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1. Constraint qualification or not? For the following sets defined by equality and inequality
constraints, determine whether they satisfy constraint qualifications everywhere or if they fail at
some point.

• S = {x ∈ Rn | Ax = b and Cx ≤ d} for some A ∈ Rm×n, b ∈ Rm, C ∈ Rp×n, d ∈ Rp.

• S = {(x, y) ∈ R2 | y = x2}. More generally, what can you say in general about a set S
defined as the graph of a differentiable function?

• S = {(x, y) ∈ R2 | x2 = y3}.

• S = {(x, y) ∈ R2 | y2 = x3 + x2}.

• S = {(x, y) ∈ R2 | (x− 1/2)2 + y2 ≤ 1 and (x+ 1/2)2 + y2 ≤ 1}.

Answer. If it holds we use LICQ or another theorem from the course. If it does not hold we
compute FxS and TxS, and we show they are not the same.

• Let x ∈ S. We showed in the course that if the active constraint at x are affine then
FxS = TxS (Theorem 8.15). This condition clearly holds since S is described by affine
equalities and inequalities.

• Constraint qualifications hold. We show a more general result. Let f : Rn → R be dif-
ferentiable and let S = {(x, y) ∈ Rn+1 | y = f(x)} be the graph of f . Then constraint
qualifications hold everywhere on S. Indeed, S is described by a single equality constraint,
h(x, y) = 0 where h(x, y) = y − f(x). We compute that the gradient of h is

∇h(x, y) =

[
∇f(x)

1

]
.

The gradient at (x, y) is non-zero so constraint qualifications are satisfied.

• The set is described by a single equality constraint, h(x, y) = 0, where h(x, y) = x2 − y3 (see
Figure ??). We compute that for all x, y we have

∇h(x, y) =

[
2x

−3y2.

]
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Figure 1: x2 = y3.

In particular the gradient is zero at the origin: it means that F(0,0)S = R2. Clearly, the
tangent cone at (0, 0) is not R2 so constraint qualifications do not hold at this point.

For all other (x, y) ∈ S the gradient ∇h(x, y) is non-zero so constraint qualifications hold.

• The set is described by a single equality constraint, h(x, y) = 0, where h(x, y) = y2−x3−x2

(see Figure ??). We compute that for all x, y we have
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Figure 2: y2 = x3 + x2.

∇h(x, y) =

[
−3x2 − 2x

2y.

]
Here again, at the origin constraint qualifications do not hold because F(0,0)S = R2 but
T(0,0)S ̸= R2.

For all (x, y) ∈ S that is non-zero the gradient is non-zero so constraint qualifications hold.

• The set is described by two inequality constraints, g1(x, y) ≤ 0 and g2(x, y) ≤ 0 where
g1(x, y) = (x − 1/2)2 + y2 − 1 and g2(x, y) = (x + 1/2)2 + y2 − 1. It is the intersection
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Figure 3: Intersection of two disks.

of two disks (see Figure ??). Constraint qualifications hold at all points because Slater’s
condition holds. Indeed, we have g1(0, 0) < 0 and g2(0, 0) < 0. So the point (0, 0) satisfies
the inequality constraints strictly.

■

2. A particular stationary point. Let E = R2. Consider the function f(x) = x2, to be
minimized on the set S = {x ∈ R2 : ∥x∥ ≥ 1} (the complement of the open unit disk). Consider

the special point x∗ =
[
0 1

]⊤
.

1. Draw the situation.

2. Show that x∗ is stationary for f on S (you can do this using normal cones for example).

3. Show that x∗ is not a local minimum for f on S.

4. What does this exercise highlight about the optimality conditions discussed in class?

Answer.

1. See Figure ??.

2. We show that x∗ is a stationary point by showing that

−∇f(x∗) =

[
0
−1

]
∈ (Tx∗S)◦.

Here we have that Tx∗S =
{
(v1, v2)

⊤ : v1 ∈ R, v2 ≥ 0
}
so that (Tx∗S)◦ =

{
(0, w)⊤ : w ≤ 0

}
.
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Figure 4: Unit disk.

3. We let

c(t) = (sin(t), cos(t))

be a curve on S such that c(0) = x∗. Then we find that f(c(t)) < f(c(0)) for t sufficiently
small. This shows that x∗ is not a local minimum, but rather a saddle-point (as it is first-order
stationary).

4. This highlights that, similarly to the unconstrained case, stationary conditions are indeed
only necessary conditions for optimality. In general, they are not sufficient (as we see here).

■

3. Intersection of disks. We let a ≥ 0 be a real parameter and define the set S ⊆ R2

through the two following inequality constraints: g1(x) = (x1 − a)2 + x2
2 − 1 ≤ 0 and g2(x) =

(x1 + a)2 + x2
2 − 1 ≤ 0.

1. Draw the set S for a few interesting values of a. (Which values? Think about it.)

2. Consider the point x = (0,
√
1− a2); show it in your drawings. For which values of a is x in

S?

3. For which values of a does the LICQ constraint qualification hold at x, and for which does
it not?

4. Same question for MFCQ.

5. What is your conclusion regarding the relationship between the tangent cone and the cone
of linearized feasible directions at x? Discuss carefully as a function of a. If there is a value
of a for which none of the CQ holds, figure out the tangent cone “by hand”.
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Answer.

1. The set S is the intersection of the two closed unit disks centered at (−a, 0) and (a, 0). This
intersection is non-empty when a ≤ 1. In the edge-case where a = 1 the set S contains the
unique point (0, 0). The other edge case is a = 0 where the two disks are identical. It’s also
interesting to consider a value of a strictly between 0 and 1.

2. We find that g1(x) = g2(x) = 0 whenever
√
1− a2 is well-defined (that is, when a ≤ 1). So

the point x is always in S with a ∈ [0, 1].

3. We find that

∇g1(x) =

[
2(x1 − a)

2x2

]
∇g2(x) =

[
2(x1 + a)

2x2

]
=

[ −2a

2
√
1− a2

]
=

[
2a

2
√
1− a2.

]
Both constraints are active and the gradients are linearly dependent if and only if a = 0 or
a = 1. So the LICQ constraint qualification holds for all 0 < a < 1.

4. We know that MFCQ holds for all a ∈ (0, 1) because LICQ implies MFCQ. When a = 0 the
gradients are given by

∇g1(x) = ∇g2(x) =

[
0
2

]
and x = (0, 1)⊤. If we take x̄ = (0, 0)⊤ then

⟨gi(x), x̄− x⟩ =
〈
(0, 2)⊤, (0,−1)

〉
< 0,

so MFCQ holds in this case.

When a = 1 the gradients are given by

∇g1(x) =

[
−2
0

]
∇g2(x) =

[
2
0

]
and x = (0, 0)⊤. We see here that MFCQ cannot hold. Indeed, if they did, then we would
have equality of the tangent cone and of the linearized cone, but they are different.

5. In fine we find that FxS = TxS when a ∈ [0, 1[. When a = 1 we have TxS ⊆ FxS. When
a > 1 the feasible set is empty so the question is meaningless.

■

Supplementary exercises

The following two exercises establish that the dual and the polar of a cone are always closed,
convex cones.

5



1. Dual and polar cones are closed. Let C be a cone. Show that C∗ and C◦ are closed
cones (even if C is not closed.) Hint : recall what happens when we take the intersection of infinitely
many closed sets.

Answer. Since C∗ = −C◦, it is sufficient to argue for C◦. Polars are clearly cones: if ⟨w, v⟩ ≤ 0
for all v ∈ C, then ⟨αw, v⟩ ≤ 0 for all v ∈ C and all α > 0. To see that the polar is closed, recall
that the intersection of an arbitrary collection of closed sets is closed, then notice that we can
write C◦ as the intersection of a collection of (closed) half spaces:

C◦ =
⋂
v∈C

{w ∈ E : ⟨w, v⟩ ≤ 0}.

(On the other hand, a union of closed sets may fail to be closed if there are infinitely many sets
we are taking the union of.) ■

2. Dual and polar cones are always convex sets. Remember that a set S is convex if for
all x, y ∈ S and all t ∈ [0, 1] we have (1− t)x+ ty ∈ S. Show that the dual and the polar of a cone
C are convex (even when C is not convex).

Answer. Let C ⊆ E be a cone. Then the dual cone is given by

C∗ = {w ∈ E | ⟨w, v⟩ ≥ 0 for all v ∈ C}.

Let w1, w2 ∈ C∗ and t ∈ [0, 1]. Then for all v ∈ C we have

⟨(1− t)w1 + tw2, v⟩ = (1− t) ⟨w1, v⟩+ t ⟨w2, v⟩
≥ 0,

which shows that (1− t)w1+ tw2 ∈ C∗. We conclude that C∗ is convex. This automatically implies
that C◦ is convex (or you can rewrite the argument with the reversed inequality if you want to be
explicit). ■

3. Polar and dual invert inclusion. Let C and C ′ be two cones in E such that C ⊆ C ′.

1. Show that (C ′)◦ ⊆ C◦.

2. Show that (C ′)∗ ⊆ C∗

Answer.

1. Let w ∈ (C ′)◦. This means that for all v ∈ C ′, we have ⟨w, v⟩ ≤ 0. Now, take v ∈ C. By the
inclusion, we know that v ∈ C ′ as well. Therefore we have ⟨w, v⟩ ≤ 0, which implies w ∈ C◦.
Repeating for all w ∈ (C ′)◦ shows (C ′)◦ ⊆ C◦.

2. Since we have C∗ = −C◦ = {−v : v ∈ C◦}, the result is immediate.

■
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