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1. Quadratic functions and condition number. Let & = R" with the usual inner prod-
uct. Consider the quadratic function f : & — R defined by

1
flz) = éa:TAx +b'r+oc,

where A € R™" is symmetric and nonzero, b € R", and ¢ € R.

1. Give an expression for the gradient of f. What is the set of critical points? Argue that
it is nonempty if and only if b is in the image of A.

2. Show that if f is lower-bounded then b is in the image of A. Hint: remember that we have
im(A) = ker(A) because A is symmetric. Apply f to vectors from the null space of A.

From now we assume that b is in the image of A and we let d € £ be a vector such that
Ad = —b.

3. For all z € £ find an expression for f(z + d). Use it to deduce that f is lower-bounded if
and only if A is positive semidefinite.

The last two questions showed that f is lower-bounded if and only if A is positive semidefinite
and b € im(A). We assume that these conditions hold; otherwise minimizing f would not make
sense.

4. Argue that f attains its minimum value. What is the set of global minima? Under what
condition is there a unique global minimum?

5. Does f admit local minima that are not global?
6. Show that V f is Lipschitz continuous. What is the smallest Lipschitz constant L7

We found that f is lower-bounded and has Lipschitz continuous gradients: that’s all the prop-
erties we need to apply gradient descent with constant step-size. In Question 4, you should have
found that global minima of f coincide with the solutions of a linear system of equations. This
leads to a dual perspective: we could use standard linear algebra algorithms such as Gaussian
elimination to minimize f...Or: we could apply optimization algorithms to f to solve the linear
system. We adopt this second viewpoint here. To perform an iteration of gradient descent we
only need to compute a matrix-vector product with A. If A is structured (for example if it is
sparse) this operation can be done efficiently even when A is huge.



From now we consider the case where f has a unique global minimum. For a symmetric
matrix A, we define the condition number x > 1 as the ratio of its maximal to minimal
eigenvalues, that is,

o )\max(A)
B Amin(A) '

7. For n = 2 plot the level sets of f around its global optimum for k = 1 and K = 5. We
can choose A diagonal, b = 0 and ¢ = 0 for simplicity. For example:

10 5 0
A:[O 1] and A:[O 1].

In what situation do you expect gradient descent to work the best?

8. Write a script to run gradient descent with constant step-sizes 1/L. Choose a random
initial point. Try with other step-sizes, for example 1/2L and 2/L. Plot the sequence of
points that gradient descent outputs along with the level sets of f. What do you observe?

9. Can you improve the practical behavior of the algorithm with a linesearch method? In
particular, can you solve the linesearch problem exactly?

Answer.

1. The gradient of f is given by
Vf(x)=Ax +0.

The set of critical points is the set {x € R" | Vf(x) = 0}, that is, the points € R™ such
that

Ax = —b.

This linear system has a solution if and only if b is in the image of A. Note that there is
a unique solution when A is invertible.

2. Let u be a vector in the kernel of A. For all t € R we have f(tu) = tb'u +c. If b'u is
nonzero then either f(tu) or f(—tu) will go to —oo when ¢ — oco. So b is orthogonal to
the kernel of A and we deduce that b € im(A) (using the hint).

3. We let d be a vector such that Ad = —b. We find that
1
flz+d) = §(xT +dNA(x +d)+b"(x+d) +c

1 1
:§ﬁnx+fnx+§fAd+Nx+Nd+c
1

1
:§MAx+§fAd+Nd+a

If A has a negative eigenvalue then clearly f is not lower-bounded. Indeed if we let
u € &, A <0 such that Au = A\u then we find that for all £ € R

A 1 or T
ftu) = THuH + §d Ad+b'd+c.
From this we have lim;_,, f(tu) = —oo. Conversely if A is positive semidefinite then the
function x +— 2" Az is lower-bounded by 0. So we deduce that f is lower-bounded by

5dTAd+bTd +c.



4. From Question 3 we know that for all z € £ we have
1 1
flz+d) = 51«%9; + 5dTAoz +b'd+ec.

Taking « = 0 we find that f(d) = 2d"Ad + b"d + ¢. We showed in Question 3 that f
is lower-bounded by this quantity so this proves that f attains its minimum: all vectors
d such that Ad = —b are global minimizers. From Question 1 we know that they are
exactly the critical points of f. Conversely, all global minimizers must be critical points.
So we conclude that the set of global minima is the set of critical points, that is, the
vectors d such that Ad = —b. This system of equation has a unique solution if and only
if A is invertible. Since A is positive semidefinite this condition is equivalent to A being
positive definite.

5. All local minima are global minima. Indeed, if x* is a local minimizer then it is a critical
point, and we know from the previous questions that critical points are global minima.

6. For all z,y € R" we have

V() = Vil = Az = y)l
< [[Allzllz =y,

where ||Al|2 is the spectral norm (or operator norm) of A. Remember that the spectral
norm is given by

A
||AH2 _ sup || ZL‘||2

zER", £7£0 ||l‘||2
= sup |[[Az|>.
z€R™, ||z|2=1
When the matrix A is positive semidefinite the spectral norm is the maximal eigenvalue
of A, that is, ||All2 = Amax(A).

There is no better Lipschitz constant than ||A||>. Indeed, suppose there exist L < || A2
such that for all x,y € R" we have

IVf(z) =Vl < Lijz =yl

The set {x € R"™ | ||z]| = 1} (unit sphere) is compact, so there exist a vector z € R™ with
unit norm such that

[Az]] = [|All2.

(You may for example take the eigenvector associated to the largest eigenvalue of A).
Now with z = z and y = 0 we find that

IVf(z) = V)l = [|Az]]
= [lAll2
S L7

which contradicts the definition of L.

7. Figure 1 shows the level sets of f for two different values of k. When k = 1 the gradient
is always pointing towards the global minimum. When the condition number is larger the
gradient’s direction can be completely off. For this reason we expect gradient descent to
work better when & is close to 1.



Figure 1: Level sets of the function f where A has condition numbers x = 1 (left) and k =5
(right). Arrows represent the direction of the (normalized) gradient.
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Figure 2: Gradient descent with ideal step-size 1/L.

8. Figure 2 shows the iterates of gradient descent with the step-size 1/L. When r = 1
gradient descent converges to the optimum in one single iteration. Figure 3 shows the
iterates when the step-size are not exactly 1/L. When they are larger than 2/L gradient
descent doesn’t converge anymore.
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Figure 3: Gradient descent when x = 5. Step-sizes are 1/2L (left), 7/4L (middle) and 2/L
(right).
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9. Let x € R™ be the current iterate and the gradient V f(z) be the direction in which we
move from this point. A line-search algorithm would pick the step a; € R for the next
iterate

Thy1 = T — Oékvf(xk)

to have a cost as small as possible. Thus we aim at minimizing the function

g: a— flxpy —aVf(xy)).



For all & € R we have
9(a) = f(@) + SV () TAV (@0) — alef A+ )V f ()

2
!
= f(2) + 5 V() AV f(xe) = ol V f ()]
This is a second order polynomial which is minimized when
N 1)
Vf(xy) TAV f ()

The computation of this optimal step-size is cheap and speeds up convergence by a lot.
In particular, whenever the gradient points towards the direction of the global minimum
the algorithm is done in a single step.

2. The 2D Rosenbrock function.  The Rosenbrock function (https://en.wikipedia.o
rg/wiki/Rosenbrock_function) is a classical benchmark for testing optimization algorithms.
Its original definition is the bivariate function given by

f(z,y) = (a —2)* +b(y — 2°)?, with a,b > 0.
1. Show that the Rosenbrock function has a unique global minimum (z*, y*) = (a, a?).
Restrict now to the case a = 1, b = 100. The minimizer is (z*,y*) = (1, 1).

2. Compute the gradient of f.

3. Implement a fixed step-size gradient descent algorithm. Stopping criteria should include
a maximum number of iterations and a tolerance on the gradient norm.

4. Argue that V f is not Lipschitz continuous.

Gradient descent does not have global convergence guarantees with a fixed step-size because
V f is not Lipschitz continuous. However, the gradient is Lipschitz continuous in a compact
neighborhood of the global minimum. So we expect the algorithm to converge to the minimum
if we start sufficiently close, provided that the step-sizes are small enough. Consider for now
the initial point (zo,y0) = (1.2, 1.2).

5. Assess the first few iterations of your algorithm with step-size o = 1072. Does it appear
to be a good step-size?

6. The step-size a = 1073 should work better. Run your algorithm for 10° iterations and
plot the gradient norms. How close to the optimum do you get? Is starting closer
to the optimum significantly improving the convergence speed? Try for example with

(o, yo) = (1.2, 1).
The convergence of gradient descent with fixed step-sizes is very slow for this problem. This is
coming from the properties of f around the minimizer.

7. Compute the Hessian of f, that we denote by V2f. Compute the eigenvalues of V2f at
the minimizer (you can use the function eig in MATLAB). Can you diagnose the problem
of gradient descent for this optimization problem?

8. Implement gradient descent with backtracking line-search (Algorithm 3.1 in Nocedal and
Wright). Run it on the instances in Question 6 with @ =1, p = 0.5, ¢ = 107*. Is adaptive
step-sizing more efficient?


https://en.wikipedia.org/wiki/Rosenbrock_function
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Figure 4: Surface plot of the Rosenbrock function and contour plot of the log of the Rosenbrock
function (to highlight variations between small numbers). See in red the optimization path of
GD with fixed step-size a = 1073 started at (zg,yo) = (—1.2,1).

Answer.

1. The function f is nonnegative as a sum of squares. It is zero if and only if both terms
are zero. We deduce that f(z,y) = 0 if and only if z = a and y = a®. This implies that
there is a unique global minimum: (a, a?).

2. The function is smooth and two dimensional so it is convenient to compute partial deriva-
tives. We find that for all x,y we have

2(x — a) + 4bx(z? — y)
Vf(:c,y) = |: Qb(y _ 1’2) Y :| :

Notice that f has a unique critical point, which is the global minimum (a, a?).
3. See lecture notes for pseudocode.

4. For all  we find that

w0 = [

and
|V f(x,0) — V£(0,0)] > 2bz>.

There is no constant L such that this quantity is bounded by L|x| so we conclude that
V f is not Lipschitz continuous. Alternatively, we could compute the Hessian and show
that it is not upper-bounded.

5. We run gradient descent with step-size a = 1072 starting from (zg,yo) = (1.2,1.2). We
observe that the iterates diverge to infinity. After 8 iterations all entries of the iterates
are Infs and the gradient norm is NaN. This poor behavior comes from the fact that



« is too large. The iterates generated by the algorithm jump over locations where the
function value and gradient norm become larger and larger. As the gradients are not
Lipschitz continuous there is no ideal step-size. However the gradient is always Lipschitz
continuous in compact subsets of the search space. In particular it is Lipschitz continuous
in compact neighborhoods of the global minimum. If we start close enough, we expect
the method to converge if we choose the step-sizes carefully.

. With a = 1072 the iterates of gradient descent seem to converge to the global minimizer.
However, starting from (zg,yo) = (1.2,1.2) we need approximately 3 - 10* iterations to
find a point where the gradient norm is less than 1075, If we start closer with (zg,yo) =
(—1.2,1) we save only a few thousands of iterations for the same gradient norm tolerance.
The convergence is overall very slow, even with a good initial guess.

. We compute the second order partial derivatives and find that for all z,y we have

9 (1202 — 4by +2 —4bx
Vif(z,y) = _dbg 2 |-

With the parameters a = 1 and b = 100 we compute the eigenvalues of this matrix at the
global minimizer using the function eig. We find

SO — =k (V?f(a,a?)) ~ 2508.
Ao =~ 0.399 Ao ( ) ))

{Al ~ 1001.601 A

In Problem 1 we defined the condition number as the ratio between the largest and the
smallest eigenvalue of the Hessian. This number plays an important role in the local
convergence behavior of gradient descent. In particular, it indicates how elongated the
isolines are around the minimizer. This confirms our intiution that the optimum lies
at the bottow of a very narrow and steep valley (see Figure 4). In this situation, the
strategy of taking the steepest descent as an update direction will cause the iterates to
oscillates from one side of the valley to the other, making very little progress. Later in
the course, we shall see how second-order algorithms, like the Newton method and the
trust regions method, drastically improve the local convergence behavior in situations of
bad conditioning.

. See Algorithm 3.1 in Nocedal and Wright for pseudocode. We use the standard parameters
a=1,p=05 c=10"" (you may experiment with other parameters). We run this
algorithm with the initial points proposed in Question 6 and observe convergence to the
global optimum. The number of iterations to reach the same gradient norm (or function
value) is approximately reduced by a factor 3 (see Figure 5). However the convergence is
still linear and overall slow because of the large condition number.
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Figure 5: Function values and gradient norms of the iterations of gradient descent with fixed
step size @ = 1073 (blue) and backtracking line search (red). Initial point: (zg,y0) = (—1.2,1).



