
Problem 1. Define H := X(X⊤X)−1X⊤, where X is a non-stochastic n× p full rank matrix with p ≤ n. Show
that

1. H is idempotent and symmetric, meaning that H2 = H and H⊤ = H.

2. the eigenvalues of H are either 0 or 1.

3. H is a projection matrix onto the column space of X, S (X). Is this still the case if the columns of X are
not linearly independent?

4. the trace of H, tr(H), is equal to p and thus rank(H) = p.

Problem 2. Show that orthogonal projection matrices1 are unique: if P and Q are orthogonal projection
matrices onto a subspace V of Rn, then P = Q.

Problem 3. Suppose the n × p full-rank design matrix X (n ≥ p) can be written as [X1 X2 ] with blocks
X1, an n × p1 matrix, and X2, an n × p2 matrix. Show that H − H1 is an orthogonal projection matrix.
(H1 = X1(X

⊤
1 X1)

−1X⊤
1 )

Problem 4. Suppose that A,X ∈ Rn×n, x ∈ Rn. Show that

1. ∂
∂xAx = A⊤;

2. ∂
∂xx

⊤Ax = (A+A⊤)x;
[
Note the special case ∂

∂xx
⊤x = 2x.

]
3. ∂

∂X tr(X) = In.

Problem 5. Let X be an n × p full rank real matrix with p ≤ n and Ω an n × n positive definite matrix,
meaning that v⊤Ωv > 0 for all v ∈ Rn \ {0n}.

1. Show that B = X⊤ΩX is positive definite and thus invertible. Deduce from this fact that X⊤X is
invertible.

2. Show that B is not necessarily invertible if we only assume that Ω is real, symmetric and invertible.

Problem 6. Let Y1, . . . , Yn be i.i.d. from N (µ, σ2).

Show that the log-likelihood satisfies

ℓ(µ, σ2) = −1

2

n log σ2 +
1

σ2

n∑
j=1

(yj − µ)2

+ const

and the maximum likelihood (ML) estimates of µ and σ2 are

µ̂ = ȳ and σ̂2 =
1

n

n∑
j=1

(yj − ȳ)2.

Problem 7. Let Σ be an p × p positive definite covariance matrix. We define the precision matrix Q = Σ−1.
Suppose the matrices are partitioned into blocks,

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
and Σ−1 = Q =

(
Q11 Q12

Q21 Q22

)
with dim(Σ11) = k × k and dim(Σ22) = (p− k)× (p− k). Prove the following relationships

(a) Σ12Σ
−1
22 = −Q−1

11 Q12

(b) Σ11 − Σ12Σ
−1
22 Σ21 = Q−1

11

(c) det(Σ) = det(Σ22) det(Σ1|2) where Σ1|2 = Σ11 − Σ12Σ
−1
22 Σ21.

1Note: the projection is orthogonal, not the matrix — the latter is not invertible if p < n! The three defining properties of an
orthogonal projection matrix onto V are (1) Pv = v for any v ∈ V, (2) symmetry and (3) idempotency.

1



Problem 8. Let Y ∼ Nn(µ,Σ) and consider the partition

Y =

(
Y1

Y2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where Y1 is a k × 1 and Y2 is a (n− k)× 1 vector for some 1 ≤ k < n. Show that the conditional distribution
of Y1 | Y2 = y2 is Nk(µ1 +Σ12Σ

−1
22 (y2 − µ2),Σ1|2) and Σ1|2 is the Schur complement of Σ22.

Hint: write the joint density as p(y1, y2) = p(y1 | y2)p(y2) and express the joint density in terms of the precision
matrix Q. It suffices to consider terms in p(y1, y2) that depend only on y1 (why?). The conditional distribution
can then be identified by its functional form directly.

Problem 9. Let Z ∼ Nn(0n, In) and Y ∼ Nn(µ,Σ) with Σ positive definite.

(a) Let A be an orthogonal matrix. Show that A⊤Z ∼ Nn(0n, In).

(b) Show that C−1(Y −µ) ∼ Nn(0n, In) where C is the Cholesky root of Σ, the unique lower triangular matrix
with positive diagonal elements such that Σ = CC⊤.

(c) Let H be a n× n projection matrix of rank k ≤ n with real entries. Show that Z⊤HZ ∼ χ2(k).

(d) Show that (Y − µ)⊤Σ−1(Y − µ) ∼ χ2(n).

(e) Let A be a non-negative definite matrix. If AΣA = A, then show that (Y − µ)⊤A(Y − µ) ∼ χ2(k), where
k = tr(AΣ).

Problem 10. Consider a singular value decomposition (SVD) of the design matrix X = UDV⊤, where U is
an n× p orthonormal matrix (meaning U⊤U = Ip and the columns of U are orthogonal vectors), D is an p× p
diagonal matrix and V is an p× p orthogonal matrix. Show that the hat matrix H = X(X⊤X)−1X⊤ does not
depend on V.

Problem 11. (Non-linear ↔ linear models). This exercise has the goal of showing that a non-linear model can
(sometimes) be transformed into a linear one. For instance, the model y = β1(x+ β3)

β2(ε2 + 1) can be written
as

log(y) = log(β1)︸ ︷︷ ︸
β∗
1

+ β2︸︷︷︸
β∗
2

log(x+ β3) + log(ε2 + 1)︸ ︷︷ ︸
ε∗

,

with β3 fixed, and
[
1 log(x+ β3)

]
as design matrix. Moreover, we need β1 > 0, x+ β3 > 0 in order to do the

transformation.

Write, when possible, the following models as linear regressions, either by transforming and/or by fixing some
parameters. Specify the new parameter (β∗), the new error (ε∗), restrictions (e.g. β1 > 0) and give the design
matrix, as in the example above:

a) y = β0 + β1/x+ β2/x
2 + ε

b) y = β0/(1 + β1x) + ε

c) y = β0/(β1x) + ε

d) y = 1/(β0 + β1x+ ε)

e) y = β0 + β1x
β2 + ε

f) y = β0 + β1x
β2

1 + β3x
β4

2 + ε

g) y = β1x
β2

1 cos(x2)
β3ε

h) y = β1 + xβ2

1 (2 + cos(x2))
β3(ε2 + 1)

Problem 12. Let Yi = β0 + β1xi + ϵi, i = 1 . . . , n.

a) Write down the design matrix X. Calculate the elements of X⊤X, X⊤Y and (X⊤X)−1.

b) Show that β̂1 =
∑n

i=1 xiYi−nx̄Ȳ∑n
i=1 x2

i−nx̄2 , where x̄ = 1
n

∑n
i=1 xi and Ȳ = 1

n

∑n
i=1 Yi. How do you interpret the

estimate?

Problem 13. (Factors and Interactions – Linear Models in R)

In R, a model formula has the following general form response~expression. The right-hand side expression
follows certain rules. For example, intercept is present unless removed by -1 and powers have to be designated
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with I(x^2). For example, y ~ x+I(x^2)-1 defines a model where y depends on x quadratically and the
intercept is set to zero.

For this exercise, suppose that

y =


217
143
186
121
157
143

 , x =


1
0
2
0
1
0

 , a =


1
1
1
2
2
2

 , b =


1
2
3
1
2
3

 .

We can assign a toy meaning to this toy data set for illustration purposes: let yj be the stress level of the
j-th measured individual. We would like to model the mean stress level based on the number of children the
individual has (denoted xj), the sex of the individual (denote aj and labeled 1 for female and 2 for male), and
the marital status of the individual (denoted bj and labeled 1 for single, 2 for married and 3 for divorced).
Notice that the values in vectors a and b are only labels here (denoting groups, classes, or levels).

a) A factor is a categorical/qualitative variable, which may not have a numerical meaning (e.g. a group-
allocating variable such as a and b). For example, consider the following model of stress value based on
sex only:

yj = β0 + α1 + εj , j = 1, 2, 3; yj = β0 + α2 + εj , j = 4, 5, 6;

i.e. the mean stress value is allowed to be different for males and females. We can write the model in a
single equation using indicators:

yj = β0 + α11(aj=1) + α21(aj=2) + εj , (1)

where 1E = 1 if the expression E is true, and 0 otherwise.

I. Give the design matrix corresponding to model (1).

II. Notice that this matrix is not full-rank. What is the consequence on the parameters estimation?

III. Suppress the column corresponding to α1 of this matrix in order to have a full-rank matrix. What
is now the interpretation of the parameters β0 and α2?

IV. When the model includes the constant β0, R automatically suppresses the first level of each factor.
Give the design matrix corresponding to the following models:

(i) y~b, (ii) y~x+a, (iii) y~a+b

b) An interaction of two variables (say a and x) is written in R as a:x or a*x. Adding the interaction
term a:x to the model y~a+x, i.e. forming the model y~a+x+a:x adds product effect(s) between the two
variables into the model, e.g.

yj = β0 + α21(aj=2) + β1xj + β2xj1(aj=2) + ϵj ,

where the term β2xj1(aj=2) was added by the interaction. Note that a*x is a shorthand for y~a+x+a:x,
i.e. the operator ‘*’ adds both the main terms and the interaction term to the model. This is convenient,
because one is very rarely interested in having the interaction term without the main terms.

Assuming existence of a new continuous regressor (a new continuous variable) z = (0, 1, 5, 2, 1, 1)⊤, write
down the regression function (a mathematical expression for Eyj) of the following models and find the
design matrices corresponding to those models.

(i) y~x*b, (ii) y~x*z (iii) y~a*b, (iv) y~z+I(x^2).

c) Assuming further that we have many more observations than those n = 6 given above, write down the
regression function of y~x*a*b.

d) Explain the difference between considering an ordinal variable (such as b) as a factor and considering it
as a numerical variable:

(i) y~as.factor(b), (ii) y~as.numeric(b).

What happens when we use variable a instead of b?
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Problem 14. (Confounders and Simpson’s paradox) In this exercise, we are interested in the dependence of
a standardized test percentile on the grade point average (GPA) of students of a certain high school in the
US. The data file percentile.RData also contains the variable grade, which determines the study age of the
students.

a) Load the data and create a scatterplot of percentile on GPA.

b) Fit the linear model percentile~GPA and add the regression line to your scatterplot from part a). What
would be your conclusion about the relationship of percentile on GPA based on this model? How does the
model quantify this relationship? Does this make sense?

c) Add the variable grade to the model as a factor. How does this change your qualitative conclusions? How
does the new model quantify the dependency? Are the conclusions sensible now?

d) Add the interaction term between GPA and grade to your model. What is now different compared to part
c)?

Problem 15. Assume a linear model was developed for the blood glucose concentration (Y ) of a patient after
giving u units of a medicament to the patient with weight w and sex g (0=male, 1=female). In this model, the
effect of weight w and the medicament dose u on the glucose concentration Y is different for males and females.
Contrarily, the increase of the medicament dose u by 1 has (for two patients of the same sex and weight) the
same effect on Y regardless of the (actual value of the) weight of the patient.

a) Write down the regression function of the model, such that the model has the interpretation above.

b) Assume the first observation is based on a male, 80 kg, who was given 10 units of the medicament. The
second observation is based on a female, 60 kg, who was given 8 units of the medicament. Write down the
first two rows of the design matrix.

c) How would you test whether weight w has different effect on Y based on the sex g?

Problem 16. Suppose the n× p full-rank design matrix X can be partitioned into two blocks as [X1 X2 ] and
let MX1

:= In −HX1 . Show that HX = HX1 +HMX1
X2 , where HMX1

X2 is the projection on to the span of
MX1

X2. (Draw a 3D picture to visualize what this result actually says.)

Problem 17. (Forecast and confidence intervals).

The following table gives the estimations, the standardised errors and the correlations for the model y =
β0 + β1x1 + β2x2 + β3x3 + ε adjusted for n = 13 cement data of the example given at the course.

Estimate SE Correlations of Estimates

(Intercept) 48.19 3.913 (Intercept) x1 x2

x1 1.70 0.205 x1 -0.736

x2 0.66 0.044 x2 -0.416 -0.203

x3 0.25 0.185 x3 -0.828 0.822 -0.089

a) Explain how we can compute the standardised errors and correlations in the table above.

b) For this model, what is the forecast of y for x1 = x2 = x3 = 1? How much would the prediction increase
if x1 = 5? And if x1 = x2 = 5?

c) For this model, compute, using only the information above and the fact that the quantiles are t9(0.975) =
2.262 and t9(0.95) = 1.833, the 0.95 confidence intervals for β0, β1, β2 and β3. Compute also a 0.90
confidence interval for β2 − β3.

Problem 18. (Linear Gaussian models and space rotations) Let

Y = Xβ + ε,

be a Gaussian linear model, where X is injective, and ε ∼ N(0, σ2I). We know that if A is an orthogonal matrix,
then Ỹ = AY follows a linear Gaussian model as well,

Ỹ ∼ N (X̃β, σ2I),

with X̃ = AX. We will consider some particular cases of the orthogonal matrix A:
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I. A = U⊤, where X = UΛV ⊤ is the singular values decomposition of X.

II. A = Q⊤, where X = QR is the QR decomposition of X

For each of these cases,

a) Compute the adjusted values ˆ̃y as functions of ỹ. What can we say about their first p coordinates? And
about their last n− p coordinates?

b) Compute the residuals of model Ỹ . What can we say about their first p residuals? And about their last
n− p residuals?

c) Recall that residuals are usually dependent. What do we notice here?

Hint: Start by computing the hat matrix H̃ for both cases I. and II.

Problem 19. (The best design)

Let us consider the simple regression model

yi = β0 + β1xi + εi, i = 1, . . . , n,

where β0, β1 ∈ R, E[ε] = 0 and var(ε) = σ2In (and n ≥ 2).

a) Find the design matrix corresponding to this model and give a necessary and sufficient condition for it to be
full rank.

b) Find the covariance matrix of the least squares estimator β̂ = (β̂0, β̂1)
⊤.

c) Let us suppose that we can design the experiment by choosing xi ∈ [−1, 1] arbitrarily. Which is the best

choice of xi that minimises the variance of β̂1?

Problem 20. (Reformulation of the Gauss-Markov theorem)

Let Y = Xβ + ε with E(ε) = 0, var(ε) = σ2I. Let β̂ be the least squares estimator of β, and β̃ another linear
and unbiased estimator of β.

Show that
MSE(c⊤β̃) ≥ MSE(c⊤β̂), ∀c ∈ Rp,

is equivalent to the conclusion of the Gauss-Markov theorem. Here, MSE(θ̂) = E((θ̂ − θ)2) is the mean square

error of θ̂.

Recall: MSE(θ̂) = bias(θ̂)2 + var(θ̂).

Problem 21. (Diagnostic graphics)

a) Figure 1 represents the standardised residuals as a function of values adjusted for the linear model derived
from four different datasets. For each case, discuss the adjusting and explain briefly how you would try
to remedy the possible insufficiency.

b) Figure 2 shows four Q-Q Gaussian plots. In all the cases, the data do not follow the Gaussian distribution.
In fact, the data are generated from a distribution with

i) tails haevier than Gaussian tails;

ii) tails lighter than Gaussian tails;

iii) a positive skewness coefficient;

iv) a negative skewness coefficient.

Associate each case i)–iv) with a Q-Q plot of Figure 2.

Problem 22. (QQ plots)

The goal of this exercise is to justify the use of the QQ plot to “see” whether a sample x1, . . . , xn comes from
the normal distribution. Let X1, . . . , Xn ∼ N(0, 1) be i.i.d, and let Φ be the cumulative distribution function
of the normal law N(0, 1).

1. Show that Φ(X1), . . . ,Φ(Xn) ∼ U([0, 1]) are i.i.d., where U([0, 1]) denotes the uniform law on [0, 1].
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Figure 1: Standardised residuals as a function of values adjusted for four Gaussian models.
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Figure 2: Four Q-Q Gaussian plots where the data do not follow a Gaussian law.
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2. (Bonus, i.e. this part can be skipped, we just need the form of the density below.)
For the kth order statistic V(k) of a sample of n uniform variables on [0, 1], as given in subproblem 3 below,
prove that V(k) ∼ Beta(k, n+ 1− k) with probability density function:

fk(x) = n

(
n− 1

k − 1

)
xk−1(1− x)n−k, x ∈ [0, 1].

Hint: Even though there are not many calculations, it is not an easy exercise. Let A = {0 < v1 < · · · <
vn < 1} ⊂ [0, 1]n. For (v1, . . . , vn) ∈ A, use the symmetry of the problem to write

P
(
V(1) ≤ v1, . . . , V(n) ≤ vn

)
as a n variables multiple integral. It is not advisable to compute explicitly this integral, but we can find
a (very!) easy explicit formula for the joint distribution

∂n

∂v1 . . . ∂vn
P
(
V(1) ≤ v1, . . . , V(n) ≤ vn

)
.

Then, the marginal density of V(k) is found by integrating the joint density over all other variables.

3. Let V1, . . . , Vn ∼ U([0, 1]) be i.i.d., and let

V(1) ≤ V(2) ≤ · · · ≤ V(n)

be the associated order statistics. Compute the expectation of V(k).

4. Let zα be the quantile α of the normal law N(0, 1), defined by

Φ(zα) = α.

Explain why E[X(k)] ≈ zk/(n+1). A rigorous justification is not necessary. Link it with the QQ plot.

Hint: It is necessary to approximate E[f(X)] ≈ f(E[X]) for a function f slightly non linear.

Problem 23. We consider the linear model with n > 8 and p = 2, where

E[yj ] = β0, j = 1, . . . , n− 2,

E[yj ] = β0 + β1, j = n− 1, n.

a) Writing the model in the form y = Xβ + ε, find the least squares estimator β̂ of β as a function of

ỹ1 = (n− 2)−1
∑n−2

j=1 yj and ỹ2 = (yn−1 + yn)/2.

b) Calculate the hat matrix for this model, verify that its trace is equal to p and find the fitted values ŷ.

c) Suppose yn−1 = yn = ỹ2. Find the leverages hjj , the standardised residuals, and Cook’s statistics. Comment
on this.

Problem 24. (t-test)

Let Y = Xβ + ϵ with ϵ ∼ N (0, σ2I) and X ∈ Rn×p of full column rank. Let us denote the t-statistic for the
j-th parameter as

t =
β̂j − βj

ŝe(β̂j)
,

where se(β̂j) = (var(β̂j))
1/2 is the standard deviation of the estimator β̂j and ŝe(β̂j) is a suitable estimator of

thereof. Show that t ∼ tn−p.

Problem 25. When we adjust the model y = β0 + β1x1 + β2x2 + β3x3 + ε to the cement data set (n=13, slide
55), R gives us the following table:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 48.19363 3.91330 12.315 6.17e-07 ***

x1 1.69589 0.20458 8.290 1.66e-05 ***

x2 0.65691 0.04423 14.851 1.23e-07 ***

x3 0.25002 0.18471 1.354 0.209

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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a) Explain in details how we compute the values in the columns “t value” and “Pr(>|t|)”. Which is the
significance of these values? Comment the observed values.

b) Knowing that ĉorr(β̂2, β̂3) = −0.08911, which is the p value for the null hypothesis β2 − β3 = 0? Try to
find the value of the test statistics without using R. For a test with a threshold of 5%, can we reject the null
hypothesis?

Problem 26. [REDUNDANT] Suppose the n× p full-rank design matrix X can be partitioned into two blocks
as [X1 X2 ] and let MX1

:= In −HX1
. Show that HX = HX1

+HMX1
X2

, where HMX1
X2

is the projection on
to the span of MX1X2.

Problem 27. (Frisch–Waugh–Lovell theorem) Consider the linear regression y = X1β1 + X2β2 + ε with
Eε = 0n. Let y be the observed response and suppose the n× p full-rank design matrix X can be written as the
partitioned matrix [X1 X2] with blocks X1, an n× p1 matrix, and X2, an n× p2 matrix. Let β̂1 and β̂2 be the
ordinary least square (OLS) parameter estimates from running this regression. Suppose we run least squares
on this model to obtain

y = X1β̂1 +X2β̂2 + e, (E1)

Define the orthogonal projection matrix HX = X(X⊤X)−1X⊤ as usual and HXi = Xi(X
⊤
i Xi)

−1X⊤
i for

i = 1, 2. Similarly, define the complementary projection matrices MX1
= In −HX1

and MX2
= In −HX2

.

Prove the Frisch–Waugh–Lovell (FWL) theorem, i.e., show that the ordinary least square estimates β̂2 and the
residuals e from (E1) are identical to those obtained by running ordinary least squares on the regression

MX1y = MX1X2β2 + residuals. (E2)

Hint: starting from (E1) assuming β̂2 has been computed, pre-multiply both sides so as to obtain an expression

in terms of β̂2 only on the right-hand side and show the latter coincides with the least square estimate from
(E2).

Problem 28. (t-test vs. F -test for model-submodel testing, requires the previous problem)

Consider the linear regression y = X1β1 + x2β2 + ε under the assumption that X = (X⊤
1 ,x

⊤
2 )

⊤ is an n × p
full-rank non-stochastic design matrix with x2 an n×1 column vector and ε ∼ Nn(0n, σ

2In). We are interested
in testing whether the parameter β2 = 0: the Wald test t-statistic W and the Fisher test statistic F for this
hypothesis are, respectively,

W =
β̂2

se(β̂2)
, F =

RSS0 − RSS

RSS/(n− p)
,

where se(β̂2) =
[
s2Var

(
β̂2

)
/σ2

]1/2
. Under the null hypothesis H0 : β2 = 0, W ∼ T (n−p) and F ∼ F(1, n−p).

Show algebraically that W 2 = F .

Note that the two statistics lead to the same inference because the square of a T (n − p) distributed random
variable has distribution F(1, n− p).

Problem 29. We consider the cement data with n = 13. The residuals sum of squares (RSS) for all the possible
models (containing always the denoted variables and the intercept) are given below:

Model RSS Model RSS Model RSS
- - - - 2715.8 1 2 - - 57.9 1 2 3 - 48.1
1 - - - 1265.7 1 - 3 - 1227.1 1 2 - 4 48.0
- 2 - - 906.3 1 - - 4 74.8 1 - 3 4 50.8
- - 3 - 1939.4 - 2 3 - 415.4 - 2 3 4 73.8
- - - 4 883.9 - 2 - 4 868.9

- - 3 4 175.7 1 2 3 4 47.9

Calculate the analysis of variance table (as in slide 163) adding x4, x3, x2 and x1 to the model in this order,
and test which term should be included in the model for the threshold α = 0.05. Compare with slide 164.

Problem 30. (Orthogonal variables) Let us consider the regression

y = Xβ + ε = (X1, X2)

(
β1

β2

)
+ ε,
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where X = (X1, X2), β
⊤ = (β⊤

1 , β⊤
2 ), X1 is n× p1, X2 is n× p2 (both injective) such that

X⊤
1 X2 = 0p1×p2 .

Let Hi be the hat matrix associated to Xi.

1. What is the geometrical interpretation of X⊤
1 X2 = 0?

2. Calculate H as a function of Xi and of Hi, then, calculate the products

H1H2, H2H1, HH1, H1H.

What do you notice, which is the geometrical interpretation?

3. Show that each of the following quantities are equal to Hy:

(a) H1y +H2y;

(b) H1y +H2e1, with e1 = (I −H1)y;

(c) H1y +He1.

4. Interpret these equalities in relation to the models

y = Xβ + ε (M)

and to its submodels
y = X1β1 + ε, (M1)

y = X2β2 + ε. (M2)

Problem 31. (Orthogonal variables and ANOVA)

Let us consider the regression

y = Xβ + ε = (X1, . . . , Xk)

β1

...
βk

+ ε

where Xi is n× pi, all the Xi are injective, and

i ̸= j =⇒ X⊤
i Xj = 0.

Let H be the hat matrix associated to X, Hi the hat matrix associated to Xi and β̂ = (X⊤X)−1X⊤y =

(β̂⊤
1 , . . . , β̂⊤

k )⊤. We denote by δij Kronecker’s delta: δij = 1 if i = j, 0 otherwise. For an ordered set L ⊂
{1, . . . , k} we define XL = (Xi : i ∈ L) and β̂L = (β̂⊤

i : i ∈ L)⊤. For example, if L = {1, 2, 4}, XL = (X1, X2, X4)
and

β̂L =

β̂1

β̂2

β̂4

 .

We define RSSL = ∥y −HLy∥2, where HL = XL(X
⊤
LXL)

−1X⊤
L .

1. Show that H = H1 + · · ·+Hk and that HL =
∑

i∈L Hi.

2. Show that HiHj = δijHi.

3. Show that β̂j = (X⊤
j Xj)

−1X⊤
j y.

4. For j ̸∈ L, calculate
RSSL −RSSL∪{j},

and show that this expression does not depend on L.

5. Which is the interpretation of point 4. with respect to ANOVA?

Problem 32. (Automatic model selection)

We consider the cement data. The residuals’ sum of squares (RSS) and the Mallows’ Cp for the model containing
the ordinate at the origin are the following:
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Model RSS Cp Model RSS Cp Model RSS Cp

- - - - 2715.8 442.58 1 2 - - 57.9 1 2 3 - 48.1
1 - - - 1265.7 202.39 1 - 3 - 1227.1 197.94 1 2 - 4 48.0
- 2 - - 906.3 1 - - 4 74.8 5.49 1 - 3 4 50.8
- - 3 - 1939.4 314.90 - 2 3 - 415.4 62.38 - 2 3 4 73.8 7.325
- - - 4 883.9 138.62 - 2 - 4 868.9 138.12

- - 3 4 175.7 22.34 1 2 3 4 47.9 5

1. Utilise the selection methods forward selection and backward elimination to chose some models for these
data, including the significant variables at level 5%. Utilise the F -test

F =
RSS(β̂L)−RSS(β̂L∪{j})

RSS(β̂full)/(13− 5)

to decide if the addition of the j-th variable is significant.

2. Another selection criterion is the Mallow’s Cp:

Cp =
SSp

s2
+ 2p− n.

Notice that here s2 is the variance estimator in the complete model.

(a) How could we use this criterion? Calculate the missing Cp.

(b) Which is the model selected by this criterion using the forward selection, and then backward elimi-
nation? Among all the models considered, which one is the best, according to this criterion?

Problem 33. (AIC and Gaussian linear models)

Show that the AIC criterion for a Gaussian linear model, base on a response vector of size n, with p covariates
and σ2 unknown, can be written as :

AIC = n log σ̂2 + 2p+ const,

where σ̂2 = SSp/n is the maximum likelihood estimator of σ2

Problem 34. (Cross validation and number of regressions)

Let y = Xβ+ϵ, and β̂ denote the OLS estimator of β. The (leave-one-out) cross validation uses one observation
(xk, yk) as the validation set and the remaining observations (X−k, y−k) as the training set and repeating the
procedure for each k = 1, . . . , n. With the k-th observations xk ∈ Rp and yk ∈ R deleted, let X−k ∈ R(n−1)×p,

y−k ∈ Rn−1, and β̂−k ∈ Rp denote the corresponding design matrix, the responses, and the OLS estimator,
respectively (symbolically, y−k = X−kβ−k + ϵ−k).

a) Use the Sherman-Morrison formula

(
A+ uv⊤

)−1
= A−1 − A−1uv⊤A−1

1 + v⊤A−1u

to show that

(X⊤
−kX−k)

−1 =

(
I +

(X⊤X)−1xkx
⊤
k

1− hkk

)(
X⊤X

)−1
.

b) Noting that x⊤
k is the k-th row of the original design matrix X, show that

X⊤
−ky−k = X⊤y − ykxk and x⊤

k (X
⊤X)−1X⊤

−ky−k = (1− hkk)yk − ek ,

to conclude that

β̂−k = β̂ −
ek

(
X⊤X

)−1
xk

1− hkk
.

c) Use the previous formula to deduce that the cross-validation criterion

CV =

n∑
k=1

(yk − x⊤
k β̂−k)

2. (2)

11



can be written as

CV =

n∑
k=1

(yk − x⊤
k β̂)

2

(1− hkk)2
. (3)

What is the advantage of using (3) instead of (2)?

Problem 35. Let us suppose that y = µ + ε where ε ∼ N (0, σ2In) and that we adjusted to y a linear model
with the full rank design matrix Xn×p, n ≥ p, and the corresponding hat matrix H. Let D be the diagonal
matrix with elements 1− h11, . . . , 1− hnn. Using the previous exercise, show that

E[CV ] = µ⊤(I −H)D−2(I −H)µ+ σ2tr(D−1),

and deduce that if µ belongs to the space generated by the columns of X, then E[CV ] ≈ (n+ p)σ2.

Problem 36. (Model selection in R )

a) Use the criteria backward stepwise and forward stepwise to choose a model for the data“Supervisor Perfor-
mance” (SPD) from R package RSADBE

Which model has the best AIC value?

b) Using the package leaps, find the model with the best BIC value among all submodels.

Problem 37. (Ridge regression)

Let X = [1n Z] be an n × p design matrix with centered inputs Z, meaning that Z⊤1n = 0p−1. Consider the
model y = 1nβ0 + Zγ + ε, where Eε = 0n and Var (ε) = σ2In. The ridge estimators are defined by

(β̂0, γ̂λ) = argmin
(β0,γ)

∥y − 1nβ0 − Zγ∥22 + λ∥γ∥22.

From slide 211, we know that the ridge estimators are given by

(β̂0, γ̂λ) = (y, (Z⊤Z+ λIp−1)
−1Z⊤y)

a) Show that the fitted value of the ridge regression are

ŷλ = y1n +

p−1∑
j=1

ω2
j

ω2
j + λ

(
u⊤
j y

)
uj ,

where uj and ωj are the left singular column vectors and the singular values of Z, respectively. Discuss what

happens to ŷλ when some of the {ω2
j }

p−1
j=1 are close to zero.

b) What happens to the ridge estimates if the columns of Z are orthogonal, i.e. Z⊤Z = Ip−1? Explain why it
is preferable to standardize the columns of Z so they have approximately unit variance.

c) Show that λ 7→
∥∥γ̂λ∥∥22 is a decreasing function.

Problem 38. Let λ∗ = 2max1≤j≤q |Z⊤
j y|. Show that{

λ > λ∗ =⇒ γ̂lasso = 0,

λ < λ∗ =⇒ γ̂lasso ̸= 0.

Hint: Use the convexity for the first part.

Problem 39. Let X = [1n Z] be an n× p design matrix with centered inputs Z, meaning that Z⊤1n = 0p−1.
Consider the model y = 1nβ0 + Zγ + ε, where Eε = 0n and Var (ε) = σ2In. The ridge estimators are defined
by

(β̂0, γ̂λ) = argmin
(β0,γ)

∥y − 1nβ0 − Zγ∥22 + λ∥γ∥1.

We know that β̂0 = y regardless of the smoothing parameter λ ≥ 0, thus

γ̂λ = argmin
γ

∥y − 1ny − Zγ∥22 + λ∥γ∥1.

Unlike the ridge regression, lasso solution may not be unique. Nonetheless, the adjusted values are unique: let
γ̂1 and γ̂2 be two lasso solutions (for the same smoothing parameters λ).
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a) Show that Zγ̂1 = Zγ̂2, using convexity.

b) Show that, if λ > 0, then ∥γ̂1∥1 = ∥γ̂2∥1 .

Problem 40. (Median regression)
Let Yi = β0 + β1xi + ϵi, i = 1, . . . , n. Note that the median of a random variable Y is defined as

med(Y ) = argmin
c∈R

E|Y − c| .

Let Xi = (1, xi)
⊤ and

β̂ = argmin
β

∑
(Yi − β⊤Xi)

2 , β̃ = argmin
β

∑
|Yi − β⊤Xi|

1. Show that E|Y − β⊤X| is minimized for β⊤X = med(Y ) and conclude why β̃ is sometimes called the
”median regression estimate”.

2. Compare what are the estimators β̂ and β̃ actually estimating in the cases of ϵ ∼ N(0, 1) and ϵi ∼ Exp(1).

Problem 41. (Naive kernel density estimator)
Let X1, . . . , Xn be a random sample from a distribution function F . Let f = F ′ be the density. For every
x ∈ R, the estimator of f is given as

f̂(x) :=
Fn(x+ h)− Fn(x− h)

2h
,

where Fn is the empirical distribution function. Show that f̂ is a kernel density estimator (check out “kernel
density estimation” on Wikipedia for definition), i.e. specify the weighting function, also known as the kernel.

Problem 42. (Generalized least squares)
Consider the linear model Y = Xβ + ε, where y is an n × 1 vector of responses, X is an n × p full-rank non-
stochastic design matrix and the error vector ε ∼ Nn(0n,Σ) for Σ ̸= σ2In a known positive definite covariance
matrix. Let y be the observed response vector.

1. Show that the maximum likelihood estimator (MLE) of β is the vector that minimizes

(y −Xβ)⊤Σ−1(y −Xβ).

2. Show that the maximum likelihood estimator of β, known as generalized least squares estimator (GLS),
is of the form

β̂GLS = (X⊤Σ−1X)−1X⊤Σ−1y.

3. Derive the distribution of β̂GLS.

4. Show that the ordinary least squares (OLS) estimator β̂ is an unbiased estimator of β, but is not the best
linear unbiased estimator (BLUE) of β. State carefully any result you use.

Problem 43. Consider the linear model y = Xβ + ε, with εj
iid∼ g(·); suppose that E(εj) = 0 and var(εj) =

σ2 < ∞ is known. Suppose that the MLE of β is regular, with

ig =

∫
−∂2 log g(u)

∂u2
g(u)du =

∫ {
∂ log g(u)

∂u

}2

g(u)du.

1. Show that the asymptotic relative efficiency (ARE) of the leas squares estimator of β relative to MLE of
β is

1

σ2ig
.

2. What is it reduced to if g is the gaussian density?

3. What about if g is the density of the Laplace distribution?
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Problem 44. Give the equivalent of the H matrix for non-parametric regression with kernel smoothing.

Problem 45. (Cubic spline)
Let n ≥ 2 and a < x1 < x2 < · · · < xn < b. Denote by N(x1, x2, . . . , xn) the space of natural cubic splines with
knots x1, x2, . . . , xn. The goal of this exercise is to show that the solution to the problem

min
f∈C2[a,b]

L(f), where L(f) =

n∑
i=1

(yi − f(xi))
2 + λ

∫ b

a

{f ′′(x)}2dx, λ > 0, (4)

must belong to N(x1, x2, . . . , xn). In order to show this, we need the following theorem

Theorem. For every set of points (x1, z1), (x2, z2), . . . , (xn, zn), there exists a natural cubic spline g
interpolating those points. In other words, g(xi) = zi, i = 1, . . . , n, for a unique natural cubic spline
g. Moreover, the knots of g are x1, x2, . . . , xn.

1. Let g the natural cubic spline interpolating the points (xi, zi), i = 1, . . . , n, and let g̃ ∈ C2[a, b] another
function interpolating the same points. Show that∫ b

a

g′′(x)h′′(x)dx = 0,

where h = g̃ − g.
Hint: integration by parts

2. Using point (1) show that ∫ b

a

{g̃′′(x)}2dx ≥
∫ b

a

{g′′(x)}2dx

when the equality holds if and only if g̃ = g.

3. Use point (2) to show that if the problem (4) has a solution f̂ , thenf̂ ∈ N(x1, x2, . . . , xn).

Problem 46. Prove the proposition on slide 29:

Let Ω ∈ Rp×p be a real symmetric matrix. Then Ω is non-negative definite if and only if Ω is the covariance
matrix of some random vector Y .

Problem 47. Show that the two definitions of a positive (semi-)definite matrix on lecture slide 26 are equivalent:

For a real symmetric p× p matrix Ω, show that the statements

a) for all x ∈ Rp \ {0}, x⊤Ωx > 0 (or x⊤Ωx ≥ 0), and

b) all eigenvalues of Ω are positive (or non-negative)

are equivalent, defining Ω as a positive definite (or semi-definite) matrix.

Problem 48. Let Y be a random variable with covariance Σ =

(
5/2 3/2
3/2 5/2

)
.

1. Calculate the principal components v1 and v2.

2. Verify your calculation in R.

3. In R, simulate n = 100 data points from a distribution with mean zero and covariance Σ.

4. In R, find the principal components of the sample from the previous point, denoted by v̂1 and v̂2.

5. In R, plot the simulated data points together with the population and sample principal components.

Problem 48b. Let {x1, . . . , xn} ⊂ Rp, and X be a matrix with x⊤
i in its i-th row. Let X = UDV⊤ be the

SVD of X. Show that for q < p the optimization problem

min
Q∈Rp×q,Q⊤Q=I

n∑
i=1

∥xi −QQ⊤xi∥22
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is equivalent to
max

Q∈Rp×q,Q⊤Q=I
tr(Q⊤VD2V⊤Q)

and conclude that Q = (v1, . . . , vq) is a solution, where vi is the i-th column of V.

A note on the SVD: The full SVD of X ∈ Rn×p refers to the decomposition X = UDV⊤, where U ∈ Rn×n is an
orthogonal matrix with its columns forming a basis of Rn, V ∈ Rp×p is an orthogonal matrix with its columns
forming a basis of Rp and D ∈ Rn×p has non-zero entries only on the “diagonal”. However, some authors
(including us in this exercise) understand by SVD the compact SVD, which refers to the same decomposition
X = UDV⊤, while (let m = min(n, p)) U ∈ Rn×m and V ∈ Rm×p has orthogonal columns (but may not be
full bases anymore), and D ∈ Rm×m is a diagonal matrix. Intuitively, going from the full SVD to the compact
one, one just trims off an all-zero block of D to make it a square matrix and discards the corresponding parts of
U or V. The compact SVD is often the default in software packages, since one is seldom interested in the full
SVD. It is often clear from the context, whether the full SVD or the compact SVD is considered. In the exercise
above, the meaning of D2 would be unclear unless the compact SVD was considered. Recall that neither the
full SVD nor the compact SVD are unique.

Problem 49. In R, generate a random vector (a regressor) x ∈ R100 such that xj ⊂ [0, 2], and a random vector
of errors e ∈ R100 such that ej ∼ N(0, 1/10). Then create the dependent random variable as

yj = 10 + 2 sin(π ∗ xj) + ej .

Plot the dependent random variable against the regressor. Secondly, find a transformation of the x-axis which
reveals the approximate linear relationship between x and y. Can you see how the constants (10 and 2) affect
the plots? Go through the same for the following dependent variable:

yj = exp(15 + 3 log(x) + ej).

Problem 50. Let yi = β1 cos(x− β2) + ϵ for i = 1, . . . , 100.

a) Can you obtain estimates for β = (β1, β2)
⊤ directly by solving a sequence of least squares problems? How

do the design matrices and responses for this sequence look like?

b) Can you obtain estimates for a suitable transformation of β by solving only a single least squares problem?

c) Simulate data in R using the following code:

x <- 1.5*pi*runif(100)

y <- 1*cos(x - (-1)) + rnorm(100)/2

data1 <- data.frame(x=x,y=y)

i.e. β = (1,−1)⊤ here. Treat β as unknown and estimate it using both (a) and (b). Find the fitted values
using approach (a) and approach (b). Plot the raw data and both sets of fitted values to check if they are
the same.
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