj gkj=1 such that Q =

Pk

j=1 vj v
>
j .
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Principal Component Analysis

Optimal Linear Dimension Reduction.

Write Q =
Pk

j=1 vj vj 1
> for some orthonormal fvj gkj=1. Then,

EkY �QY k2 = E
�
Y >(I �Q)>(I �Q)Y

�
= E

�
trf(I �Q)YY >(I �Q)>g�

= trf(I �Q)E
�
YY >� (I �Q)>g = trf(I �Q)>(I �Q)
g

= trf(I �Q)
g = trf
g � trfQ
g =
nX
i=1

�i � tr

8<:
kX

j=1

vj v
>
j 


9=;
=

nX
i=1

�i �
kX

j=1

tr
�
vj v

>
j 

	
=

nX
i=1

�i �
kX

j=1

v>j 
vj

=

nX
i=1

�i �
kX

j=1

Var[v>j Y ]

If we can minimise this expression over all fvj gkj=1 with v>j vj 0 = 1fj = j 0g, then
we’re done. By PCA, this is done by choosing the top k eigenvectors of 
.
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Principal Component Analysis

Corollary

Let fx1; :::; xpg � Rn be such that x1 + : : :+ xp = 0, and let X be the n � p
matrix with columns fxj gpj=1. The best approximating k -hyperplane to the points

fx1; :::; xpg is given by the span of the k leading eigenvectors of the matrix XX>,
i.e. if H is the projection onto this span, it holds that

pX
j=1

kxj �Hxj k2 �
pX

j=1

kxj �Qxj k2

for any n � n projection operator Q or rank at most k .

Proof.

Define a discrete random vector Y by P[Y = xj ] = 1=p, j 2 f1; :::; pg and
observe that E[h(Y )] = p�1

Pp

j=1 h(xj ), for any vector-valued (or matrix-valued)
deterministic map h . Now use the optimal linear dimension reduction
theorem.
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Gaussian Vectors and Affine Transformations

Definition (Multivariate Gaussian Distribution)

A random vector Y in Rd has the multivariate normal distribution if and only if
�>Y has the univariate normal distribution, 8� 2 Rd .

Observation: From the definition if follows that Y must have some well-defined
mean vector � and some well defined covariance matrix 
.

To see this note that since Ef(�>Y )2g <1 for all �, then we can successively
pick � to be equal to each canonical basis vector and conclude that each
coordinate has finite variance and thus EkY k2 <1.

So all the means, variances and covariances of its coordinates are well defined.

Then, the mean vector (say) � and covariance matrix (say) 
 can be (uniquely)
determined entrywise by equating

�i = E[e>i Y ] & 
ij = covfe>i Y ; e>j Y g:
where ej is the j th canonical basis vector

ej = (0 ; 0 ; : : : ; 1|{z}
jth position

; : : : ; 0 ; 0)>
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Gaussian Vectors and Affine Transformations

How can we use this definition to determine basic properties?

The moment generating function (MGF) of a random vector W in Rd is defined
as

MW (�) = E[e�
>W ]; � 2 Rd ;

provided the expectation exists. When the MGF exists it characterises the
distribution of the random vector. Furthermore, two random vectors are
independent if and only if their joint MGF is the product of their marginal MGF’s,
i.e.

Xn�1 independent of Ym�1

()
E[e�

>X+
>Y ] = E[e�
>X ]� E[e


>Y ]; 8� 2 Rn & 
 2 Rm
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Gaussian Vectors and Affine Transformations

Useful facts:
1 Moment generating function of Y � N (�;
):

MY (u) = exp

�
u>�+

1

2
u>
u

�
:

2 Y � N (�p�1;
p�p) and given Bn�p and �n�1, then

� +BY � N (� +B�;B
B>).
3 N (�;
) density, assuming 
 nonsingular:

fY (y) =
1

(2�)
p=2 j
j1=2

exp

�
�1
2
(y � �)>
�1(y � �)

�
:

4 Constant density isosurfaces are ellipsoidal
5 Marginals of Gaussian are Gaussian (converse NOT true).
6 
 diagonal , independent coordinates Yj .
7 If Y � N (�p�1;
p�p),

AY independent of BY () A
B> = 0.
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Proposition (Property 1: Moment Generating Function)

The moment generating function of Y � N (�;
) is

MY (u) = exp
�
u>�+ 1

2u
>
u

�
Proof.
Let v 2 Rd be arbitrary. Then v>Y is scalar Gaussian with mean v>� and variance v>
v .
Hence it has moment generating function:

Mv>Y (t) = E
�
e tv

>Y

�
= exp

�
t(v>�) +

t2

2
(v>
v)

�
:

Now take t = 1 and observe that

Mv>Y (1) = E
�
ev
>Y

�
= MY (v):

Combining the two, we conclude that

MY (v) = exp

�
v>�+

1

2
v>
v

�
; v 2 Rd :
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Proposition (Property 2: Affine Transformation)

For Y � N (�p�1;
p�p) and given Bn�p and �n�1, we have

� +BY � N (� +B�;B
B>)

Proof.

M�+BY (u) = E
�
expfu>(� + BY )g

�
= exp

�
u>�
	
E
�
expf(B>u)>Y g

�
= exp

�
u>�
	
MY (B>u)

= exp
�
u>�
	
exp

n
(B>u)>�+

1

2
u>B
B>u

o
= exp

n
u>� + u>(B�) +

1

2
u>B
B>u

o
= exp

n
u>(� + B�) +

1

2
u>B
B>u

o
And this last expression is the MGF of a N (� + B�;B
B>) distribution.
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Proposition (Property 3: Density Function)

Let 
p�p be nonsingular. The density of N (�p�1;
p�p) is

fY (y) =
1

(2�)p=2j
j1=2 exp
�� 1

2 (y � �)>
�1(y � �)
	

Proof.

Let Z = (Z1; : : : ;Zp)
> be a vector of iid N (0; 1) random variables. Then,

because of independence,

(a) the density of Z is

fZ (z ) =

pY
i=1

fZi
(zi ) =

pY
i=1

1p
2�

exp

�
�1
2
z 2i

�
=

1

(2�)
p=2

exp

�
�1
2
z>z

�
:

(b) The MGF of Z is

MZ (u) = E

(
exp

 
pX

i=1

uiZi

!)
=

pY
i=1

Efexp(uiZi )g = exp(u>u=2);

which is the MGF of a p-variate N (0; I ) distribution.
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proof continued
(a)+(b)
=) the N (0; I ) density is fZ (z ) =

1
(2�)p=2

exp
�� 1

2z
>z
�
.

By the spectral theorem, 
 admits a square root, 
1=2. Furthermore, since 
 is
non-singular, so is 
1=2.

Now observe that from our Property 2, we have Y
d
= 
1=2Z + � � N (�;
).

By the change of variables formula,

fY (y) = f
1=2Z+�(y)

= j
�1=2jfZ f
�1=2(y � �)g
=

1

(2�)
p=2 j
j1=2

exp

�
�1
2
(y � �)>
�1(y � �)

�
:

[Recall that to obtain the density of W = g(X ) at w , we need to evaluate fX at
g�1(w) but also multiply by the Jacobian determinant of g�1 at w .]

�
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Proposition (Property 4: Isosurfaces)

The isosurfaces of a N (�p�1;
p�p) are (p � 1)-dimensional ellipsoids centred at
�, with principal axes given by the eigenvectors of 
 and with anisotropies given
by the ratios of the square roots of the corresponding eigenvalues of 
 .

Proof.
Exercise: Use Property 3, and the spectral theorem.

Proposition (Property 5: Coordinate Distributions)

Let Y = (Y1; : : : ;Yp)
> � N (�p�1;
p�p). Then Yj � N (�j ;
jj ) .

Proof.

Observe that Yj = (0 ; 0 ; : : : ; 1|{z}
jth position

; : : : ; 0 ; 0)Y and use Property 2.
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Proposition (Property 6: Diagonal 
 () Independence)

Let Y = (Y1; : : : ;Yp)
> � N (�p�1;
p�p). Then the Yi are mutually

independent if and only if 
 is diagonal.

Proof.

Suppose that the Yj are independent. Property 5 yields Yj � N (�j ; �
2
j ) for some

�j > 0. Thus the density of Y is

fY (y) =

pY
j=1

fYj
(yj ) =

pY
i=1

1

�j
p
2�

exp

(
�1
2

(yj � �j )2
�2j

)

=
1

(2�)
p=2 jdiag(�21 ; : : : ; �

2
p)j1=2

exp

�
�1
2
(y � �)>diag(��21 ; : : : ; ��2p )(y � �)

�
:

Hence Y � Nf�; diag(�21 ; : : : ; �
2
p)g, i.e. the covariance 
 is diagonal.

Conversely, assume 
 is diagonal, say 
 = diag(�21 ; : : : ; �
2
p). Then we can reverse

the steps of the first part to see that the joint density fY (y) can be written as a
product of the marginal densities fYj

(yj ), thus proving independence.
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Proposition (Property 7: AY ;BY indep () A
B
>
= 0)

If Y � N (�p�1;
p�p), and Am�p , Bd�p be real matrices. Then,

AY independent of BY () A
B> = 0.

Proof

It suffices to prove the result assuming � = 0 (and it simplifies the algebra).
First assume A
B> = 0. Let W(m+d)�1 =

�
AY

BY

�
and �(m+d)�1 =

�
um�1
vd�1

�
.

MW (�) = E[expfW >�g] = E
�
exp

�
Y >A>u +Y >B>v

	�
= E

�
exp

�
Y >(A>u +B>v)

	�
=MY (A

>u +B>v)

= exp

�
1

2
(A>u +B>v)>
(A>u +B>v)

�

= exp

8<:1

2

0@u>A
A>u + v>B
B>v + u>A
B>| {z }
=0

v + v>B
A>| {z }
=0

u

1A9=;
= MAY (u)MBY (v);

i.e., the joint MGF is the product of the marginal MGFs, proving independence.

Victor Panaretos (EPFL) Linear Models 46 / 309



For the converse, assume that AY and BY are independent. Then, 8u ; v ,

MW (�) =MAY (u)MBY (v); 8u ; v ;

=) exp

�
1

2

�
u>A
A>u + v>B
B>v + u>A
B>v + v>B
A>u

��
= exp

�
1

2
u>A
A>u

�
exp

�
1

2
v>B
B>v

�
=) exp

�
1

2
� 2u>A
B>v

�
= 1

=) u>A
B>v = 0; 8 u 2 Rd ; v 2 Rm ;

=) the orthocomplementa of the column space of A
B> is the whole of Rm :

=) A
B> = 0:

arecall that for Qm�d we have M?(Q) = fy 2 Rm : y>Qx = 0; 8x 2 Rdg
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Gaussian Quadratic Forms and the �2 Distribution

Definition (�2 distribution)

Let Z � N (0; Ip�p). Then kZk2 =Pp

j=1 Z
2
j is said to have the chi-square (�2)

distribution with p degrees of freedom; we write kZk2 � �2
p .

[Thus, �2
p is the distribution of the sum of squares of p real independent standard

Gaussian random variates.]

Definition (F distribution)

Let V � �2
p and W � �2

q be independent random variables. Then
(V =p)=(W =q) is said to have the F distribution with p and q degrees of
freedom; we write (V =p)=(W =q) � Fp;q .
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Gaussian Quadratic Forms and the �2 Distribution

Proposition (Gaussian Quadratic Forms)

1 If Z � N (0p�1; Ip�p) and H is a projection of rank r � p,

Z>HZ � �2
r :

2 Y � N (�p�1;
p�p) with 
 nonsingular =)

(Y � �)>
�1(Y � �) � �2
p :

Exercise: Prove these results.

Victor Panaretos (EPFL) Linear Models 49 / 309



Approximately �2 Quadratic Forms

What if the random vector is not Gaussian? Here’s a CLT2 that helps:

Theorem (Hajék-Sidak Weighted Sum CLT)

Let fXng be an i.i.d sequence of real random variables, with common mean 0 and
variance 1. Let f
ng be a sequence of real constants. Then,

sup
1�j�n


2jPn

i=1 

2
i

n!1�! 0 =) 1qPn

i=1 

2
i

nX
i=1


iXi
d! N (0; 1):

Supremum condition amounts to saying that, in the limit, any single
component contributes a negligible proportion of the total variance.

Coefficient sequence f
ng might very well diverge, without contradicting the
negligibility condition (e.g. 
k =

p
k)

2Consequence of Lyapunov’s CLT, see e.g. Sen & Singer, “Large Sample Methods in
Statistics”, Chapman & Hall, pp. 108-119.
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Linear Models: Likelihood and Geometry
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Simple Normal Linear Regression

General formulation:

Yi jxi ind� Distributionfg(xi )g; i = 1; : : : ;n :

Simple Normal Linear Regression:�
Distribution = Nfg(x ); �2g
g(x ) = �0 + �1x

Resulting Model:

Yi
ind� N (�0 + �1xi ; �

2)

m
Yi = �0 + �1xi + "i ; "i

ind� N (0; �2)
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Example: Professor’s Van

Fillup Km/L
1 7.72
2 8.54
3 8.35
4 8.55
5 8.16
6 8.12
7 7.46
8 6.43
9 6.74

10 6.72
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Example: Professor’s Van
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Simple Normal Linear Regression

Jargon: Y is response variable and x is explanatory variable (or covariate)
Linearity: Linearity is in the parameters, not the explanatory variable.
Example: Flexibility in what we define as explanatory:

Yj = �0 + �1sin(xj )| {z }
x�
j

+ "j ; "j
iid� Normal(0; �2):

Example: Sometimes a transformation may be required:

Yj = �0e
�1xj �j ; �j

iid� Lognormal

log(�) # " exp(�)
logYj = log �0 + �1xj + log �j ; log �j

iid� Normal

Data Structure:
For i = 1; : : : ;n , pairs

(xi ; yi )�!
�
xi fixed values of x
yi treated as a realisation of Yi at xi
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Multiple Normal Linear Regression

Instead of xi 2 R could have x>i 2 Rq):

Yi = �0 + �1xi1 + �2xi2 + : : :+ �qxiq + "i ; "i
ind� N (0; �2):

Letting p = q + 1, this can be summarised via matrix notation:0BBB@
Y1

Y2

...
Yn

1CCCA
| {z }

Y

=

0BBB@
1 x11 : : : x1q
1 x21 x2q
...

...
...

1 xn1 : : : xnq

1CCCA
| {z }

X

0BBB@
�0
�1
...
�q

1CCCA
| {z }

�

+

0BBB@
"1
"2
...
"n

1CCCA
| {z }

"

=) Y
n�1

= X
n�p

�
p�1

+ "
n�1

; " � Nn(0; �
2I )

X is called the design matrix.
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Example: Cement Heat Evolution

Case 3CaO:Al2O3 3CaO:SiO2 4Cao:Al2O3:Fe2O3 2CaO:SiO2 Heat
1 7.00 26.00 6.00 60.00 78.50
2 1.00 29.00 15.00 52.00 74.30
3 11.00 56.00 8.00 20.00 104.30
4 11.00 31.00 8.00 47.00 87.60
5 7.00 52.00 6.00 33.00 95.90
6 11.00 55.00 9.00 22.00 109.20
7 3.00 71.00 17.00 6.00 102.70
8 1.00 31.00 22.00 44.00 72.50
9 2.00 54.00 18.00 22.00 93.10

10 21.00 47.00 4.00 26.00 115.90
11 1.00 40.00 23.00 34.00 83.80
12 11.00 66.00 9.00 12.00 113.30
13 10.00 68.00 8.00 12.00 109.40
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Cement Heat Evolution
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Example: polynomial terms for MPG vs Horsepower
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Perhaps more fitting than
Yj = �0 + �1xj + "j

would be
Yj = �0 + �1xj + �2x

2
j + "j

Still a linear model but now with 2 covariates: xj and x �j = x 2j

Normally would require a (hyper)plane to visualise dependence of mean on 2
or more covariates

When additional covariates are variable transformation, can visualise mean
dependence via a non-linear curve, even though model is linear

Victor Panaretos (EPFL) Linear Models 60 / 309



Likelihood for Normal Linear Regression

Model is:

Yi = �0 + �1xi1 + �2xi2 + � � �+ �qxiq + "i ; "i
iid� N (0; �2)

m
Y = X� + "; " � Nn(0; �

2I )

Observe: y = (y1; : : : ; yn)
> for given fixed design matrix X , i.e.:

(y1; x11; : : : ; x1q); : : : ; (yi ; xi1; : : : ; xiq); : : : ; (yn ; xn1; : : : ; xnq)

Likelihood and Loglikelihood

L(�; �2) =
1

(2��2)n=2
exp

�
� 1

2�2
(y �X�)>(y �X�)

�
`(�; �2) = �1

2

�
n log 2� + n log �2 +

1

�2
(y �X�)>(y �X�)

�
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Maximum Likelihood Estimation

Whatever the value of �, the log-likelihood is maximised when
(y �X�)>(y �X�) is minimised. Hence, the MLE of � is:

�̂ = argmax
�

��(y �X�)>(y �X�)	 = argmin
�

(y �X�)>(y �X�)

Obtain minimum by solving:

0 =
@

@�
(y �X�)>(y �X�)

0 =
@(y �X�)

@�

@(y �X�)>(y �X�)
@(y �X�) (chain rule)

0 = X>(y �X�) (normal equations)

X>X� = X>y

�̂ = (X>X )�1X>y (if X has rank p)
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Maximum Likelihood Estimation

�̂ is called the least squares estimator because it is a result of minimising

(y �X�)>(y �X�) =
nX
i=1

(yi � �0 � �1xi1 � �2xi2 � � � � � �qxiq)2| {z }
sum of squares

:

Thus we are trying to find the � that gives the hyperplane with minimum sum of
squared vertical distances from our observations.
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Maximum Likelihood Estimation

Residuals: e = y �X �̂, so that e = (e1; : : : ; en)
>, with

ei = yi � �̂0 � �̂1xi1 � �̂2xi2 � � � � � �̂qxiq
“Regression Line” is such that

P
e2i is minimised over all �.

Fitted Values: ŷ = X �̂>, so that ŷ = (ŷ1; : : : ; ŷn)
>, with

ŷi = �̂0 + �̂1xi1 + � � �+ �̂qxiq
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Maximum Likelihood Estimation

Since the MLE of � is �̂ = (X>X )�1X>y for all values of �2, we have

�̂2 = argmax
�2

�
max
�

`(�; �2)

�
= argmax

�2
`(�̂; �2)

= argmax
�2

� 1

2

�
n log �2 +

1

�2
(y �X �̂)>(y �X �̂)

�
:

Differentiating and setting equal to zero yields

�̂2 =
1

n
(y �X �̂)>(y �X �̂):

Next week we will see that a better (unbiased) estimator is

S2 =
1

n � p (y �X �̂)
>(y �X �̂):
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Example: Professor’s Van

�̂0 = 8:6 �̂1 = �0:068 S2 = 17:4
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Example: MPG vs Horsepower

Model with linear term only
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Parameter estimates: �̂0 = 39:94 and �̂1 = �0:16 and S2 = 24:06.
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Example: MPG vs Horsepower

Model with linear quadratic terms
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Parameter estimates: �̂0 = 56:90, �̂1 = �0:47 and �̂2 = 0:0012 and S2 = 19:13.
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The Geometry of Least Squares

There are two dual geometrical viewpoints that one may adopt:

0BBB@
Y1

Y2

...
Yn

1CCCA =

0BBBBB@
1 x11 x12 : : : x1q
1 x21 x22 x2q
...

...
...

1 x(n�1)1 x(n�1)2 : : : x(n�1)q
1 xn1 xn2 : : : xnq

1CCCCCA
0BBB@

�0
�1
...
�q

1CCCA+

0BBB@
"1
"2
...
"n

1CCCA

Row geometry: focus on the n OBSERVATIONS

Column geometry: focus on the p EXPLANATORIES

Both are useful, usually for different things:

Row geometry useful for exploratory analysis.

Column geometry useful for theoretical analysis.

Both geometries give useful, but different, intuitive interpretations of the least
squares estimators.
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Row Geometry (Observations)

Corresponds to the “scatterplot geometry” – (data space)

n points in Rp

each corresponds to an observation

least squares parameters give parametric
equation for a hyperplane

hyperplane has property that it minimizes
the sum of squared vertical distances of
observations from the plane itself over all
possible hyperplanes

Fitted values are vertical projections (NOT orthogonal projections!) of
observations onto plane, residuals are signed vertical distances of observations
from plane.
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Column Geometry (Variables)

Adopt the dual perspective:

Consider the entire vector y as a single point living in Rn

Then consider each variable (column) as a point also in Rn

What is the interpretation of the p-dimensional vector �̂, and the n-dimensional
vectors ŷ and e in this dual space?

Turns out there is another important plane here: the plane spanned by the
variable vectors (the column vectors of X ).

Recall that this is the column space of X , denoted by M(X ).
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Column Geometry (Variables)

Recall: M(X )| {z }
Column Space

:= fX 
 : 
 2 Rpg

Q: What does Y = X� + " mean?

A: Y is [some element of M(X )] + [Gaussian disturbance].

Any realisation y of Y will lie outside M(X ) (almost surely). MLE estimates �
by minimising

(y �X�)>(y �X�) = ky �X�k2

Thus we search for a � giving the element of M(X ) with the minimum distance
from y .
Hence ŷ = X �̂ is the projection of y onto M(X ):

ŷ = X �̂ := X (X>X )�1X>| {z }
H

y = Hy :

H is the hat matrix (puts hat on y!)
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Column Geometry (Variables)

Another derivation of the MLE of �:

Choose �̂ to minimise (y �X�)>(y �X�) = ky �X�k2, so

�̂ = argmin ky �X�k2:

min�2Rp ky �X�k2 = min
2M(X ) ky � 
k2
But the unique 
 that yields min
2M(X ) ky � 
k2 is 
 = Py .

Here P is the projection onto the column space of X , M(X ).

Since X is of full rank, P = X (X>X )�1X>.

So 
 = X (X>X )�1X>y

�̂ will now be the unique (since X non-singular) vector of coordinates of 

with respect to the basis of columns of X .

So
X �̂ = 
 = X (X>X )�1X>y ;

which implies that �̂ = (X>X )�1X>y
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The (Column) Geometry of Least Squares
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The (Column) Geometry of Least Squares

So what is �̂?

If X columns linearly independent,
they are a (non-orthogonal) basis
for M

Hence for any z 2M(X ), there
exists a unique 
 2 Rp such that
z = X 


So 
 contains coordinates of z with respect to the X -column basis

Consequently, �̂ contains coordinates of ŷ with respect to the X -column
basis

But ŷ = Hy = X (X>X )�1X>y| {z }
u

= Xu , so u is the unique vector that gives

coordinates of y with respect to the X -column basis

Hence we must have �̂ = u = (X>X )�1X>y
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The (Column) Geometry of Least Squares

Facts:

1 e = (I �H )y = (I �H )".

2 ŷ and e are orthogonal, i.e. ŷ>e = 0

3 Pythagoras: y>y = ŷ>ŷ + e>e = y>Hy + ">(I �H )"

Derivation:

1 e = y �X �̂ = y �Hy = (I �H )y = (I �H )(X� + ") =
(I �H )X� + (I �H )" = (I �H )"

2 e = y � ŷ = (I �H )y =) ŷ>e = y>H>(I �H )y = 0

3 y>y = (Hy + (I �H )y)>(Hy + (I �H )y) = ŷ>ŷ + e>e + 2yH (I �H )y| {z }
=0

.
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Weighted Least Squares

Assume slightly different model:

Yi = �0 + �1xi1 + �2xi2 + � � �+ �qxiq +
"ip
wi

; "i
ind� N (0; �2); wi > 0

m

Yi
ind� N

�
�0 + �1xi1 + �2xi2 + � � �+ �qxiq ;

�2

wi

�
:

With the wj known weights (example: each Yj is an average of wj

measurements).

Arises often in practice (e.g., in sample surveys), but also arises in theory.
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Weighted Least Squares

Transformation:
y 0 =W 1=2y ; X 0 =W 1=2X

with
Wn�n = diag(w1; : : : ;wn)

Leads to usual scenario. In this notation we obtain:

�̂ = [(X 0)>X 0]�1(X 0)>y 0

= (X>WX )�1X>Wy

Similarly:

S2 =
1

n � p y
> �W �WX (X>WX )�1X>W

�
y
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Distribution Theory of Least Squares
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Least Squares Estimators

Gaussian Linear Model:

Yn�1 = Xn�p�p�1 + "n�1; " � Nn(0; �
2I )

We have derived the estimators:

�̂ = (X>X )�1X>y

�̂2 =
1

n
(y �X �̂)>(y �X �̂) = 1

n
kŷ � yk2

S2 =
1

n � p kŷ � yk
2

We need to study the distribution of these estimators for the purpose of:

Understanding their precision

Building confidence intervals

Testing hypotheses

Comparing them to other candidate estimators

. . .
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Joint Distribution of LSE’s

Theorem

Let Yn�1 = Xn�p�p�1 + "n�1 with " � Nn(0; �
2I ) and assume that X has full

rank p < n . Then,

1 �̂ � Npf�; �2(X>X )�1g;
2 the random variables �̂ and S2 are independent; and

3
n � p
�2

S2 � �2
n�p , where �2

� denotes the chi-square distribution with �

degrees of freedom.

Corollary

Let Yn�1 = Xn�p�p�1+ "n�1 with " � Nn(0; �
2I ). The statistic Hy is sufficient

for the parameter �. If X has full rank p < n , then �̂ is also sufficient for �.

Corollary

S2 is unbiased whereas �̂2 is biased (so we prefer S2).
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Geometry Reminder
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Joint Distribution of LSE’s

Proof of the Theorem.
1. Recall our results for linear transformations of Gaussian variables:
�̂ = (X>X )�1X>Y
Y � Nn(X�; �

2I )

�
=) �̂ � Npf�; �2(X>X )�1g

2. If e is independent of ŷ = X �̂, then S2 = e>e=(n � p) will be independent of
�̂ (why?). Now notice that:

e = (I �H )y

ŷ = Hy

y � N (X�; �2I )

Therefore, from the properties of the Gaussian distribution e is independent of ŷ
since (I �H )(�2I )H = �2(I �H )H = 0, by idempotency of H .
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proof cont’d.

3. For the last part recall that

e = (I �H )" =) (n � p)S2 = (n � p) e
>e

n � p = ">(I �H )"

by idempotency of H . But recall that " � Nn(0; �
2In) so ��1" � Nn(0; In).

Therefore, by the properties of normal quadratic forms (slide 40),

(n � p)
�2

S2 = (��1")>(I �H )(��1") � �2
n�p :
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Proof of the first Corollary.

Write y = Hy + (I �H )y = ŷ + e .

If we can show that the conditional distribution of the 2n-dimensional vector
W = (ŷ ; e)> given ŷ does not depend on �, then we will also know that the
conditional distribution of y = ŷ + e given ŷ does not depend on � either,
proving the proposition.

But we have proven that ŷ is independent of e . Therefore, conditional on ŷ , e
always has the same distribution N (0; (I �H )�2). It follows that, conditional on
ŷ , the vector W has a distribution whose first n coordinates equal ŷ almost
surely, and whose last n coordinates are N (0; (I �H )�2). Neither of those two
depend on �, and the proof is complete.

When X has full rank, �̂ is a 1-1 function of Hy , and is also sufficient for �.

Proof of the second Corollary.

Recall that if Q � �2
d , then E[Q ] = d .
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Confidence and Prediction Intervals

How to construct 1� � CI for a linear combination of the parameters, c>�?

Have c>�̂ � N1(c
>�; �2c>(X>X )�1c) = N1(c

>�; �2�)

Therefore Q = (c>�̂ � c>�)=(�p�) � N1(0; 1)

Hence Q2 � �2
1

and Q2 is independent of S2 (since �̂ is independent of S2)

while n�p
�2 S

2 � �2
n�p .

In conclusion:

Q2

1
(n�p)
�2 S2

n � p

� F1;n�p )
(c>�̂�c>�)2

�2�
S2

�2

=

 
c>�̂ � c>�p

S2c>(X>X )�1c

!2

� F1;n�p

But for real W , W 2 � F1;n�p () W � tn�p , so base CI on:

c>�̂ � c>�p
S2c>(X>X )�1c

� tn�p
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Confidence and Prediction Intervals

We obtain (1� �)� 100% CI:

c>�̂ � tn�p(1� �=2)
q
S2c>(X>X )�1c:

What about a (1� �) CI for �r? (r th coordinate)

Let cr = (0; 0; : : : ; 0; 1
r th position

; 0; : : : ; 0)

Then �r = c>�

Therefore, base CI on

c>r �̂ � c>r �p
S2c>r (X>X )�1cr

=
�̂r � �rp
S2vr ;r

� tn�p ;

where vr ;s is the r ; s element of (X>X )�1.

Obtain (1� �)� 100% CI:

�̂ � tn�p(1� �=2)
p
S2vrr :
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Confidence and Prediction Intervals

Suppose we want to predict the value of y+ for an x+ 2 Rp

Our model predicts y+ by x>+ �̂.

But y+ = x>+ � + "+ so a prediction interval is DIFFERENT from an interval

for a linear combination c>� (extra uncertainty due to "+):

E[x>+ �̂ + "+] = x>+ �
var[x>+ �̂ + "+] = var[x>+ �̂] + var["+] = �2[x>+ (X>X )�1x+ + 1]

Base prediction interval on:

x>+ �̂ � y+q
S2f1 + x>+ (X>X )�1x+g

� tn�p :

Obtain (1� �) prediction interval:

x>+ �̂ � tn�p(1� �=2)
q
S2f1 + x>+ (X>X )�1x+g:
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The Coefficient of Determination, R2

R2 is a measure of fit of the model to the data.

We are trying to best approximate y through an element of the column-space
of X .

How successful are we? Squared error is e>e .

How large is this, relative to data variation? Look at

kek2
kyk2 =

e>e
y>y

=
y>(I �H )y

y>y
= 1� ŷ>ŷ

y>y

Define

R2
0 =

ŷ>ŷ
y>y

=
kŷk2
kyk2

Note that 0 � R2
0 � 1

Interpretation: what proportion of the squared norm of y does our fitted value ŷ
explain?
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Geometry Reminder
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Different Versions of R2

“Centred (in fact, usual) R2”. Compares empirical variance of ŷ to empirical
variance of y , instead of the empirical norms. In other words:

R2 =
1
n

Pn

i=1(ŷi � �y)2

1
n

Pn

i=1(yi � �y)2
=

Pn

i=1(ŷi � �y)2Pn

i=1(yi � �y)2
=

Pn

i=1 ŷ
2
i � n �y2Pn

i=1 y
2
i � n �y2

:

(note that 1
n

Pn

i=1 ŷi =
1
n

Pn

i=1(yi � ei ) = �y because e ? 1 (recall that 1 is the
vector of 1’s = first column of design matrix X ) so

P
i ei = 0.

Note that

R2 =
kŷk2 � k�y1k2
kyk2 � k�y1k2 :

R2
0 mathematically more natural (does not treat first column of X as

special).

R2 statistically more relevant (expresses variance—the first column of X
usually is special, in statistical terms!).

R2
0 and R2 may differ a lot when �y large.
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Different Versions of R2

Geometrical interpretation of R2: project y and ŷ on orthogonal complement of
1, then compare the norms (of the projections):

1(1>1)�11>y = 1n�1
Pn

i=1 yi = 1�y .

1(1>1)�11>ŷ = 1n�1
Pn

i=1 ŷi = 1�y .

So

R2 =
kŷk2 � k�y1k2
kyk2 � k�y1k2 =

k(I � 1(1>1)�11)ŷk2
k(I � 1(1>1)�11)yk2

Intuition: Should not take into account the part of kyk that is explained by a
constant, we only want to see the effect of the explanatory variables.

NOTE: Statistical packages (e.g., R) provide R2 (and/or R2
a , see below), not R2

0.

Exercise: Show that R2 = [corr(fŷigni=1; fyigni=1)]
2.

Exercise: Show that R2 � R2
0.
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Horsepower and MPG of cars

R2 coefficients for the linear and quadratic models:

R2
0 R2

linear 0:96 0:61
quadratic 0:97 0:69
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Different Versions of R2

The adjusted R2 takes into account the number of variables employed. It is
defined as:

R2
a = R2 � (1�R2)

n � 1

n � p :

Corrects for the fact that we can always increase R2 by adding variables. One can
also correct the un-centred R2

0 by evaluating

R2
0 � (1�R2

0)
n

n � p :
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Example: Cement Heat Evolution

Case 3CaO:Al2O3 3CaO:SiO2 4Cao:Al2O3:Fe2O3 2CaO:SiO2 Heat
1 7.00 26.00 6.00 60.00 78.50
2 1.00 29.00 15.00 52.00 74.30
3 11.00 56.00 8.00 20.00 104.30
4 11.00 31.00 8.00 47.00 87.60
5 7.00 52.00 6.00 33.00 95.90
6 11.00 55.00 9.00 22.00 109.20
7 3.00 71.00 17.00 6.00 102.70
8 1.00 31.00 22.00 44.00 72.50
9 2.00 54.00 18.00 22.00 93.10

10 21.00 47.00 4.00 26.00 115.90
11 1.00 40.00 23.00 34.00 83.80
12 11.00 66.00 9.00 12.00 113.30
13 10.00 68.00 8.00 12.00 109.40
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Example: Cement Heat Evolution
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Example: Cement Heat Evolution

> cement.lm<-lm(y�1+x1+x2+x3+x4,data=cement)
> summary(cement.lm)

Estimate Std. Error t value Pr(>jtj)
(Intercept) 62.4054 70.0710 0.89 0.3991

x1 1.5511 0.7448 2.08 0.0708
x2 0.5102 0.7238 0.70 0.5009
x3 0.1019 0.7547 0.14 0.8959
x4 �0.1441 0.7091 �0.20 0.8441

Residual standard error: 2.446 on 8 degrees of freedom

R-Squared: 0.9824
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Example: Cement Heat Evolution

> x.plus

[1] 25 25 25 25

predict(cement.lm,x.plus,interval="confidence",

se.fit=T,level=0.95)

Fit Lower Upper
112.8 97.5 128.2

predict(cement.lm,x.plus,interval="prediction",

se.fit=T,level=0.95)

Fit Lower Upper
112.8 96.5 129.2
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Horsepower and MPG of cars
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Horsepower and MPG of cars

> auto.lm <- lm(mpg�1+horsepower+I(horsepower2),data=Auto)
> summary(auto.lm)

Estimate Std. Error t value Pr(>jtj)
(Intercept) 56:9000 1:8004 31:60 < 2� 10�16

horsepower �0:4662 0:0311 �14:98 < 2� 10�16

I(horsepower2) 0:0012 0:0001 10:08 < 2� 10�16

Residual standard error: 4.374 on 389 degrees of freedom

R-Squared: 0.6876

Victor Panaretos (EPFL) Linear Models 100 / 309



Horsepower and MPG of cars

> x.plus

horsepower

120

> predict(auto.lm, x.plus, interval="confidence",

se.fit=T, level=0.95)

Fit Lower Upper
18.68 18.03 19.33

> predict(auto.lm, x.plus, interval="prediction",

se.fit=T, level=0.95)

Fit Lower Upper
18.68 10.05 27.30
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Gauss-Markov & Optimal Estimation
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Gaussian Linear Model: Efficiency of LSE (Optimality)

Q: Geometry suggests that the LSE �̂ is a sensible estimator. But is it the best
we can come up with?

A: Yes, �̂ is the unique minimum variance unbiased estimator of �.

(To be seen in Statistical Theory course, since �̂ is sufficient and complete)

Thus, in the Gaussian Linear model, the LSE are the best we can do as far as
unbiased estimators go.

(actually can show S2 is optimal unbiased estimator of �2, by similar arguments)
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Second Order Assumptions: Optimality in a weaker setting?

The crucial assumption so far was:

Normality: " � Nn(0; �
2I )

What if we drop this strong assumption and assume something weaker?

Uncorrelatedness: E["] = 0 & var["] = �2I

(notice we do not assume any particular distribution.)

How well do our LSE estimators perform in this case?

(note that in this setup the observations may not be independent —
uncorrelatedness implies independence only in the Gaussian case.)
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Second Order Assumptions

For a start, we retain unbiasedness:

Lemma
If we only assume both

E[�] = 0 var[�] = �2I

instead of
" � N (0; �2I );

then the following remain true:

1 E[�̂] = �;

2 Var[�̂] = �2(X>X )�1;

3 E[S2] = �2.

But what about optimality properties?
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Gauss–Markov Theorem

Theorem
Let Yn�1 = Xn�p�p�1 + "n�1, with p < n , X having rank p, and

E["] = 0,

var["] = �2I .

Then, �̂ = (X>X )�1X>Y is the best linear unbiased estimator of �, that is, for
any linear unbiased estimator ~� of �, it holds that

var( ~�)� var(�̂) � 0:

Victor Panaretos (EPFL) Linear Models 106 / 309



Gauss–Markov Theorem

Proof.

Let ~� be linear and unbiased, in other words:

(
~� = AY ; for some Ap�n ;
E[ ~�] = �; for all � 2 Rp :

These two properties combine to yield,

� = E[ ~�] = E[AY ] = E[AX� +A"] = AX�; � 2 Rp

=) (AX � I )� = 0; 8� 2 Rp :

We conclude that the null space of (AX � I ) is the entire Rp , and so AX = I .

var[ ~�]� var[�̂] = A�2IA> � �2(X>X )�1

= �2fAA> �AX (X>X )�1X>A>g
= �2A(I �H )A>

= �2A(I �H )(I �H )>A>

� 0:
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Large Sample Distribution of �̂

If E["] = 0 and cov["] = �2I

,!Gauss-Markov says �̂ optimal linear unbiased estimator, regardless of whether or not " is

Gaussian.

Question: What can we say about the distribution of �̂ when cov(") = �2I , but
" is not necessarily Gaussian?

Note that we can always write

�̂ � � = (X>X )�1X>":

Since there is a huge variety of candidate distributions for " that would be compatible with

the property cov(") = �2I , we cannot say very much about the exact distribution of

�̂ � � = (X>X )�1X>".

Can we at least hope to say something about this distribution asymptotically, as the sample

becomes large?
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Large Sample Distribution of �̂

Large sample () increasing number of observations.

We let n !1 (# rows of X tend to infinity)

# columns of X , i.e., p, (held fixed).

Theorem (Large Sample Distribution of �̂)

Let fXngn�1 be a sequence of n � p design matrices and Yn = Xn� + "n . If

1 Xn is of full rank p for all n � 1

2 max1�i�n [x>i (X>
n Xn)

�1xi ]
n!1�! 0, [known as Noether’s conditiona]

(where x>
i

is the ith row of Xn )

3 "n is a zero mean n-vector with i.i.d. coordinates of variance �2,

then the least squares estimator �̂n = (X>
n Xn)

�1X>
n Yn satisfies

(X>
n Xn)

1=2(�̂n � �) d�! Np(0; �
2I ):

aGottfried Noether (not Emmy Noether), Ann. Math. Stat., 1949.

Victor Panaretos (EPFL) Linear Models 109 / 309



Large Sample Distribution of �̂

Theorem’s conclusion can be interpreted as:

for n “large enough”, �̂
d' Nf�; �2(X>

n Xn)
�1g

i.e. distribution of �̂ gradually becomes what it would be if " were Gaussian

. . . provided design matrix X satisfies Noether’s condition (2).

This equivalent to: diagonal elements of Hn = Xn(X
>
n Xn)

�1X>
n , say

hjj (n) converge to zero uniformly in j as n !1
Because x>i (X>X )�1xi = (e>i X )(X>X )�1(e>i X )> = e>i Hei = hii where ei
is the ith canonical basis vector for Rn .

Note that trace(H ) = p, so that the average
P
hjj (n)=n ! 0 — the

question is do all the hjj (n)! 0 uniformly?

Has a very clear interpretation in terms of the form of the design that we will see
when we discuss the notions of leverage and influence.
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Large Sample Distribution of �̂

To understand Condition (2), consider simple linear model

Yi = �0 + �1ti + "i ; i = 1; : : : ;n :

Here, p = 2. Can show that

hjj (n) =
1

n
+

(tj � �t )2Pn

k=1(tk � �t )2

Suppose ti = i , for i = 1; : : : ;n (regular grid). Then

hjj (n) =
1

n
+
fj � (n + 1)=2g2
(n3 � n)=12

so max
1�j�n

hjj (n) = hnn(n) =
1

n
+

3(n � 1)

n2(n � 1)

n!1�! 0:
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Large Sample Distribution of �̂

Now consider ti = 2i (grid points spread apart as n grows).
The centre of mass and sum of squares of the grid points is now

�t =
2(2n � 1)

n
;

nX
i=1

(ti � �t )2 =
4n+1 � 4

3
� 4n+1 + 4� 2n+3

n

and so

max
1�j�n

hjj (n) = hnn(n)
n!1�! 3

4
:
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Large Sample Distribution of �̂
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Proof.

Recall that �̂n � � = (X>
n Xn)

�1X>
n "n . We will show that for any unit vector u ,

u>(X>
n Xn)

�1=2X>
n "n

d! N (0; �2);

and then the theorem will be proven by the Cramér-Wold devicea. Now notice that

u>(X>
n Xn)

�1=2X>
n "n = 
>n "n

where:

1 
n = (
n;1; : : : ; 
n;n)
> =

�
u>(X>

n Xn)
�1=2x1; : : : ;u>(X>

n Xn)
�1=2xn

�>
2 
2n;i � kuk2



(X>
n Xn)

�1=2xi


2 = x>i (X>

n Xn)
�1xi (Cauchy-Schwarz)

3 
>n 
n = u>(X>
n Xn)

�1=2(X>
n Xn)(X

>
n Xn)

�1=2u = 1.

Consequently, the result follows from the weighted sum CLT upon noticing:

max1�i�n 
2n;i

�Pn

k=1 

2
n;k � max1�i�n x>i (X>

n Xn)
�1xi ! 0

aCramér-Wold: �n
d
! � in Rd if and only if u>�

d
! u>� in R for all unit vectors u .
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Diagnostics
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Assumptions to Check for

Four basic assumptions inherent in the Gaussian linear regression model:

Linearity: E[Y ] is linear in X .

Homoskedasticity: var["j ] = �2 for all j = 1; : : : ;n .

Gaussian Distribution: errors are Normally distributed.

Independent Errors: "i independent of "j for i 6= j .

When one of these assumptions fails clearly, then Gaussian linear
regression is inappropriate as a model for the data.

Isolated problems, such as outliers and influential observations also deserve
investigation. They may or may not decisively affect model validity.
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How do we check these assumptions?

Scientific reasoning: impossible to validate model assumptions.

Cannot prove that the assumptions hold. Can only provide evidence in favour (or
against!) them.

Strategy:

Find implications of each assumption that we can check graphically (mostly
concerning residuals).

Construct appropriate plots and assess them (requires experience).

“Magical Thinking”: Beware of overinterpreting plots!
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Residuals Revisited

Residuals e : Basic tool for checking assumptions.

Recall: e = y � ŷ = y �X �̂ = (I �H )y = (I �H )"

Intuition: the residuals represent the aspects of y that cannot be explained by the
columns of X .

Since " � Nn(0; �
2I ), if the model is correct we should have

e � Nnf0; �2(I �H )g.

So if assumptions hold!
�
ei � Nf0; �2(1� hii )g
cov(ei ; ej ) = ��2hij

Note the residuals are correlated, and that they have unequal variances. Define

the standardised residuals:

ri :=
ei

s
p
1� hii

; i = 1; : : : ;n :

These are still correlated but have variance � 1.
(can decorrelate by U>e , where H = U�U>) – why?
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Checking for Linearity

Is E[Y ] entirely specified as linear functional of X ? Did we leave variables out? Is
it also a linear functional of non-linear transformations of X -columns?
A first impression can be drawn by looking at plots of the response against each of
the explanatory variables. Other plots to look at?
Notice that, by construction of e = (I �H )y we have

X>e = 0:

Hence, no correlation will appear between explanatory variables and residuals.

Plot stand. residuals r against each explanatory variable (columns of X ).
,! No systematic (non-linear) patterns should appear in these plots. A systematic

pattern would suggest incorrect dependence of the response on the particular
explanatory (e.g. need to add a transformation of that explanatory as an
additional variable).

Also, no correlation should appear between unused explanatory variables and
residuals.

Plot standardised residuals r against explanatories left out of the model.
,! No systematic patterns should appear in these plots. A systematic pattern

suggests that we have left out an explanatory variable (or transformation
thereof) that should have been included.
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Linearity OK
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Linearity NOT OK – need to add sin(x1) in model
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Important Covariate Left out

Victor Panaretos (EPFL) Linear Models 122 / 309



Checking for Homoskedasticity

Homoskedastic = ó�o|{z}
same

+��"����ò&| {z }
spread

According to our model assumptions, the variance of the errors "j should be the
same across indices:

var("j ) = �2

Plot r against the fitted values ŷ . (why not against y?)

,! A random scatter should appear, with approximately constant spread of the
values of r for the different values of ŷ . “Trumpet” or “bulging” effects
indicate failure of the homoskedasticity assumption.

,! Since ŷ>e = 0, this plot can also be used to check linearity, as before.
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Homoskedasticity OK
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Heteroskedasticity (i.e. lack of Homoskedasticity)
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Checking for Normality

Idea: compare the distribution of standardised residuals against a Normal
distribution.

How?

Compare the empirical with the theoretical quantiles . . .

The p-quantile (p 2 [0; 1]) of a distribution F is the value � defined as

� := inff� 2 R : F (�) � pg:

Notation: � = F�1(p) (although the inverse may not be well defined) Given a

sample X1; : : : ;Xn , the empirical p quantile is the value 
 defined as


 = inf

�
� 2 R :

#fXi � �g
n

� p

�
:

Notation: 
 = F̂�1
n (p)
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Checking for Normality

A quantile plot for a given sample plots certain empirical quantiles against the
corresponding theoretical quantiles (i.e. those under the assumed distribution).

If the sample at hand originates from F , then we expect that the points of the
plot fall close to the 45� line.

Plot the empirical fk=ngnk=1quantiles of standardised residuals

r(1) � r(2) � � � � � r(n)

against theoretical quantiles ��1f1=(n + 1)g; : : : ;��1fn=(n + 1)g of a
N (0; 1) distribution.

,! Think why we pick ��1
�

k
n+1

�
instead of ��1

�
k
n

�
.

,! If the points of the quantile plot deviate significantly from the 45� line, there
is evidence against the normality assumption. Outliers, skewness and heavy
tails easily revealed.

Beware of overinterpretation when n is small!
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QQ Plot for n = 50
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QQ Plot for n = 100
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QQ Plot for n = 300
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Normality NOT OK
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Checking for Independence

It is assumed that var["] = �2I .

Under assumption of normality this is equivalent to independence

Difficult to check this assumption in practice.

One thing to check for is clustering, which may suggest dependence.

,! e.g. identifying groups of related individuals with correlated responses

When observations are time-ordered can look at correlation corr[rt ; rt+k ] or
partial correlation corr[rt ; rt+k jrt+1; : : : ; rt+k�1]. When such correlations
exist, we enter the domain of time series.

Existence of dependence:

seriously affects estimator reliability

inflates standard errors
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Checking for Independence
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Identifying Influential Observations

An influential observation can usually be categorised as an:

outlier (relatively easier to spot by eye)

OR

leverage point (not as easy to spot by eye)

Influential observations

May or may not decisively affect model validity.

Require scrutiny on an individual basis and consultation with the data expert.

David Brillinger (Berkeley): You will not find your Nobel prize in the fit, you will
find it in the outliers!

Influential observations may reveal unanticipated aspects of the scientific problem
that are worth studying, and so must not simply be scorned as “non-conformists”!
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Outliers

An outlier is an observation that stands out in some way from the rest of the
observations, causing Surprise! Exact mathematical definition exists (Tukey) but
we will not pursue it.

In regression, outliers are points falling far from the cloud surrounding the
regression line (or surface).

They have the effect of “pulling” the regression line (surface) toward them.

Outliers can be checked for visually through:

The regression scatterplot.

,! Points that can be seen to fall relatively far from the point cloud surrounding
the regression line (surface)

Residual Plots.

,! Points that fall beyond (�2; 2) in the (ŷ ; r) plot.

Outliers may result from a data registration error, or a single extreme event. They
can, however, result because of a deeper inadequacy of our model (especially if
there are many!).
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An Outlier
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Professor’s Van: Outliers
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Leverage and Leverage Points

Outliers may be influential: they “stand out” in the “y-dimension”.

However an observation may also be influential because of unusual values in
the “x -dimension”.

Such influential observations cannot be so easily detected through plots.

Call (xj ; yj ) the j -th case and notice that

var(yj � ŷj ) = var(ej ) = �2(1� hjj ):

If hjj � 1, then the model is constrained so ŷj = x>j �̂ ' yj ! (i.e., need a separate
parameter entirely devoted to fitting this observation!)

hjj is called the leverage of the j -th case.

since trace(H ) =
Pn

j=1
hjj = p, cannot have low leverage for all cases

a good design corresponds to hjj ' p=n for all j

(i.e. assumption maxj�n hjj
n!0
! 0 satisfied in asymptotic thm).

Leverage point: (rule of thumb) if hjj > 2p=n observation needs further scrutiny—e.g.,
fitting again without j -th case and studying effect.
Outlier+Leverage Point = TROUBLE
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A (very) Noticeable Leverage Point
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Assessing the Influence of an Observation

How to find cases having strong effect on fitted model?

Idea: see effect when case j , i.e., (xj ; yj ), is dropped.

Let �̂�j be the LSE when model is fitted to data without case j , and let

ŷ�j = X �̂�j be the corresponding fitted value.

Define Cook’s distance

Cj =
1

ps2
(ŷ � ŷ�j )>(ŷ � ŷ�j );

which measures scaled distance between ŷ and ŷ�j .

Can show that

Cj =
r2j hjj

p(1� hjj ) ;

so large Cj implies large rj and/or large hjj .

Cases with Cj > 8=(n � 2p) worth a closer look (rule of thumb)

Plot Cj against index j = 1; : : : ;n and compare with 8=(n � 2p) level.
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A Cook Distance Plot
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Summary

Diagnostic plots usually constructed:

y against columns of X

,! check for linearity and outliers

standardized residual r against columns of X

,! check for linearity

r against explanatories not included

,! check for variables left out

r against fitted value ŷ

,! check for homoskedasticity

Normal quantile plot

,! check for normality

Cook’s distance plot

,! check for influential observations
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Detour: Reminder on Hypothesis Tests
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Detour: Very brief Reminder on Testing Hypotheses

Scientific theories lead to assertions that are testable using empirical data.

Data may discredit the theory (call it the hypothesis) or not (i.e., empirical
findings reasonable under hypothesis).

Example: Theory of “luminoferous aether” in late 19th century to explain
light travelling in vacuum. Discredited by Michelson-Morley experiment.

Similarities with the logical/mathematical concept of a necessary condition.

Victor Panaretos (EPFL) Linear Models 144 / 309



Hypothesis Testing Setup

H0: The null hypothesis

,! scientific theory under scrutiny�
Y ; data
T (�); test statistic, assumed positive

,! the experimental setup to test theory

INTUITION:

The null hypothesis would predict a certain plausible range of values for
T (Y ) (plausible results of the experiment).

We would say that the assertion made by the null hypothesis (theory) is not
supported by the data if T (Y ) is an extreme (unlikely) observation given the
range of plausible values predicted by the hypothesis (if the experimental
evidence appears to be inconsistent with the theory).
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Hypothesis Testing Setup

Plausibility of different values of T (�) under the theory H0

! described by the distribution of T (Y ) under the null hypothesis:

PH0
[T (Y ) 2 �]

Suppose that we perform the experiment T (Y ) and the result is T (Y ) = t . The
result t is judged to be incompatible with the hypothesis when

p = PH0
[T (Y ) � t ]

is small. The value p is called the p-value.

Small values of p suggest that we have observed something which is unlikely
to happen if H0 holds true.

Large values of p suggest that what we have observed is plausible if H0 holds
true.

(Choice of T often guided by an alternative hypothesis H1, under which T
should be large)

Thus we reject the null hypothesis when p is small.
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Example: Mean of a Normal Distribution

Let X � N (�; �2), unknown mean, known variance

H0 : � = 0

Data: Y = (X1; : : : ;Xn), Xi
d
= X , Xi indep Xj for i 6= j .

Test statistic: T (Y ) =

�P
i Xi

�
p
n

�2

. (tends to be large when � 6= 0).

Perform experiment (i.e., obtain values y = (x1; : : : ; xn)) and observe
T (y) = t .

Under the null hypothesis: T (Y )
H0� �2

1. Hence:

p = PH0
[T (Y ) � t ]

= P[�2
1 � t ]

= P[fN (0; 1) � �
p
tg [ fN (0; 1) �

p
tg]:

Usually reject when p < 0:05.
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Example continued and two comments

For continuous test statistics with everywhere positive densities, if we reject
H0 whenever p < �, then our (type I) error probability is �.

,! The probability of rejecting H0 when in fact H0 is true is �

There is a close link with confidence intervals.

,! We will only illustrate this link in a specific example
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Example: Testing for c>� = 0 in a Gaussian Regression

Let Y � N (X�; �2I ), unknown �, unknown variance

H0 : c
>� = 0

Data: (y ;X ).

Test statistic: T (Y ) =

 
c>�̂

S
p
c>(X>X )�1c

!2

Suppose we observe T (y) = � and let W � tn�p . Then,

p = PH0
[T (Y ) � � ] = P[fW � �p�g [ fW � p�g]:

Reject the null hypothesis if p < �, some small �.

Identical to building a 1� � confidence interval for c>� based on
c>�̂�c>�

S
p
c>(X>X )�1c

and rejecting the hypothesis H0 if and only if the interval

does not contain zero.
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Many many issues remain (this was just a reminder!)

The role of an alternative hypothesis.

How do we choose a test statistic?

Are there optimal tests in a given situation?

Simple and composite hypotheses.

One and two-sided tests.

Limitations of hypothesis testing . . .

. . .

Review your 2nd year Probability/Statistics course!
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Nested Model Selection & ANOVA
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Comparing Nested Models

Consider the model:

y = �0 + �1x1 + �2x2 + �3x3 + �4x4 + ":

This will always have higher R2 than the sub-model:

y = �0 + �1x1 + ":

Why? (think of geometry. . . )

The question is: is the first model significantly better than the second one?

,! i.e. does the first model explain the variation adequately enough, or should we
incorporate extra explanatory variables? Need a quantitative answer.
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Rephrasing The Question: Gaussian Linear Model

Model is y = X� + " with " � Nn(0; �
2I ). Estimate:

�̂ = (X>X )�1X>y :

Interpretation: ŷ = X �̂ = Hy is the projection of y into the column space of X,
M(X ). This subspace has dimension p, when X is of full column rank p.
Now for q < p write X in block notation as

X = ( X1
n�q

X2
n�(p�q)

):

Interpretation: X1 is built by the first q columns of X and X2 by the rest.
Similarly write � = (�1 �2)

> so that:

y = X� + " = (X1 X2)

�
�1
�2

�
+ " = X1�1 +X2�2 + ":

Our question can now be stated as:

Is �2 = 0?
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Residual Sums of Squares

Let H1 = X1(X
>
1 X1)

�1X>
1 , and ŷ1 = H1y , e1 = y � ŷ1.

Pythagoras tells us that:

ky � ŷ1k2| {z }
RSS(�̂1)=ke1k2

= ky � ŷk2| {z }
RSS(�̂)=kek2

+ kŷ � ŷ1k2| {z }
RSS(�̂1)�RSS(�̂)=ke�e1k2

Notice that RSS(�̂1) � RSS(�̂) always (think why!)

So the idea is simple: to see if it is worthwhile to include �2 we will compare how
much larger RSS(�̂1) is compared to RSS(�̂).

Equivalently, we can look at a ratio like fRSS(�̂1)�RSS(�̂)g=RSS(�̂)
To construct a test based on this quantity, we need to figure out distributions
: : :
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Geometry Revisited
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Distributions of Sums of Squares

Theorem
We have the following properties:

(A) e � e1 ? e ;

(B) kek2 = RSS(�̂) and ke1 � ek2 = RSS(�̂1)�RSS(�̂) are independent;

(C) kek2 � �2�2
n�p ;

(D) under the hypothesis H0 : �2 = 0, ke1 � ek2 � �2�2
p�q .

Proof.

(A) holds since e � e1 = y � ŷ � y + ŷ1 = �ŷ + ŷ1 2M(X1;X2) but
e 2 [M(X1;X2)]

?.

To show (B), we notice that

e1 = (I �H1)y = (I �H1H )y

because M(X1) �M(X1;X2).
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proof continued

Therefore,

e � e1 = (I �H )y � (I �H1H )y = y �Hy � y +H1Hy = (H1 � I )Hy :

But recall that y � N (X�; �2I ). Therefore, to prove independence of
e � e1 = (H1 � I )Hy and e = (I �H )y , we need to show that

(H1 � I )H [�2I ](I �H )> = 0:

This is clearly the case since H (I �H ) = 0, proving (B).

(C) follows immediately, since we have already proven last time that 8� (even
when �2 = 0)

RSS(�̂) � �2�2
n�p
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proof continued.

To prove (D), we note that

e � e1 = (H1 � I )Hy � Nf(H1 � I )HX�; �2(H1 � I )HH>(H1 � I )>| {z }
=H�H1

g:

But HX = X (X>X )�1X>X = X . So, in block notation,

e � e1 � N ((H1 � I )X1�1 + (H1 � I )X2�2; �
2(H �H1)):

Now (I �H1)X1�1 = 0 always, since I �H1 projects onto M?(X1). Therefore,

e � e1 � N (0; �2(H �H1)); when �2 = 0:

Now observe that (H �H1)
> = (H �H1) and (H �H1)

2 = (H �H1) (because
M(X1) �M(X1;X2)). Thus,

e � e1 � N (0; �2(H �H1)
2) =) e � e1 d

= (H �H1)"

=) RSS(�̂1)�RSS(�̂) = ke � e1k2 d
= ">(H �H1)" � �2�2

p�q :

since (H �H1) is symmetric idempotent with trace p � q and " � N (0; �2In).
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Relative Sum of Square Reductions

Corollary

We conclude that, under the hypothesis �2 = 0, 
RSS(�̂1)�RSS(�̂)

p � q

!
 
RSS(�̂)

n � p

! � Fp�q;n�p
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The F -Test

Distributional results suggest the following test:

Have Y � N (X1�1 +X2�2; �
2I )

H0 : �2 = 0

Data: (y ;X1;X2).

Test statistic: T =

 
RSS(�̂1)�RSS(�̂)

p � q

!
 
RSS(�̂)

n � p

!
Then, under H0, it holds that T � Fp�q;n�p . Suppose we observe T = � . Then,

p = PH0
[T (Y ) � � ] = P[Fp�q;n�p � � ]

Reject the null hypothesis if p < �, some small �, usually 0.05.
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Example: Nested Models in Cement Data

IWe fitted the model:

y = �0 + �1x1 + �2x2 + �3x3 + �4x4 + "

I But would the following simpler model be in fact adequate?

y = �0 + �1x1 + "

I Intuitively: is the extra explanatory power of the “larger” model significant
enough in order to justify its use instead of a simpler model? (i.e., is the residual
vector for the “larger” model significantly smaller than that of the simpler model?)
I In this case, n = 13, p = 5, q = 2 and

RSS(�̂) = 47:86; RSS(�̂1) = 1265:7

yielding

� =
(1265:7� 47:86)=(5� 2)

(47:86)=(13� 5)
= 67:86

Ip = P[F3;8 � 67:86] = 4:95� 10�6, so we reject the hypothesis
H0 : �2 = �3 = �4 = 0.
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Example: MPG vs Horsepower

IWe can fit the quadratic model:

MPG = �0 + �1horsepower+ �2horsepower
2 + "

I But would the model only with linear term suffice?

MPG = �0 + �1horsepower+ "

I Intuitively: is the reduction of RSS afforded by the “complex” model
substantial enough in order to justify its use instead of a simpler model?
I In this case, n = 392, p = 3, q = 2 and

RSS(�̂) = 7442; RSS(�̂1) = 9385:9

yielding

� =
(9385:9� 7442)=(3� 2)

7442=(392� 3)
= 101:6

Ip = P[F1;389 � 101:6] = 2:2� 10�21, so we reject the hypothesis H0 : �2 = 0.
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The Analysis of Variance

I Let 1, X1, . . . ,Xr be groups of columns of X (the “terms”), such that

X = ( 1
n�1

X1
n�q1

X2
n�q2

: : : Xr
n�qr

); � = ( �0
1�1

�1
1�q1

�2
1�q2

: : : �r
1�qr

)>

We have
y = X� + " = 1�0 +X1�1 + � � �+Xr�r + "

I Would like to do the same “F-test investigation”, but this time do it
term-by-term. That is, we want to look at the following sequence of nested
models:

y = 1�0 + "

y = 1�0 +X1�1 + "

y = 1�0 +X1�1 +X2�2 + "
...

y = 1�0 +X1�1 +X2�2 + � � �+Xr�r + "
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The Analysis of Variance

Proceed similarly as before. Define:

X0 := 1 and Xk = (X0 X1 X2 : : : Xk ); k 2 f0; : : : ; rg
Hk := Xk (X>k Xk )�1X>k ; k 2 f0; : : : ; rg
ŷk := Hky ; k 2 f0; : : : ; rg
ek = y � ŷk ; k 2 f0; : : : ; rg
Note that ŷ0 = �y1.

I As before, Pythagoras implies

ky � ŷ0k2| {z }
ke0k2

= ky � ŷrk2| {z }
kerk2

+ kŷ � ŷr�1k2| {z }
ker�er�1k2

+ � � �+ kŷ1 � ŷ0k2| {z }
ke1�e0k2| {z }

ker�e0k2

= kerk2| {z }
RSSr

+

r�1X
k=0

kek+1 � ekk2| {z }
RSSk�RSSk+1

with RSSk the residual sum of squares for ŷk , with �k degrees of freedom.
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The Analysis of Variance

Some observations:

RSSk �RSSk+1 is the reduction in residual sum of squares caused by adding
Xk+1, when the model already contains X0; : : : ;Xk .

RSSr and fRSSk �RSSk+1gr�1k=0 are all mutually independent.

Obviously, �0 � �1 � �2 � � � � � �r
�k+1 = �k if Xk+1 2M(Xk ).

IGiven this information, we want to see how adding each term in the model
sequentially, affects the explanatory capacity of the model.

,! In other words, we want to investigate the reduction in the residual sum of
squares achieved by adding each term to the model. Is this significant?
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ANOVA Table

Terms df Residual Terms df Reduction F-test
RSS added in RSS

1 n � 1 RSS0
1;X1 �1 RSS1 X1 n � 1� �1 RSS0 � RSS1
1;X1;X2 �2 RSS2 X2 �1 � �2 RSS1 � RSS2
...

...
...

...
...

...
1;X1; : : : ;Xr �r RSSr Xr �r�1 � �r RSSr�1 � RSSr

The F -statistic for testing the significance of the reduction in RSS when Xk is
added to the model containing terms 1;X1; : : : ;Xk is

Fk =
(RSSk�1 �RSSk )=(�k�1 � �k )

RSSr=�r
;

and Fk � F�k�1��k ;�r under the null hypothesis H0 : �k = 0.

Large values of Fk relative to the null distribution are evidence against H0.
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Example: Nested Sequence in Cement Data

Reductions in overall sum of squares when sequentially entering terms x1, x2,
x3 and x4.

Does adding extra variables improve model significantly?

Df Red Sum Sq F value (� ) p-value
x1 1 1450.08 242.37 2.88�10�7
x2 1 1207.78 201.87 5.86�10�7
x3 1 9.79 1.64 0.2366
x4 1 0.25 0.04 0.8441
Residual SSq 8 47.86

I In this case, each term is a single column (variable).
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Warning!

Significance of entering a term depends on how the sequence is defined:
when entering terms in different order get different results! (why?)

When a term is entered “early” and is significant, this does not tell us much
(why?)

When a term is entered “late” is significant, then this is quite informative
(why?)

I Why is this true? Are there special cases when the order of entering terms
doesn’t matter?
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The Effect of Orthogonality

IConsider terms X0 = 1;X1;X2 from X , so

X = (X0
n�1

X1
n�q1

X2
n�q2

); � = ( �0
1�1

�1
1�q1

�2
1�q2

)>

IAssume orthogonality of terms, i.e. X>
i Xj = 0; i 6= j

Notice that in this case

�̂ =

0@ X>
0 X0 0 0
0 X>

1 X1 0
0 0 X>

2 X2

1A�1 �
X0 X1 X2

�>
y

=) �̂0 = �y ; �̂1 = (X>
1 X1)

�1X>
1 y ; �̂2 = (X>

2 X2)
�1X>

2 y

It follows that the reductions of sums of squares are unique, in the sense that they
do not depend upon the order of entry of the terms in the model. (show this!)
Intuition: Xi contains completely independent linear information from Xj for y ,
i 6= j
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Model Selection / Collinearity / Shrinkage
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Theory VS Practice

I Theory: We are given a relationship

y = X� + "

and asked to provide estimators, tests, confidence intervals, optimality properties
. . .

. . . and we can do it with complete success!

I Practice: We are given data (y ;X ) and suspect a linear relationship between
y and some of the columns of X . We don’t know a priori which exactly!

,! Need to select a “most appropriate” subset of the columns of X

,! General principle: parsimony (Latin parsim�onia: sparingness; simplicity and
least number of requisites and assumptions; economy or frugality of
components and associations).
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Albert Einstein (1879–1955)

‘Everything should be made as simple as possible, but no simpler.’

Victor Panaretos (EPFL) Linear Models 173 / 309



William of Ockham (?1285–1347)

Occam’s razor: It is vain to do with more what can be done with fewer.
Given several explanations of the same phenomenon, we should prefer the simplest.
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Exploratory Data Analysis

Graphical exploration  provides initial picture:

plots of y against candidate variables;

plots of transformations of y against candidate variables;

plots of transformations of certain variables against y ;

plots of pairs of candidate variables.

This will often provide a starting point, but:

Automatic Model Selection: Need objective model comparison criteria, as
a screening device.

,! We saw how to do an F -test, but what if models to be compared are not
nested?

Automatic Model Building: Situations when p large, so there are lots of
possible models.

,! Automatic methods for building a model? We saw that ANOVA depends on
the order of entry of variables in the model . . .
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Automatic Model Selection

Consider design matrix X with p variables.

2p possible models!

Denote set of all models generated by X by 2X (model powerset)

If wish to consider k different transformations of each variable, then p
becomes (1 + k)p

Fast algorithms (branch and bound, leaps in R) exist to fit them, but they
don’t work for large p, and anyway : : :

. . . need criterion for comparison.

So given a collection of models, we need an automatic (objective) way to pick out
a “best” one (unfortunately cannot look carefully at all of them, BUT NOTHING
replaces careful scrutiny of the final model by an experienced researcher).
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Model Selection Criteria

Many possible choices, none universally accepted. Some (classical) possibilities:

Prediction error based criteria (CV)

Information criteria (AIC, BIC, . . . )

Mallow’s Cp statistic

Before looking at these, let’s introduce terminology: Suppose that the truth is

y = X� + " but with �r = 0 for some subset �r of �.

The true model contains only the columns for which �r 6= 0
,! Equivalently, the true model uses X~ as the design matrix, the latter being the

matrix of columns of X corresponding to non-zero coefficients.

A correct model is the true model plus extra columns.
,! Equivalently, a correct model has a design matrix X}, such that

M(X~) �M(X}).

A wrong model is a model that does not contain all the columns of the true
model.
,! Equivalently, a wrong model has a design matrix X}, such that

M(X~) \M(X}) 6= M(X~).
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Expected Prediction Error

I We may wish to choose a model by minimising the error we make on average,
when predicting a future observation given our model.
Our “experiment is”:

Design matrix X

response y at X

Every model f 2 2X , will yield fitted values ŷ(f ) = Hf y . And suppose we now
obtain new independent responses y+ for the same “experimental setup” X .
Then, one approach is to select the model

f � = argmin
f22X

1

n
E
�ky+ � ŷ(f )k2	| {z }

�(f )

;

where expectation is taken over both y and y+.
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The Bias/Variance Tradeoff

Let X be a design matrix, and let X} (n � p) and X~ (n � q) be matrices built
using columns of X . Suppose that the true relationship between y and X is

y = X~�| {z }
�

+ "

but we use the matrix X} instead of X~ (i.e., we fit a different model). Therefore
our fitted values are

ŷ = (X>
}X})

�1X>
} y = H}y :

Now suppose that we obtain new observations y+ corresponding to the same
design X

y+ = X~� + "+ = �+ "+:

Then, observe that

y+ � ŷ = �+ "+ �H}(�+ ")

= (I �H})�+ "+ �H}":
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The Bias/Variance Tradeoff

It follows that

ky+ � ŷk2 = (y+ � ŷ)>(y+ � ŷ)
= �>(I �H})�+ ">H}"+ ">+"+ + [cross terms]:

Since E[cross terms] = 0 (why?), we observe that

� =

8<:
n�1�>(I �H})�+ (1 + p=n)�2; if model wrong;
(1 + p=n)�2; if model correct;
(1 + q=n)�2; if model true:

Selecting a correct model instead of the true model brings in additional
variance, because q < p.

Selecting a wrong model instead of the true model results in bias, since
(I �H})� 6= 0 when � is not in the column space of X}.

Must find a balance between small variance (few columns in the model) and
small bias (all columns in the model).
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Cross Validation

I Impossible to calculate � (depends on unknown � and �2), so we must find a
proxy (estimator) b�.
Suppose that n is large so that we can split the data in two pieces:

X �, y� used to estimate the model

X 0, y 0 used to estimate the prediction error for the model

The estimator of the prediction error will be

b� = (n 0)�1ky 0 �X 0�̂�k2:

In practice n can be small and we often cannot afford to split the data (variance
of �̂ is too large).
Instead we use the leave-one-out cross validation sum of squares:

n b�CV = CV =

nX
j=1

(yj � x>j �̂�j )2;

where �̂�j is the estimate produced when dropping the j th case.
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Cross Validation

No need to perform n regressions since

CV =

nX
j=1

(yj � x>j �̂)2
(1� hjj )2 ;

so the full regression may be used (show this!). Alternatively one may use a more
stable version:

GCV =

nX
j=1

(yj � x>j �̂)2
(1� trace(H )=n)2

;

where “G” stands for “generalised”, and we guard against any hjj � 1.
It holds that:

E[GCV ] =
�>(I �H )�

(1� p=n)2 +
n�2

1� p=n � n�:

B Suggests strategy: pick variables to minimise (G)CV.
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Akaike’s Information Criterion

Criteria can be obtained based on the notion of information (relative entropy).

Same basic idea as for prediction error: aim to choose candidate model f (y)
to minimise information distance:Z

log

�
g(y)

f (y)

�
g(y)dy � 0;

where g(y) represents true model—equivalent to maximising expected log
likelihood Z

log f (y)g(y)dy :

Can show that (apart from constants) information distance is estimated by

AIC = �2^̀+ 2p (� n log �̂2 + 2p in linear model)

where ^̀ is maximised log likelihood for given model, and p is number of
parameters.
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Other Information Criteria

Improved (corrected) version of AIC for regression problems:

AICc � AIC +
2p(p + 1)

n � p � 1
:

Also can use Bayes’ information criterion

BIC = �2^̀+ p logn :

Mallows suggested

Cp =
SSp

s2
+ 2p � n ;

where SSp is RSS for fitted model and s2 estimates �2.

Comments:

AIC tends to choose models that are too complicated, buts AICc cures this
somewhat;
BIC is model selection consistent—if the true model is among those fitted,
BIC chooses it with probability ! 1 as n !1 (for fixed p).
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Simulation Experiment

For each n 2 f10; 20; 40g we construct 20 n � 7 design matrices. We multiply each of these
design matrices from the right with � = (1; 2; 3; 0; 0; 0; 0)> and we add a n � 1 Gaussian error.
We do this independently 50 times, obtaining 1000 regressions with p = 3. Selected models with
1 or 2 covariates have a bias term, and those with 4 or more covariates have excess variance.

n Number of covariates
1 2 3 4 5 6 7

10 Cp 131 504 91 63 83 128
BIC 72 373 97 83 109 266
AIC 52 329 97 91 125 306
AICc 15 398 565 18 4

20 Cp 4 673 121 88 61 53
BIC 6 781 104 52 30 27
AIC 2 577 144 104 76 97
AICc 8 859 94 30 8 1

40 Cp 712 107 73 66 42
BIC 904 56 20 15 5
AIC 673 114 90 69 54
AICc 786 105 52 41 16
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Automatic Model Building

I We saw so far:
Automatic Model Selection: build a set of models and select the “best” one.

I Now look at different philosophy:
Automatic Model Building: construct a single model in a way that would
hopefully provide a good one.

There are three standard methods for doing this:

Forward Selection

Backward Elimination

Stepwise Selection

CAUTION: Although widely used, these have no theoretical basis. Element of
arbitrariness . . .
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Forward/Backward/Stepwise Selection

Forward selection: starting from the model with constant only,
1 add each remaining term separately to the current model;
2 if none of these terms is significant, stop; otherwise
3 update the current model to include the most significant new term; go to

step 1.

Backward elimination: starting from the model with all terms,
1 if all terms are significant, stop; otherwise
2 update current model by dropping the term with the smallest F statistic; go

to step 1.

Stepwise: starting from an arbitary model,
1 consider three options—add a term, delete a term, swap a term in the model

for one not in the model, and choose the most significant option;
2 if model unchanged, stop; otherwise go to step 1.
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Forward/Backward/Stepwise Selection

Some thoughts:

Each procedure may produce a different model.

Systematic search minimising Prediction Error, AIC or similar over all possible
models is preferable— BUT not always feasible (e.g., when p large).

Stepwise methods can fit ‘highly significant’ models to purely random data!
Main problem is lack of objective function.

Can be improved by comparing Prediction Error/AIC for different models at
each step — uses objective function, but no systematic search.
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Example: Nuclear Power Station Data

Data on light water reactors (LWR) constructed in the USA. The covariates are date

(date construction permit issued), T1 (time between application for and issue of permit),
T2 (time between issue of operating license and construction permit), capacity (power
plant capacity in MWe), PR (=1 if LWR already present on site), NE (=1 if constructed
in north-east region of USA), CT (=1 if cooling tower used), BW (=1 if nuclear steam
supply system manufactured by Babcock–Wilcox), N (cumulative number of power plants
constructed by each architect-engineer), PT (=1 if partial turnkey plant).

cost date T1 T2 capacity PR NE CT BW N PT

1 460.05 68.58 14 46 687 0 1 0 0 14 0
2 452.99 67.33 10 73 1065 0 0 1 0 1 0
3 443.22 67.33 10 85 1065 1 0 1 0 1 0
4 652.32 68.00 11 67 1065 0 1 1 0 12 0
5 642.23 68.00 11 78 1065 1 1 1 0 12 0
6 345.39 67.92 13 51 514 0 1 1 0 3 0
7 272.37 68.17 12 50 822 0 0 0 0 5 0
8 317.21 68.42 14 59 457 0 0 0 0 1 0
...

32 270.71 67.83 7 80 886 1 0 0 1 11 1
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Example: Nuclear Power Station Data

Full model Backward Forward
Est t Est t Est t

Int. �14:24 �3:37 �13:26 �4:22 �7:62 �2:66
date 0.2 3.21 0:21 4.91 0:13 3.38
logT1 0:092 0.38
logT2 0:29 1.05
logcap 0:694 5.10 0:72 6.09 0:67 4:75
PR �0:092 �1:20
NE 0:25 3.35 0.24 3.36
CT 0:12 1.82 0.14
BW 0:033 0.33
log(N) �0:08 �1:74 �0:08 �2:11
PT �0:22 �1:83 �0:22 �1:99 �0:49 �4:77
s (df) 0.164 (21) 0.159 (25) 0.195 (28)
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More Dangers of “Big” Models

Recall: ŷ is projection of y onto M(X )

,! Adding more variables (columns) into X “enlarges” M(X )
. . . IF the rank increases by the # of new variables

Consider two extremes

Adding a new variable Xp+1 2M?(X )

,! Gives us completely “new” information.

Adding a new variable Xp+1 2M(X )

,! Gives no “new” information — cannot even do least squares (why not?)

What if we are between the two extremes? What if

Xp+1 =2M(X ) but X (X>X )�1X>Xp+1 = HXp+1 ' Xp+1?

We can certainly fit the regression, but what will happen?
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Unstable Matrix Inversion

Using block matrix properties, have

var(�̂) = �2
�
(X Xp+1)

>(X Xp+1)
��1

with

�
(X Xp+1)

>(X Xp+1)
��1

=

�
A B

C D

�
where

A = (X>X )�1 + (X>X )�1X>Xp+1

�(X>
p+1Xp+1 �X>

p+1HXp+1)
�1X>

p+1X (X>X )�1;

B = �(X>X )�1X>Xp+1(X
>
p+1Xp+1 �X>

p+1HXp+1)
�1;

C = �(X>
p+1Xp+1 �X>

p+1HXp+1)
�1X>

p+1X (X>X )�1;

D = (X>
p+1Xp+1 �X>

p+1HXp+1)
�1:
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Problem of Multicollinearity

Multicollinearity: when p explanatories concentrate around a subspace of
dimension q < p

[simplest case: pairs of variables that are correlated]

BUT: might exist even if pairs of variables appear uncorrelated!

Can be caused by:

Poor design [can try designing again],

Inherent relationships [other remedies needed].

So what are the results?

Huge variances of the estimators!

,! Can even flip signs for different data, to give the impression of inverse effects.

Individual coefficients insignificant:

,! t-test p-values inflated.

But global F -test might give significant result!
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The Picket-Fence (Hocking & Pendleton)
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Diagnosing Multicollinearity

Simple first steps:

Look at scatterplots,

Look at correlation matrix of explanatories,

Might not reveal more complex linear constraints, though.

Look at the variance inflation factors:

VIFj =
var(�̂j )kXj k2

�2
= kXj k2

�
(X>X )�1

�
jj
:

Can show that

VIFj =
1

1�R2
j

where R2
j is the coefficient of determination for the regression

Xj = �0;j + �1;jX1 + � � �+ �j�1;jXj�1 + �j+1;jXj+1 + � � �+ �p;jXp + ";

measuring linear dependence of Xj on the other columns of X .
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Let X�j be the design matrix without the j -th variable. Then

R2
j =
kX�j (X>

�jX�j )
�1X>

�jXj k2
kXj k2 2 [0; 1]

is close to 1 if X�j (X>
�jX�j )

�1X�j| {z }
H�j

Xj ' Xj .

Large values of VIFj indicate that Xj is linearly dependent on the other columns
of the design matrix.

Interpretation: how much the variance is inflated when including variable j as
compared to the variance we would obtain if Xj were orthogonal to the other
variables—how much worse are we doing as compared to the ideal case.

Rule of thumb: VIFj > 5 or VIFj > 10 considered to be “large”.
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More on Diagnosing Multicollinearity

Consider the spectral decomposition of X>X , X>X = U�U> with
� = diagf�1; : : : ; �pg and U>U = I . Then

rank(X>X ) = #fj : �j 6= 0g; det(X>X ) =

pY
j=1

�j :

Hence “small” �j ’s mean “almost” reduced rank, revealing the effect of
collinearity. Measure using condition index:

CIj (X
>X ) :=

q
�max=�j

Global “instability” measured by the condition number,

CN (X>X ) =
q
�max=�min

Rule of thumb: CN > 30 indicates moderate to significant collinearity,
CN > 100 indicates severe collinearity (choices vary).
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Remedies?

If design faulty, may redesign.

,! Otherwise? Inherent relationships between explanatories.

Variable deletion - attempt to remove problematic variables

! E.g., by backward elimination.

Choose an orthogonal basis for M(X ) and use its elements as explanatories

! Use columns of U from spectrum, X>X = U�U>

! OK for prediction
! Problem: lose interpretability

Other approaches?
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Example: Body Fat Data

Body fat is measure of health ! not easy to measure!
Collect 252 measurements on body fat and some explanatory variables.

Can we use measuring tape and scales only to find body fat?

Explanatory variables:

age

weight

height

biceps

neck

chest

abdomen

forearm

hip

thigh

knee a

ankle

wrist
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Some Scatterplots [library(car);scatterplot.matrix( . . . )]
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wrist

Looks like we’re in trouble. Let’s go ahead and fit anyway . . .
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Model Fit Summary

Estimate Std. Error t value Pr(>jtj)
(Intercept) �18.1885 17.3486 �1.05 0.2955

age 0.0621 0.0323 1.92 0.0562
weight �0.0884 0.0535 �1.65 0.0998
height �0.0696 0.0960 �0.72 0.4693

neck �0.4706 0.2325 �2.02 0.0440
chest �0.0239 0.0991 �0.24 0.8100

abdomen 0.9548 0.0864 11.04 0.0000
hip �0.2075 0.1459 �1.42 0.1562

thigh 0.2361 0.1444 1.64 0.1033
knee 0.0153 0.2420 0.06 0.9497

ankle 0.1740 0.2215 0.79 0.4329
biceps 0.1816 0.1711 1.06 0.2897

forearm 0.4520 0.1991 2.27 0.0241
wrist �1.6206 0.5349 �3.03 0.0027

R2 = 0:749, F -test: p < 2:2� 10�16.
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Split Data in Two and Fit Separately (Picket Fence)

Estimate Pr(>jtj)
(Intercept) �32.6564 0.1393

age 0.1048 0.0153
weight �0.1285 0.0502
height �0.0666 0.5207

neck �0.5086 0.0721
chest 0.0168 0.9002

abdomen 0.9750 0.0000
hip �0.2891 0.1265

thigh 0.3850 0.0565
knee 0.2218 0.5111

ankle 0.4377 0.0694
biceps �0.1297 0.5485

forearm 0.8871 0.0174
wrist �1.7378 0.0309

Estimate Pr(>jtj)
�1.2221 0.9730

0.0256 0.6252
�0.0237 0.8223
�0.1005 0.7284
�0.4619 0.2635
�0.0910 0.5877

0.8924 0.0000
�0.0265 0.9130

0.0334 0.8793
�0.1310 0.7366
�0.5037 0.3516

0.4458 0.1179
0.2247 0.3750
�1.5902 0.0560
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Diagnostic Check

VIF
age 2.25

weight 33.51
height 1.67

neck 4.32
chest 9.46

abdomen 11.77
hip 14.80

thigh 7.78
knee 4.61

ankle 1.91
biceps 3.62

forearm 2.19
wrist 3.38

CI
1 1.00
2 17.47
3 25.30
4 58.61
5 83.59
6 100.63
7 137.90
8 175.29
9 192.62

10 213.01
11 228.16
12 268.21
13 555.67

Eigenvalue Roots
●

● ● ● ● ● ● ● ● ● ● ● ● ●

2 4 6 8 10 12 14

0
20

00
40

00

Singular Values

Index
va

lu
es

Condition Number ' 556 !
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Variable Deletion: Backward Elimination

Multiple R-Squared: 0.7466,

F-statistic p-value: < 2.2e-16

Estimate Std. Error t value Pr(>jtj) VIF
(Intercept) �22.6564 11.7139 �1.93 0.0543

age 0.0658 0.0308 2.14 0.0336 2.05
weight �0.0899 0.0399 �2.25 0.0252 18.82

neck �0.4666 0.2246 �2.08 0.0388 4.08
abdomen 0.9448 0.0719 13.13 0.0000 8.23

hip �0.1954 0.1385 �1.41 0.1594 13.47
thigh 0.3024 0.1290 2.34 0.0199 6.28

forearm 0.5157 0.1863 2.77 0.0061 1.94
wrist �1.5367 0.5094 �3.02 0.0028 3.09
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Variable Transformation: Eigenvector Basis

Define Z = XU as design matrix. R2=0.749, F-test p-value<2:2� 10�16

Estimate Std. Error t value Pr(>jtj)
(Intercept) �18.1885 17.3486 �1.05 0.2955

Z[, 1] �0.1353 0.0619 �2.19 0.0297
Z[, 2] �0.0168 0.0916 �0.18 0.8546
Z[, 3] 0.2372 0.1070 2.22 0.0276
Z[, 4] �0.7188 0.0571 �12.58 0.0000
Z[, 5] 0.0248 0.0827 0.30 0.7649
Z[, 6] 0.4546 0.1001 4.54 0.0000
Z[, 7] 0.5903 0.1366 4.32 0.0000
Z[, 8] �0.1207 0.1742 �0.69 0.4890
Z[, 9] �0.0836 0.1914 �0.44 0.6627

Z[, 10] 0.5043 0.2082 2.42 0.0162
Z[, 11] �0.5735 0.2254 �2.54 0.0116
Z[, 12] 0.3007 0.2628 1.14 0.2536
Z[, 13] 1.5168 0.5447 2.78 0.0058
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From Rotation to Shrinkage

� Eigenvector approach rotates space so as to “free” the dependence of one
coefficient �j on others f�igi 6=j
,! Imposes constraint on X (orthogonal columns)

Problem: lose interpretability! (prediction OK)

Example: most significant “rotated” term in fat data: Z[,4]=-0.01*age

-0.058*weight -0.011*height +0.46*neck -0.144*chest

-0.441*abdomen +0.586*hip +0.22*thigh -0.197*knee

-0.044*ankle -0.07*biceps -0.33*forearm -0.249*wrist

� Other approach to reduce this strong dependence?

,! Impose constraint on �! How? (introduces bias)
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Ridge Regression

Multicollinearity problem is that det
�
(X>X )�1

� � 0
[i.e. X>X almost not invertible]

A Solution: add a “small amount” of a full rank matrix to X>X .

For reasons to become clear soon, we standardise the design matrix:

Write X = (1 W ), � = (�0 
)
>

Recentre/rescale the covariates defining: Zj =
p
n

sd(Wj )
(Wj � 1W j )

,! Coefficients now have common scale

,! Interpretation of �j slightly different: not “mean impact on response per unit
change of explanatory variable”, but now “mean impact on response per unit
deviation of explanatory variable from its mean, measured in units of standard
deviation”

The Zj are all orthogonal to 1 and are of unit norm.
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Ridge Regression

Since Zj ? 1 for all, j , we can estimate �0 and 
 by two separate regressions
(orthogonality).

Least squares estimators become

�̂0 = Y ; 
̂ = (Z>Z )�1Z>Y :

Ridge regression replaces Z>Z by Z>Z + �I (i.e. adds a “ridge”)

�̂0 = Y ; 
̂ = (Z>Z + �I )�1Z>Y :

Adding �I to Z>Z makes inversion more stable
,! � called ridge parameter.
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Ridge Regression: Shrinkage Viewpoint

! Ridge term �I seems slightly ad-hoc. Motivation?

,! Can see that (�̂0 
̂) = (Y (Z>Z + �I )�1Z>Y ) minimizes

kY � �01� Z
k22 + �k
k22
or equivalently

kY � �01� Z
k22 subject to

p�1X
j=1


2j = k
k22 � r(�)

instead of least squares estimator which minimizes

kY � �01� Z
k22:

Idea: in the presence of collinearity, coefficients are ill-defined: a wildly positive
coefficient can be cancelled out by a largely negative coefficient (many coefficient
combinations can produce the same effect). By imposing a size constraint, we
limit the possible coefficient combinations!
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L2 Shrinkage [Ridge Regression]
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Ridge Regression

Proposition

Let Zn�q be a matrix of rank r � q with centred column vectors of unit norm.
Given � > 0, the unique minimiser of

Q(�̂0; 
̂) = ky � �̂01� Z 
̂k22 + �k
̂k22
is

(�̂0 ; 
̂) = (y ; (Z>Z + �I )�1Z>y):

Proof.
Write

y = (y � �y1)| {z }
=y�2M?(1)

+ �y1|{z}
2M(1)

Note also that by assumption 1 2M?(Z ). Therefore by Pythagoras’ theorem

ky � �̂01� Z 
̂k22 = k(�y � �̂0)1| {z }
2M(1)

+ (y� � Z 
̂)| {z }
2M?(1)

k22 = k(�y � �̂0)1k22 + k(y� � Z 
̂)k22:
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Therefore, min
�̂0;
̂

Q(�̂0; 
̂) = min
�̂0

k(�y � �̂0)1k22 +min

̂

n
k(y� � Z 
̂)k22 + �k
̂k22

o
Clearly, argmin�̂0 k(�y � �̂0)1k22 = �y while the second component can be written

min

̂2Rq







� Z

n�qp
�Iq�q

�

̂ �

�
y�
n�1
0q�1

�





2

2

using block notation. This is the usual least squares problem with solution�
(Z> ;

p
�Iq�q)

�
Zp
�Iq�q

���1
(Z> ;

p
�Iq�q)

�
y�

0q�1

�
= (Z>Z + �I )�1Z>y�

Note that Z>Z + �I is indeed invertible. Writing Z>Z = U�U>, we have

Z>Z + �I = U�U> +U (�Iq�q)U> = U (� + �Iq�q)U>

and � = diagf�1; : : : ; �r| {z }
>0

; �r+1; : : : ; �q| {z }
=0

g (Z>Z � 0 & rank(Z>Z ) = rank(Z )).

To complete the proof, observe that Z>y� = Z>y � �yZ>1 = Z>y . �
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The Effect of Shrinkage

Note that if the SVD of Z is Z = V
U>, last steps of previous proof may be
used to show that


̂ =

qX
j=1

!j
!2j + �

(v>j y)uj ;

where the vj s and uj s are the columns of V and U , respectively.

Compare this to the ordinary least squares solution, when � = 0:


̂ =

qX
j=1

1

!j
(v>j y)uj ;

which is not even defined if Z is of reduced rank.

Role of � is to reduce the size of 1=!j when !j becomes very small.
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Bias and Variance

Proposition

Let 
̂ be the ridge regression estimator of 
. Then

bias(
̂; 
) = �� �Z>Z + �Iq
��1




and
cov(
̂) = �2(Z>Z + �I )�1Z>Z (Z>Z + �I )�1:

Proof.
Since E(
̂) = (Z>Z + �I )�1Z>E(y) = (Z>Z + �I )�1Z>Z
, the bias is

bias(
̂; 
) = E(
̂)� 
 = f(Z>Z + �I )�1Z>Z � Ig


= E(
̂)� 
 = f(Z>Z + �I )�1Z>Z � Ig


=

��
1

�
Z>Z + I

��1 � 1
�
Z>Z + I � I

�
� I

�



=

�
I �

�
1

�
Z>Z + I

��1
� I

�

 = �

�
1

�
Z>Z + I

��1

:

The covariance term is obvious.

Victor Panaretos (EPFL) Linear Models 214 / 309



Domination over Least Squares

Corollary

Assume that rank(Zn�q) = q and let

~
 = (Z>Z )�1Z>y & 
̂� = (Z>Z + �I )�1Z>y

be the least squares estimator and ridge estimator, respectively. Then,

E
�
(~
 � 
)(~
 � 
)>	� E

�
(
̂� � 
)(
̂� � 
)>

	 � 0

for all � 2 (0; 2�2=k
k2).

Ridge estimator uniformly better than least squares! How can this be?
(What happened to Gauss-Markov?)

Gauss-Markov only covers unbiased estimators – but ridge estimator biased.

A bit of bias can improve the MSE by reducing variance.

Also, there is a catch: the “right” range for � depends on unknowns.

Choosing a good � is all about balancing bias and variance.

Victor Panaretos (EPFL) Linear Models 215 / 309



Proof.
From our bias/variance calculations on the ridge estimator, we have

E
�
(~γ � γ)(~γ � γ)>

	
� E
�
(γ̂� � γ)(γ̂� � γ)>

	
=

�2(Z>Z )�1�(Z>Z+�I )�1�2Z>Z (Z>Z+�I )�1��2
�
Z>Z + �I

��1
γγ>

�
Z>Z + �I

��1
= �(Z>Z + �I )�1

�
�2(2I + �(Z>Z )�1)� �γγ>

�
(Z>Z + �I )�1:

To go from 2nd to 3rd line, we wrote

�2(Z>Z )�1 = �2(Z>Z + �I )�1(Z>Z + �I )(Z>Z )�1(Z>Z + �I )(Z>Z + �I )�1

= (Z>Z + �I )�1(�2Z>Z + 2�2�I + �2�2(Z>Z )�1)(Z>Z + �I )�1

and did the tedious (but straighforward) algebra. The final term can be made positive definite if

2�2I + �2�(Z>Z )�1 � �γγ> � 0:

Noting that we can always write

I = γγ>

kγk2
+
Pq�1

j=1
θjθ

>
j

for fγ=kγk;θ1; :::;θq�1g an orthonormal basis of Rq we see that � 2 (0; 2�2=kγk2) suffices for

positive definiteness to hold true.
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Bias–Variance Tradeoff

Role of �: Regulates Bias–Variance tradeoff
� " decreases variance (e.g. due to collinearity) but increases bias
� # decreases bias but variance inflated if collinearity exists

Recall:

Ek
̂ � 
k2 = Ek
̂ � E
̂k2| {z }
Variance=trace[cov(
̂)]

+ kE
̂ � 
k2| {z }
Bias2

+ 2(E
̂ � 
)>E[
̂ � E
̂]| {z }
=0

Note that if Z>Z = U
U>, then trace(cov(
̂)) =
Pq

j=1
!i

!2
i
+�
�2

So choose � so as to optimally increase bias/decrease variance

Use cross validation!
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L1 Shrinkage?

Motivated from Ridge Regression formulation can consider:

min! kY � �01� Z
k22 subject to

p�1X
j=1

j
j j = k
k1 � r(�)

()
min! kY � �01� Z
k22 + �k
k1:

Shrinks coefficient size by different version of magnitude.

Resulting estimator non–linear in Y

No explicit form available (unless Z>Z = I ), needs quadratic programming
algorithm

Why choose a different type of norm?
Because L1 penalty (almost) produces a “continuous” model selection!
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Orthogonal Design $ Model Selection

When the explanatory variables are orthogonal (i.e. Z>Z = I ), then the LASSO exactly

performs model selection via thresholding:

Theorem
Consider the linear model

Y
n�1

= �0
1�1

1
n�1

+ Z
n�(p�1)



(p�1)�1

+ "
n�1

where Z>1 = 0 and Z>Z = I . Let 
̂ be the least squares estimator of 
,


̂ = (Z>Z )�1Z>Y = Z>Y :

Then, the unique solution to the LASSO problem

min�02R;
2Rp�1

�kY � �01� Z
k22 + �k
k1
	

is given by (�̂0; �
) = (�0; �
1; : : : ; �
p�1), defined as

�̂0 = �Y & �
i = sgn(
̂i )

�
j
̂i j � �

2

�
+

; i = 1; :::; p � 1:
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Proof.

Note that since Z>1 = 0 and since �0 does not appear in the L1 penalty, we have

�̂0 = (1>1)�11Y = �Y :

Thus, the LASSO problem reduces to

min
�02R;
2Rp�1

�kY � �01� Z
k22 + �k
k1
	
= min


2Rp�1

�ku � Z
k22 + �k
k1
	
:

where u = Y � �Y 1 for tidiness. Expanding the squared norm gives

ku �Z 
̂k22 = u>u � 2u>Z
+ 
>(Z>Z )| {z }
=I


 = u>u � 2Y >Z| {z }
=
̂>


+2 �Y 1>Z|{z}
=0


+ 
>


Since u>u does not depend on 
, we see that the LASSO objective function is

�2
̂>
 + k
k22 + �k
k1:

Clearly, this has the same minimizer if multiplied across by 1=2, i.e.

�
̂>
 + 1
2k
k22 + 1

2�k
k1 =
Pp�1

i=1

��
̂i
i + 1
2


2
i +

�
2 j
i j

�
:
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Notice that we now have a sum of p � 1 objective functions, each depending only
on one 
i . We can thus optimise each separately. That is, for any given
i � p � 1, we must minimise

�
̂i
i + 1

2

2i +

�

2
j
i j:

We distinguish 3 cases:

1 Case 
̂i = 0. In this case, the objective function becomes 1
2


2
i +

�
2 j
i j and it

is clear that it is minimised when 
i = 0. So in this case �
i = 0.

2 Case 
̂i > 0. In this case, the objective function �
̂i
i + 1
2


2
i +

�
2 j
i j is

minimised somewhere in the range 
i 2 [0;1) because the term �
̂i
i is
negative there (and all other terms are positive). But when 
i � 0, the
objective function becomes

�
̂i
i + 1

2

2i +

�

2

i =

�
�

2
� 
̂i

�

i +

1

2

2i :

If �
2 � 
̂i � 0, then the minimum over 
i 2 [0;1) is clearly at 
i = 0.

Otherwise, when �
2 � 
̂i < 0, we differentiate and find the minimum at


i = 
̂i � �=2 > 0. In summary, �
i = (
̂i � �=2)+ = sgn(
̂i )(j
̂i j � �=2)+.
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3 Case 
̂i < 0. In this case, the objective function �
̂i
i + 1
2


2
i +

�
2 j
i j is

minimised somewhere in the range 
i 2 (�1; 0] because the term �
̂i
i is
negative there (and all other terms are positive). But when 
i � 0, the
objective function becomes

�
̂i
i+ 1

2

2i +

�

2
(�
i ) =

�
�

2
+ 
̂i

�
(�
i )+ 1

2

2i =

�
�

2
� j
̂i j

�
(�
i )+ 1

2

2i :

If �
2 � j
̂i j � 0, then the minimum over 
i 2 (�1; 0] is clearly at 
i = 0,

since �
i ranges over [0;1). Otherwise, when �
2 � j
̂i j < 0, we differentiate

and find the minimum at 
i = �j
̂i j+ �=2 < 0, which we may re-write as:

�j
̂i j+ �=2 = � (j
̂i j � �=2) = sgn(
̂i ) (j
̂i j � �=2) :

In summary, �
i = sgn(
̂i )(j
̂i j � �=2)+.

The proof is now complete, as we can see that all three cases yield

�
i = sgn(
̂i )

�
j
̂i j � �

2

�
+

; i = 1; :::; p � 1:
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LASSO vs ANOVA in the Orthogonal Case

How can we interpret the LASSO in terms of ANOVA in the orthogonal case?

Corollary

In the context of the previous theorem, and assuming that " � N (0; �2I ), model
selection using the LASSO tuned by � > 0 is equivalent to including only
coefficients significant at level � = 2(1�Gtn�p

(�=(2S))), where Gtn�p
is the CDF

of Student’s t-distribution.

Proof.
Remember that a coefficient 
j is pronounced statistically significant at level � if
fH0 : 
j = 0g is rejected at level �. Under the setting when " � N (0; �2I ), this
happens when j
̂j j > tn�p(1� �=2)S . So equating

�

2
= tn�p(1��=2)S =) 1��

2
= Gtn�p

(�=(2S)) =) � = 2(1�Gtn�p
(�=(2S)))
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L1 Shrinkage [The LASSO]
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LASSO as the Relaxation of Best Subsets

Intuition: L1 norm induces “sharp” balls!

Balls more concentrated around the axes

Induces model selection by regulating the lasso (through �)

Extreme case: L0 “Norm”, gives best subsets selection!

k
k0 =
p�1X
j=1

j
j j0 =
p�1X
j=1

1f
j 6=0g = #fj : 
j 6= 0g

Generally: k
kpp =Pp�1
j=1 j
j jp , sharp balls for 0 < p � 1
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LASSO profile for Bodyfat Data [LARS algorithm]

LASSO and CV for different values of r(�)=k
̂k1

* * *
* * ** * * * * * * * *
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Robust Linear Modeling
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Robust/Resistant Methods

The “success” of the LSE in a regression model depends on “assumptions”:

Normality (LSE optimal in this case)

Not many “extreme” observations (LSE affected from “extremities”)

Picture:

Resistant procedure: not strongly affected by changes to data.

Robust procedure: not strongly affected by departures from distribution.

Often: Robust , Resistant
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Motivating Example: Estimating a Mean

Let X1; : : : ;Xn
iid� F , estimate � =

R1
�1 xF (dx ) by

�x =
1

n

nX
i=1

xi = argmin

2R

nX
i=1

(xi � 
)2

Some observations:

Average �x is optimal (MLE) when F is Normal.

Extremely sensitive to outliers (low breakdown point).

Blows up from a single value: x 7! x + � =) �x 7! �x + �=n .

If � large relative to n ! disaster . . .

May not be optimal for other possible F ’s . . .
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Motivating Example: Estimating a Mean

Can we “cure” sensitivity by using different distance function?

m = argmin

2R

nX
i=1

jxi � 
j =
�
x(k+1); n = 2k + 1;
x(k)+x(k+1)

2 ; n = 2k :

Median much less sensitive to bad values.

Higher breakdown point: must blow up at least 50% of obs to blow m up.

Median is optimal (MLE) when F is Laplace.

But how well does m perform when F ' Normal (relative efficiency)?

Remember picture:
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Motivating Example: Estimating a Mean

Other alternatives?

I�-Trimmed mean: throw away most extreme observations:

trm =
1

jE c j
X
i =2E

xi ;

E being subset of �� n most extreme observations from each end.
Both m and trm may ‘throw away’ information. View as special cases of the
IWeighted estimate:

wm =

Pn

i=1 wixiPn

i=1 wi

:

Weights downplaying certain observations (i.e., give less weight to extremes
. . . )

How to objectively/automatically choose weight?
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Regression Setup

Regression situation is similar. Have:

Y = X� + "; " � F ; E["] = 0; cov["] = �2I

LSE for � given by

�̂ = (X>X )�1X>y = argmin

2Rp

nX
k=1

(yi � x>i 
)2

Optimal at F = Normal

Disastrous if yi 7! yi + c with c large:

�̂ 7! �̂ + (XTX )�1xic

Gauss-Markov: optimal linear for any F

,! May not be overall optimal for other F ’s
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Robust/Resistant Alternatives

L1 regression: ~� = argmin

2Rp

Pn

k=1 jyi � x>i 
j

Trimmed least squares: �� = argmin

2Rp

PK

i=1(yi � x>i 
)2(i), where we set

K = bn=2c+ b(p + 1)=2c
Weighted least squares: �� = (X>V �1X )�1X>V �1Y for a diagonal weight
matrix V (recall earlier lecture):

V =

0BBB@
w1 0

w2

. . .

0 wn

1CCCA :

Would like to formalise the concept of robust/resistant estimation

! Find a general formulation of which above are special cases.
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M-Estimators

Seek a unifying approach:

Instead of (�)2 or j � j, consider a more general distance function �(�).

MLE when errors are Gaussian is obtained as maximising loglikelihood kernel

�̂ = argmax

2Rp

� 1

2

nX
i=1

�
yi � x>i 


�

�2

Replacing �(u) = u2 by general �(�) yields:

b� := argmin

2Rp

nX
i=1

�

�
yi � x>i 


�

�
Call this an M(aximum likelihood like)-Estimator.
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M-Estimation as Weighted Regression

Obtaining argmin

2Rp

Pn

i=1 �
�
yi�x>i 


�

�
reduces to solving

nX
i=1

x>i  
�
yi � x>i 


�

�
= 0

with  (t) = d�(t)=dt . Letting w(u) =  (u)=u this reduces to

nX
i=1

wix
>
i (yi � x>i 
) = 0; where wi = w

�
yi � x>i 


�

�
:

But this is simply the weighting scenario!

I Robust Regression can be written as a Weighted Regression, but the weights
depend on the data.

Distance functions are in 1� 1 correspondence with loss functions.
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Examples of Distance Functions and Weight Functions

Idea: choose � to have desirable properties (reduce/eliminate impact of outliers)
— same as choosing weight function.

Some typical examples are:

�(z ) = z 2 , w(u) = 2

�(z ) = jz j , w(u) = 1=ju j
Huber: �(z ) =

�
z 2; if jz j � H

2H jz j �H 2; otherwise

Bisquare: �(z ) =

8<: 1
6B

2

�
1�

n
1� (z=B)

2
o3�

; jz j � B ;

1
6B

2; otherwise:
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Examples of Distance Functions and Weight Functions
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Examples of Distance Functions and Weight Functions

 

Victor Panaretos (EPFL) Linear Models 238 / 309



Computing a Regression M-Estimator

I Explicit expression for LSE

I M-Estimation: non-linear optimisation problem — use iterative approach

I Iteratively re-weighted least squares:

1 Obtain initial estimate �̂(0)

2 Form normalised residuals u
(0)
i = (yi � x>i �̂(0))=MAD(yi � x>i �̂(0)

3 Obtain w
(0)
i = w(u

(0)
i ) for the chosen weight function w(�)

4 Perform weighted least squares with V (0) = diagfw (0)
1 ; : : : ;w

(0)
n g

5 Obtain updated estimate �̂(1)

6 Iterate until convergence (?)
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(Asymptotic) Distribution of M-Estimators

IObtained M-Estimator as the solution to the system

X>ψ(
) = 0

instead of X>(y �X 
) = 0. Here we defined

ψ(
) =

�
 

�
y1 � x>1 


�

�
; : : : ;  

�
yn � x>n 


�

��>
IIf these estimating equations are unbiased, i.e.,

E�

�
X>	(�)

�
= 0; 8� 2 Rp ;

then under mild regularity conditions, as n !1, we can show that

�̂n
d� Np

�
�;
�
E[X>rψ]	�1X>E[ψψ>]X

�
E[X>rψ]	�1� :
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Example: Professor’s Van
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Example: Professor’s Van

�̂ = �0:07 (with p = 0:06) while ~� = �0:09 (with p ' 0)
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Asymptotic Relative Efficiency (ARE)

Remember our picture:

ARE measures quality of one estimator of �p�1 relative to another, often the

MLE �̂, for which var(�̂) = I (�)�1, for large sample size.

Generally ARE of ~� relative to �̂ is less than 1 (100%): low ARE is bad, high
ARE is good.

ARE of ~� relative to �̂ is (
jvar(�̂)j
jvar(~�)j

)1=p

(�100%):

ARE of ~�r relative to �̂r is

var(�̂r )

var(~�r )
(�100%):
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ARE in the Linear model

Linear model y = X� + ", with "j
iid� g(�); assume var("j ) = �2 <1 is

known.

Assume MLE is regular, with

ig =

Z
�@

2 log g(u)

@u2
g(u)du =

Z �
@ log g(u)

@u

�2

g(u)du :

ARE of LSE of � relative to MLE of � is

1

�2ig

Examples:

ARE at g(�) Gaussian: 1

ARE at g(�) Laplace: 1/2

ARE of Huber at g(�) Gaussian is 95% with H = 1:345
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Mallow’s Rule

A simple and useful strategy is to perform one’s analysis both robustly and by
standard methods and to compare the results. If the differences are minor, either
set may be presented. If the differences are not minor, one must perforce consider
why not, and the robust analysis is already at hand to guide the next steps.

Perform analysis both ways and compare results.

Plot weights to see which observations were downweighted.

Try to understand why.
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Nonlinear and Nonparametric Models
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The Big Picture

Recall most general version of regression given in Week 1:

Yi j x>i ind� Distfg(x>i )g; i = 1; : : : ;n :

So far we have investigated what happens when�
g(x>) = x>�; � 2 Rp ;
Dist = N (x>�; �2):

We now consider a more general situation:

Yi j x>i ind� Nf�(x>i ;�); �2g; i = 1; : : : ;n ;

where �(x>i ;�)

is a KNOWN function,

that depends on a parameter � 2 Rp ,

but is not linear in �.
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Example: Logistic Growth

Decennial population data from US, for 1790–1990.

y is population in millions, x is time.

Regression model:

Yi =
�1

1 + exp(�2 + �3xi )
+ "i ; "i

iid� N (0; �2) i = 1; : : : ;n :

Here

�(x ;�) =
�1

1 + exp(�2 + �3x )
:

Distribution remains Gaussian.

Cannot transform into a linear regression problem.

Coefficient interpretation different than in a linear model.

Related to the differential equation

d

dx
�(x ) = C � �(x )f1� �(x )g:
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Example: Logistic Growth
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Basic Observations and Notation

Still assume independent random variables Y1; : : : ;Yn , with observed values
y1; : : : ; yn , and explanatories x1; : : : ; xn .

Distribution still Gaussian.

Introduce notation:

y = (y1; : : : ; yn)
> 2 Rn ,

�(�) = (�1(�); : : : ; �n(�))
> = (�(x>1 ; �); : : : ; �(x

>
n ; �))

>, i.e.,

�(�) : Rp ! Rn � 2 Rp 7! �(�) 2 Rn

Therefore �(�) is a vector-valued function.

Analogy with linear case: �(�) plays the role of X� but is no longer linear in
�.

Model now is:

y
n�1

= �(�)|{z}
n�1

+ "
n�1

; � 2 Rp ; " � Nn(0; �
2I ):
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Likelihood and . . . least squares - Again!

Since "
iid� N (0; �2), have

y � Nf�(�); �2g;
so likelihood and loglikelihood are

L(�; �2) =
1

(2��2)n=2
exp

�
� 1

2�2
(y � �(�))>(y � �(�))

�
;

`(�; �2) = �1
2

�
n log 2� + n log �2 +

1

�2
(y � �(�))>(y � �(�))

�
:

. . . exactly as in linear case, but with �(�) replacing X�. Hence, suggests least
squares estimators,8<:�̂ = argmin

�2Rp

ky � �(�)k2 (assuming identifiability);

�̂2 = 1
n
ky � �(�̂)k2:
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Model Fitting by Taylor Expansions

Main problem is non-linearity — cannot obtain closed form solution in general.

,! Idea: linearise locally, assuming that � is sufficiently smooth.

First-order Taylor expansion: approximate as

�(�)
n�1

' �(�(0))
n�1

+ [r��]�=�(0)| {z }
n�p

(� � �(0))| {z }
p�1

where � is sufficiently close to �(0).

We dropped higher order terms by appealing to smoothness of � (smoothness
() “close to zero” higher derivatives).
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Model Fitting by Taylor Expansions

Linearised representation suggests Newton–Raphson iteration:

Suppose an initial estimate �(0) is available (k�(0) � �̂k < �).

Let D(0) = [r��]�=�(0) and � = u (0) + �(0).

Taylor expansion yields

y � �(�(0)) � D(0)(� � �(0))| {z }
u(0)

+ ":

To get � we need u (0). Consider the following iteration:

1 Initialise with �(0).

2 Let u (1) = argmin
u2Rp

ky � �(�(0))�D(0)uk2

:-) (but this is just a linear least squares problem, with y(0) = y � �(�(0)) and
X (0) = D(0)!)

3 Thus set u (1) = ([D(0)]>D(0))�1[D(0)]>fy � �(�(0))g.
4 Let �(1) = �(0) + u (1) and iterate until convergence criterion satisfied.

Return last �(k) as �̂.
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Geometry of Nonlinear Least Squares

As � ranges over Rp , �(�) traces a p-dimensional differentiable manifold (smooth
surface) in Rn ,

M(�) = f�(�) : � 2 Rpg:

� provides the intrinsic coordinates on that manifold.

y is obtained by selecting a point �(�) on the manifold, and adding a mean
zero Gaussian vector ".

Regression asks to find the coordinates of the point on the manifold that
generated y .

Would like to project y on the manifold, but do not have a closed form
expression!
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Geometry of Nonlinear Least Squares
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Geometry of Linear Approximation

Newton–Raphson algorithm is interpretable via differential geometry:

The p-dimensional tangent plane at a point �(�(0)) 2M(�) is spanned by
�(�(0)) + [r��(�)]�=�(0)u ; u 2 Rp .

Hence we may write that

T�(0)M(�) = f�(�(0)) +D(0)u : u 2 Rpg

In other words, the p columns of D(0), when translated by �(�(0)), form a
basis for the tangent plane at �(�(0)).

Taylor expansion merely says that if � is close to �(0), we approximately have
�(�)� �(�(0)) 2 T�(0)M(�). This is equivalent to the expression

�(�)� �(�(0)) � [r��]�=�(0)| {z }
D(0)

(� � �(0))| {z }
u(0)

:

Therefore, y � �(�(0)) � D(0)u (0) + " means that E[y ] approximately lies in
T�(0)M(�).

Newton–Raphson algorithm � iterated projection on approximating linear
subspaces.

Victor Panaretos (EPFL) Linear Models 256 / 309



Geometry of Nonlinear Least Squares

Victor Panaretos (EPFL) Linear Models 257 / 309



Geometry of Linear Approximation

Summarising, suppose we consider �(�(0)) as the origin of space (i.e., now
the tangent space is a subspace).

Then y � �(�(0)) is approximately the response obtained when adding " to
an element D(0)(� � �(0)) 2 T�(0)M(�).

So, approximately, we have our usual linear problem, and we can use
orthogonal projection to solve it.

Amounts to approximating the manifold M(�) by a plane T�(0)M(�) locally

around �(�(0)).

Once initial value �(0) is updated to �(1), use a new tangent plane approximation
and repeat the whole procedure.

But how do we obtain our initial �(0)?
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Choosing �(0)

Successful linearisation depends on good initial value.

Occasionally, can find initial values by inspection in simple problems.

More generally, it takes some experimentation.

E.g., one can try fitting polynomial models to data.
Use these to find fitted values at fixed design points.
Solve a system of equations to get initial values.

Example: consider the model yj = �0 + �1 expf(�xj =�)g+ "j
1 Fit a polynomial regression to data

2 Find fitted values ~y0; ~y1; ~y2 at x0; x0 + �; x0 + 2�.

3 Equate fitted values with model expectation:

~yk = �0 + �1 expf�(x0 + k�)=�g; k = 0; 1; 2:

4 System yields initial estimate �(0) = �= log [(~y0 � ~y1)=(~y1 � ~y2)]

5 Get initial values for �0; �1 by linear regression, once �(0) is at hand.
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Approximate CIs for Parameters

Under smoothness conditions on �, one can in general prove that

S�1
n
r��(�̂)

>r��(�̂)
o1=2

(�̂ � �) d� Np(0; Ip)

for large n , where S = (n � p)�1kek2. May thus mimic linear case:

c>�̂
d� N1

�
c>�;S2c>

n
r��(�̂)

>r��(�̂)
o�1

c

�
:

So base confidence intervals (and tests) on

c>�̂ � c>�r
S2c>

n
r��(�̂)>r��(�̂)

o�1
c

d� N (0; 1);

which gives a (1� �)� 100% CI:

c>�̂ � z�=2
r
S2c>

n
r��(�̂)>r��(�̂)

o�1
c :
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A More Flexible Regression Model

Until today we have discussed the following setup:

Yi j xi ind� Dist[y j �i ]!
�
�i = g(xi ;�);
� 2 B � Rp ;

with g(�;�) known up to � to be estimated from data, e.g.

Dist(� j �) = N (� j �) and � = g(x j �) = x>�,

Dist(� j �) = N (� j �) and � = g(x j �) = �(x ;�).

Would now like to extend model to a more flexible dependence:

Yi j xi ind� Dist[y j �i ]!
�
�i = g(xi );
g 2 F � L2(Rp) (say);

with g unknown, to be estimated given data f(yi ; xi )gni=1.

A nonparametric problem (parameter 1-dimensional)!

How to estimate g in this context?

F is usually assumed to be a class of smooth functions (e.g., C k ).
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Scatterplot Smoothing

Start from simplest problem:
Dist � N (�; �2)
xi 2 R

�
=) Yi = g(xi ) + "i ; "i

iid� N (0; �2)

Figure: Motorcycle Accident Data

10 20 30 40 50

−
10

0
−

50
0

50

Time After Impact (ms)

H
ea

d 
A

cc
el

ar
at

io
n 

(g
)

Victor Panaretos (EPFL) Linear Models 262 / 309



Exploiting Smoothness

Ideally: multiple y ’s at each xi (n !1 and large covariate classes):

0 20 40 60 80 100

0
1

2
3

x

R
es

po
ns

e

Then average y ’s at each xi and interpolate . . .

But this is never the case . . .
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Exploiting Smoothness

Usually unique xi distinct:
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Here is where the smoothness assumption comes in

Since have unique y at each xi , need to borrow information from nearby . . .

. . . use continuity!!! (or even better, smoothness)

I Recall: A function g : R! R is continuous if:

8 � > 0 9 � > 0 : jx � x0j < � =) jg(x )� g(x0)j < �:

I So maybe average yi ’s corresponding to xi ’s in a �-neighbourhood of x as
ĝ(x )?
I Motivates the use of a kernel smoother . . .
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Kernel Smoothing

Naive idea: ĝ(x0) should be the average of yi -values with xi ’s “close” to x0.

ĝ(x0) =
1Pn

i=1 1fjxi � x0j � �g
nX
i=1

yi1fjxi � x0j � �g:

A weighted average! Choose other weights? Kernel estimator:

ĝ(x0) =
1Pn

i=1K
�
xi�x0
�

� nX
i=1

yiK

�
xi � x0
�

�
:

K is a weight function (kernel), e.g. a pdf

,! Usually symmetric, non-negative, decreasing away from zero

� is the bandwidth parameter

,! small � gives local behaviour, large � gives global behaviour

Choice of K not so important, choice of � very important!

The resulting fitted values are linear in the responses, i.e., ŷ = S�y , where
the smoothing matrix S� depends on x1; : : : ; xn , K and �. Analogous to a
projection matrix in linear regression, but S� is NOT a projection.
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Visualising a Kernel at Work
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Motorcycle Data Kernel Smooth

Ainsi, on a ∂`
∂ηi

= yi
ηi

− m−yi
1−ηi

, d’où ηi =
yi
m . Finalement,

D = 2
n∑

j=1

{log f(yj ; π̂max)− log f(yj ; π̂)}

= 2

n∑

j=1

{
yj log(ηj) + (m− yj) log(1− ηj) + log

(
m

yj

)
− yj log(π̂j)− (m− yj) log(1− π̂j)− log

(
m

yj

)}

= 2

n∑

j=1

{
yj log

(
yj
mπ̂j

)
+ (m− yj) log

(
m− yj
m(1− π̂j

)}
.

Exercice 4. La log-vraisemblance d’un échantillon de taille n du modèle saturé est donnée par

`(π̂max, y) = `(η, y) =

n∑

i=1

{yi log(ηi)− ηi − log(yi!)}.

Ainsi, on a ∂`
∂ηi

= yi
ηi

− 1, d’où ηi = yi. Finalement,

D = 2

n∑

j=1

{log f(yj ; η̂max)− log f(yj ; η̂)}

= 2
n∑

j=1

{yj log(yj)− yj − log(yj !)− yj log(η̂j) + η̂j + log(yj !)}

= 2
n∑

j=1

{
yj log

(
yj
η̂j

)
− yj + η̂j

}
.

> plot(time,accel,xlab="Time After Impact (ms)",ylab="Head Accelaration (g)")
> lines(ksmooth(time,accel,kernel="normal",bandwidth=0.7))
> lines(ksmooth(time,accel,kernel="normal",bandwidth=5),col="red")
> lines(ksmooth(time,accel,kernel="normal",bandwidth=10),col="blue")

http://smat.epfl.ch/courses.html
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Penalised Likelihood

Find g 2 C 2 that minimises

nX
i=1

fyi � g(xi )g2| {z }
Fit Penalty

+ �

Z
I

fg 00(t)g2dt| {z }
Roughness Penalty

This is a Gaussian likelihood with a roughness penalty

,! If use only likelihood, any interpolating function is an MLE!

� to balance fidelity to the data and smoothness of the estimated h .

Remarkably, problem has unique explicit solution!
,! Natural Cubic Spline with knots at fxigni=1:

piecewise polynomials of degree 3,

with pieces defined at the knots,

with two continuous derivatives at the knots,

and linear outside the data boundary.
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Natural Cubic Spline Details

Can represent splines via a basis Bj , as

s(t) =

nX
j=1


jBj (t):

For example, one basis (the natural basis) is

B1(t) = 1

B2(t) = t

Bm+2(t) = �m(t)� �n�1(t); m = 1; : : : ;n � 2

�k (t) =
(t � xk )3+ � (t � xn)3+

tn � tk ; k = 1; : : : ;n � 1

where xm are the knot locations and

(�)+ = maxf�; 0g

is the positive part of any function.
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Figure: The n = 4 natural spline basis functions for knots at x1 = 0:2, x2 = 0:4,
x3 = 0:6 and x4 = 0:8
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Where does this come from?

We wish to find a basis for natural cubic splines with knot locations fxigni=1

Observe that any piecewise polynomial PP3(t) of order 3 with 2 cts
derivatives at the knots can be expanded in the truncated power series basis

PP3(t) =

3X
j=0

�j t
j +

nX
i=1

�k (t � xi )3+

The n + 4 coefficients f�j g3j=0 [ f�igni=1 must satisfy constraints to ensure
linearity beyond boundary knots:

�2 = 0 & �3 = 0Pn

i=1
�i = 0Pn

i=1
�ixi = 0

Can then use relations re-express basis in form on previous slide, with only n
(rather than n + 4) basis functions, and unconstrained coefficients.
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Back to Penalised Likelihood

Letting 
 = (
1; : : : ; 
n)
>,

g(t) =

nX
i=1


iBi (t); B = fBij g = fBj (xi )g; 
ij =

Z
B 00
i (t)B

00
j (t)dt ;

our penalised likelihood

nX
i=1

fyi � g(xi )g2 + �

Z
I

fh 00(t)g2dt

becomes �
(y �B
)>(y �B
) + �
>



	
:

Differentiating and equating with zero yields

(B>B + �
)
̂ = B>y =) 
̂ = (B>B + �
)�1B>y :

The smoothing matrix is S� = B(B>B + �
)�1B>.

The natural cubic spline fit is approximately a kernel smoother.
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Motorcycle Example Cubic Spline Fit

lines(smooth.spline(time,accel),col="red")
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Motorcycle Example Cubic Spline Residuals
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Equivalent degrees of freedom

Least squares estimation: y = Xn�p� + ", we have ŷ = Hy , with
trace(H ) = p, in terms of the projection matrix H = X (X>X )�1X>. Here

ŷ = B(B>B + �
)�1B>| {z }
S�

y :

Idea: define equivalent degrees of freedom of smoother

trace(S�) =
nX

j=1

1

1 + ��j

where �j are eigenvalues of K = (B>B)�1=2
(B>B)�1=2.

Hence trace(S�) is monotone decreasing in �, with trace(S�)! 2 as �!1
(K will have twos zero eigenvalues) and trace(S�)! n as �! 0.
Note 1–1 map �$ trace(S�) = df, so usually determine roughness using df
(interpretation easier).

Each eigenvalue of S� lies in (0; 1), so this is a smoothing, NOT a projection,
matrix.
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Bias/Variance Tradeoff

Focus on the fit for the given grid x1; : : : ; xn :

ĝ = (ĝ(x1); : : : ; ĝ(xn)); g = (g(x1); : : : ; g(xn))

Consider the mean squared error:

E(kg � ĝk2) = EfkE(ĝ)� ĝk2| {z }g
variance

+ kg � E(ĝ)k2| {z }
bias2

:

When estimator potentially biased, need to worry about both!

In the case of a linear smoother, for which ĝ = S�y , we find that

E(kg � ĝk2) = trace(S�S
>
� )

n
�2 +

(g � S�g)>(g � S�g)

n
;

so

� " =) variance # but bias ",
� # =) bias # but variance ".
Would like to choose � to find optimal bias-variance tradeoff:
,! Unfortunately, optimal � will generally depend on unknown g!
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Choosing �

Fitted values are ŷ = S�y .

Fitted value ŷ�j obtained when yj is dropped from fit is

Sjj (�)(yj � ŷ�j ) = ŷj � ŷ�j :

Cross-validation sum of squares is

CV(�) =
nX

j=1

(yj � ŷ�j )2 =
nX

j=1

�
yj � ŷj

1� Sjj (�)
�2

;

and generalised cross-validation sum of squares is

GCV(�) =
nX

j=1

�
yj � ŷj

1� trace(S�)=n

�2

;

where Sjj (�) is (j ; j ) element of S�.
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Orthogonal Series: “Parametrising” The Problem

Depending on what F 3 g(�) is (Hilbert space) can write:

g(x ) =

1X
k=1

�k k (x ) (in an appropriate sense);

with f g1k=1 known (orthogonal) basis functions for F, e.g.,

F = L2(��; �),
f kg = fe�ikxgk2Z,  i ?  j , i 6= j .

Gives Fourier series expansion, �k =
1
2�

R �
�� g(x )e

�ikxdx .

Idea: if truncate series, then have simple linear regression!

Yi =

�X
k=1

�k k (xi ) + "i ; � <1

Notice: truncation has implications, e.g., in Fourier case:
Truncating implies assume g 2 G � L2.

Interpret this as a smoothness assumption on g .

How to choose � optimally?
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Convolution: Series Truncation
?
' Smoothing

Easy exercise in Fourier analysis:

�X
k=��

�ke
�ikx =

1

2�

Z �

��
g(y)D� (x � y)dy

with the Dirichlet kernel of order � , D� (u) = sin f(� + 1=2)ug=sin(u=2).
Recall kernel smoother:

ĝ(x0) =

nX
i=1

yiK�(xi � x0)Pn

i=1K�(xi � x0) =
1

c

Z
I

y(x )K�(x � x0)dx ;

with

y(x ) =

nX
i=1

yi�(x � xi ):

So if K is the Dirichlet kernel, we can do series approximation via kernel smoothing.

Works for other series expansions with other kernels (e.g., Fourier with convergence factors)
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The Dirichlet kernel
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From x 2 R to (x1; : : : ; xd) 2 Rp

So far: how to estimate g : R! R (assumed smooth) in

Yi = g(xi ) + "i ; "i
iid� N (0; �2); given data f(yi ; xi )gni=1:

I Generalise to include multivariate explanatories?
I “Immediate” Generalisation: g : Rp ! R (smooth)

Yj = g(xj1; : : : ; xjp) + "j ; "j
iid� N (0; �2)

I Estimation by (e.g.) multivariate kernel method.
I Two basic drawbacks of this approach . . .

,! Shape of kernel? (definition of local)

,! Curse of dimensionality
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What is “local” in Rp?

! Need some definition of “local” in the space of explanatories

,! Use some metric on Rp 3 (x1; : : : ; xp) !

But which one?

Choice of metric () choice of geometry

,! e.g., curvature reflects intertwining of dimensions

Geometry =) reflects structure in the explanatories

potentially different units of measurement
(variable stretching of space)

g may be of higher variation in some dimensions
(need finer neighbourhoods there)

statistical dependencies present in the explanatories
(“local” should reflect these)

Victor Panaretos (EPFL) Linear Models 282 / 309



Curse of Dimensionality (U [0; 1]p)
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Curse of Dimensionality

“neighbourhoods with a fixed number of points become less local as the
dimensions increase”

Bellman (1961)

Notion of local in terms of % of data: fails in high dimensions
,! There is too much space!

Hence to allow for reasonably small bandwidths
,! Density of sampling must increase.

Need to have ever larger samples as dimension grows.
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Tackling the Dimensionality Issue

Attempt to find a link/compromise between:

our mastery of 1D case (at least we can do that well . . . ),

and higher dimensional explanatories (and associated difficulties).

One approach: Projection-Pursuit Regression

Y =

KX
k=1

hk (#
>
k x) + "; k#kk = 1; " � N (0; �2):

Additively decomposes g into smooth functions hk : R! R.

Each function depends on a global feature
,! a linear combination of the explanatories,

projections directions chosen for best fit
,! similarities to tomography.

Each hk is a ridge function of x: varies only in the direction defined by #k
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Projection Pursuit Regression

How is the model fitted to data?

Assume only one term, K = 1 and consider penalized likelihood:

min
h2C2;k#k=1

(
nX
i=1

fyi � h1([#>x]i )g2 +

Z
I

fh 001 (t)g2dt
)
:

Two steps:

Smooth: Given a direction #, fitting g1(#
>x) is done via 1D smoothing

splines.

Pursue: Given h1, have a non-linear regression problem w.r.t. #.

Hence, iterate between the two steps

,! Complication is that h1 not explicitly known, so need numerical derivatives.

,! Computationally intensive (impractical in the ’80’s).

! Further terms added in forward stepwise manner.
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Additive Models

Projection pursuit:

(+) Can uniformly approximate C 1(compact[Rp ]) function arbitrarily well as
K !1 (very useful for prediction)

(�) Interpretability? What do terms mean within problem?

Need something that can be interpreted variable-by-variable

I Compromise: Additive Model

Yj = �j +

pX
k=1

fk (xjk ) + "j ; "j
iid� N (0; �2);

fj ’s univariate smooth functions,
P

j fk (xjk ) = 0.

In our standard setting, have:

Yj j exj ind� Dist(� j �j )!
�

Dist = N (�j ; �
2);

�j = �j = �j +
Pp

k=1 fk (xjk ):
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The Backfitting Algorithm

I How to fit additive model?

,! Know how to fit each fk separately quite well

,! Take advantage of this . . .

I Motivation: Fix j and drop it for ease:

E

24Y � ��X
m 6=k

fm(xm)

35 = fk (xk )

I Suggests the Backfitting Algorithm:

(1) Initialise: � = avefyj g, fk = f 0k , k = 1; : : : ; p.

(2) Cycle: fk = Sk (y � ��
P

m 6=k fm) k = 1; : : : ; p; 1; : : : ; p; : : :

(3) Stop: when individual functions don’t change

I S is arbitrary scatterplot smoother

Victor Panaretos (EPFL) Linear Models 288 / 309



Example: Diabetes Data
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Example: Diabetes Data
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Example: Rock Permeability Data

Measurements on 48 rock samples from a petroleum reservoir:

rock.gam<-gam(perm 1+s(peri)+s(area),family=gaussian)
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Example: Rock Permeability Data

Family: gaussian

Link function: identity

Formula:

perm ~ 1 + s(peri) + s(area)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 415.45 27.18 15.29 <2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Approximate significance of smooth terms:

edf Est.rank F p-value

s(peri) 8.739 9 18.286 9.49e-11 ***

s(area) 3.357 7 6.364 7.41e-05 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

R-sq.(adj) = 0.815 Deviance explained = 86.3%

2
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More on Splines
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Tidying Up

We want to rigorously show:

1 The penalized least squares problem admints a natural cubic spline as a
unique solution

2 That any natural cubic spline on n distinct knots can be expanded in a basis
of n elements fB1; :::;Bng

3 That the matrix inversion involved in the expression (B>B + �
)�1B>y is
well-defined

En route, we would also like to

4 Construct at least one example of an explicit basis fB1; :::;Bng.

To analyse spline smoothing we will need to first analyse spline interpolation.
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A very special kernel

Our analysis will hinge on a very carefully chosen kernel:

q(x ; y) = 1 + xy + k(x ; y); (x ; y) 2 [0; 1]2;

where

k(x ; y) =

(
x 2y=2� x 3=6 for x � y

xy2=2� y3=6 for x > y
; (x ; y) 2 [0; 1]2:

We will write qy(x ) or ky(x ) whenever we want to emphasise that the second
argument is taken fixed and we view the kernel as a function of the first
argument.

In this light, qy(x ) is piecewise polynomial with two pieces:
1 a cubic piece (for 0 � x � y), and
2 a linear piece (for y � x � 1).
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Recall, qy (x ) is piecewise polynomial with two pieces:

1 a cubic piece (for 0 � x � y)

2 a linear piece (for y � x � 1).
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Theorem (Positive Definiteness)

Given any 1 � t1 � t2 � : : : � tn � 1 we have

nX
i=1

nX
j=1

�i�j q(ti ; tj ) � 0 8α = (�1; :::; �n)
> 2 Rn ;

in other words Q = fq(ti ; tj )gni ;j=1 is nonnegative definite. When all the tj ’s are
distinct,

0 � t1 < t2 < : : : < tn � 1;

the displayed inequality is strict unless α 2 Rn n f0g, and so Q is positive definite.

Proof.

Let K = fk(ti ; tj )gni=1, t = (t1; : : : ; tn)
>, 1 = (1; : : : ; 1) 2 Rnand note that

Q = fq(ti ; tj )gni ;j=1 = f1 + ti tj + k(ti ; tj )gni ;j=1 = 11> + tt> +K :

Thus, if we can verify that K � 0 we will obtain that Q � 0, being the sum of
three non-negative definite matrices.
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Given any pair (ti ; tj ) with ti � tj (say), observe thatZ 1

0

k 00ti (u)k
00
tj
(u)du =

Z ti

0

(tj � u)(ti � u)du = t2i tj =2� t3i =6 = k(ti ; tj ): (�)

Therefore, we may substitute the integral expression for k(ti ; tj ) into α>Qα to
manifest a square:

nX
i=1

nX
j=1

�i�j k(ti ; tj ) =

nX
i=1

nX
j=1

Z 1

0

�ik
00
ti
(u)�j k

00
tj
(u)du =

Z 1

0

 
nX
i=1

�ik
00
ti
(u)

!2

du :

This shows that α>Qα � 0, and so K (and hence Q) is always nonnegative.

Now suppose that the ftig are all distinct. Remark that each function k 00ti (u) is
supported on [0; ti ) and is linear thereon. We distinguish two cases:

t1 > 0. Then all n supports are disjoint non-empty intervals and the fk 00tj gnj=1

are linearly independent. Consequently the sum can be zero only if
�1 = �2 = ::: = �n = 0, and K (and hence Q) is strictly positive.
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t1 = 0. Then k 00t1 = 0, so only the n � 1 functions fk 00tj gnj=2 are linearly
independent. In this case, first row/column of K will be uniformly zero, and
only the bottom right (n � 1)� (n � 1) submatrix

K n�1 = fk(ti ; tj )gnj=2

of K will be positive definite. Thus K is of reduced rank n � 1. However,
the first column of 11> is now linearly independent of all columns of K , and
so Q = 11> + tt> +K is of full rank n .

In summary, when 0 � t1 < t2 < : : : < tn � 1, the matrix Q is positive definite.

Notice that the calculation (�) was the crucial ingredient. We will use this again
when proving that Ω is nonnegative.

Why go into all this trouble? It turns out that this property will give us both:

A solution to the spline interpolation problem.

A basis for natural cubic splines.
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Theorem (Spline Interpolation: Uniqueness and Optimality))

. Let 0 = t1 < t2 < : : : < tn = 1 be distinct nodes, with n � 2, and
y = (y1; : : : ; yn) 2 Rn be associated responses.

1 There exists a unique natural cubic spline s : [0; 1]! R with knots at ftj g
that interpolates f(tj ; yj )gnj=1, and can be explicitly constructed as

s(x ) =

nX
j=1

�iq(x ; tj ); with θ = Q�1y

where θ = (�1; : : : ; �n)
>, and Q = fq(ti ; tj )gni ;j=1 is bone fide invertible.

2 for any C 2 function f : [0; 1]! R that also interpolates f(tj ; yj )gnj=1,

C(f ) �
Z 1

0

[f 00(u)]2du �
Z 1

0

[s 00(u)]2du � C(s): (I)

3 The inequality in (I) is strict unless f (u) = s(u) everywhere on [0; 1].
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Proof.

Notice that Q is indeed invertible by our previous theorem, so s(x ) is well-defined
and indeed a natural cubic spline by definition.
To verify that it interpolates f(tj ; yj )gnj=1, write s = (s(t1); : : : ; s(tn))

> and note

s(ti ) =
Pn

j=1 �iq(ti ; tj ); and so s = Qθ = QQ�1y = y :

This establishes existence of at least one interpolating cubic spline, constructible
explicitly via the stated form. To establish that this is the unique interpolating
spline, we will:

prove that (2) and (3) hold for any interpolating spline (not s specifically).

using this, we will show that there can only be one interpolating spline

thus closing our proof loop.

Let f be an arbitrary C 2 interpolant and w(x ) be an interpolating cubic spline,
not necessarily equal to s . Define �(x ) = f (x )� w(x ) and remark that �(tj ) = 0
for all j since w interpolates f at the nodes. Now, expand the square to write

C(f ) = C(w + �) = C(w) + C(�) +
Z b

a

w 00(u)�00(u)du :
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We claim that the last term vanishes. Using integration by partsZ b

a

w 00(u)�00(u)du = w 00�0
��1
0
�
Z 1

0

w 000(u)�0(u)du = �
Z 1

0

w 000(u)�0(u)du

because w 00(0) = w 00(1) = 0 by the natural boundary constraint. Breaking the
integration over the knot partition and using integration by parts a second time,Z 1

0

w 000(u)�0(u)du =

n�1X
j=1

Z tj+1

tj

w 000(u)�0(u)du =

=

n�1X
j=1

 
w 000�

��tj+1
tj
�
Z tj+1

tj

w 0000(u)�0(u)du

!
= 0

because on each partition subinterval w 000 is a constant and w 0000 vanishes, whereas
�(tj ) = 0 by the interpolation constraint.

This establishes that for any C 2 interpolant f and any interpolating natural cubic
spline w , we must have

C(f ) = C(w) + C(�) � C(w):
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The inequality
C(f ) = C(w) + C(�) � C(w):

becomes an equality if and only if C(�) = 0. But if if C(�) = 0, it must be that
�00 = 0 because �00 is continuous (by w 00 and f 00 being so). Hence, � is linear
everywhere on [0; 1], and so must be uniformly zero on [0; 1] since �(tj ) = 0.

In summary, for any interpolating spline w and any C 2 interpolant,

C(f ) � C(w); unless f = w : (C)

Let us use this conclusion to establish uniqueness in (1). Let s1(x ) and s2(x ) be
two natural cubic splines that interpolate f(tj ; yj )gnj=1. Apply conclusion (C) to
s1 and s2 twice, each time reversing their roles:

First, take s2 as an interpolating spline and s1 as some C 2 interpolant. We
must have C(s1) > C(s2) unless s1 = s2.

Second, take s1 as an interpolating spline and s2 as some C 2 interpolant.
We must have C(s2) > C(s1) unless s2 = s1.

The only way for the two conclusions to hold simultaneously is for s1 = s2, which
proves uniqueness in (1) and completes the proof.
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Corollary

Given distinct nodes 0 = t1 < t2 < : : : < tn = 1, the set S(t1; :::; tn) of natural
cubic splines with knots ftj gnj=1 is a vector space of dimension n , and

'i (x ) = qti (x ) = q(x ; ti ); i = 1; :::;n

forms a basis for S(t1; :::; tn).

Proof.

It is immediate that S(t1; :::; tn) is a vector space by the definition of a natural
cubic spline. And, for any y = (y1; :::; yn)

> 2 Rn there is a unique
sy 2 S(t1; :::; tn) that interpolates f(tj ; yj )gnj=1. This establishes a bijection
between Rn and S(t1; :::; tn), and proves that the dimension of S(t1; :::; tn) is n .

To show that the collection of n functions f'igni=1 is linearly independent, we
need to show that if �1'1(x ) + : : : �n'n(x ) = 0, then θ = (�1; : : : ; �n)

> = 0

Note that 0 =
Pn

j=1 �j'j (x ) �
Pn

j=1 �j qj (x ; tj ), is the unique natural cubic
spline that interpolates f(0; tj )gnj=1. Hence, we must have that Qθ = 0, for
Q = fq(ti ; tj )gni ;j=1 strictly positive definite, and so θ = 0.
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Corollary

If fBigni=1 is a basis for natural cubic splines on n distinct nodes
0 = t1 < : : : < tn = 1, then the n � n matrix B = fBi (tj )gni ;j=1 is invertible and

the n � n matrix Ω = fR 1
0
B 00
m(x )B

00
k (x )dxgnm;k=1 is nonnegative definite.

Proof.
The matrix B is invertible if and only if the equation

Bγ = y

has a unique solution with respect to γ 2 Rn for any y = (y1; : : : ; yn)
> 2 Rn .

Notice, however, that as�Pn

i=1 
iBi : γ 2 Rn
	
= S(t1; :::; tn)

since fBig is a basis of S. Hence the matrix statement is equivalent to asking
whether for any y , there exists a unique s 2 S(t1; :::; tn) such that

s(tj ) = yj ; j = 1; :::;n :

This is guaranteed by the unique interpolation theorem.
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To show Ω � 0, note that each Bm can be expanded in the basis fqti (x )gni=1 as

Bm(x ) =

nX
i=1

�i ;mqti (x ):

Therefore,

B 00
m(x ) =

nX
i=1

�i ;mq
00
ti
(x ) =

nX
i=1

�i ;mk
00
ti
(x ); m = 1; :::;n :

Consequently, we can make use of our earlier calculation (�) to getZ 1

0

B 00
m(x )B

00
k (x )dx =

nX
i=1

nX
j=1

�i ;m�j ;k

Z 1

0

k 00ti (x )k
00
tj
(x )dx =

(�)
=

nX
i=1

�i ;m

nX
j=1

k(ti ; tj )�j ;k :

Equivalently, Ω = Θ>KΘ, for Θ = f�i ;mgni ;m=1 so Ω � 0. .
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Theorem (Splines Minimise Penalised Least Squares)

Given covariates 0 = x1 < : : : < xn = 1 and responses fyigni=1, the functional

L(f ) =

nX
i=1

�
yi � f (xi )

�2
+ �

Z 1

0

(f 00(u))2du

is uniquely minimised at a natural cubic spline f̂ (x ) with knots fxj gnj=1 expressed
as

f̂ (x ) =

nX
j=1


̂jBj (x );

with
(
̂1; : : : ; 
̂n)

> = γ̂ = (B>B + �Ω)�1B>y ;

where

fBj (x )gnj=1 is any basis for natural cubic spline basis with knots fxj gnj=1

y = (y1; : : : ; yn)
>

B = fBj (xi )gni ;j=1 is invertible.

Ω =
nR 1

0
B 00
i (t)B

00
j (t)dt

on
i ;j=1

is non-negative definite.
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Proof.

Let f 2 C 2 be a candidate minimiser, and let s(x ) be the unique element of
S(t1; :::; tn) that interpolates f(tj ; f (tj )gnj=1. Then,

L(f ) =

nX
i=1

�
yi � f (xi )

�2
+ �

Z 1

0

(f 00(u))2du

=

nX
i=1

�
yi � s(xi )

�2
+ �

Z 1

0

(f 00(u))2du

�
nX
i=1

�
yi � s(xi )

�2
+ �

Z 1

0

(s 00(u))2du = L(s):

with equality only if f is itself a spline. Therefore, minimisation of L over all of
C 2, reduces to minimisation of L over the vector space S(t1; :::; tn). Since
fB1; :::;Bng is a basis for S(t1; :::; tn), our problem is equivalent to minimising

G(γ) =
Pn

j=1

�
yj �

Pn

i=1 
iBi (xj )
�2

+ �
R 1
0

�Pn

i=1 
iB
00
i (u)

�2
du

over γ = (
1; :::; 
n)
> 2 Rn .
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In matrix notation, we want to minimize w.r.t. γ the expression

(y �Bγ)>(y �Bγ) + �γ>Ωγ:

This is a ridge regression problem, and will admit the unique solution

γ̂ = (B>B + �Ω)�1B>y

provided the matrix B>B + �Ω is indeed invertible. This follows from the fact
that B is invertible and Ω is nonnegative definite, as per our last corollary.
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