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1. Output of tCG in case of early termination. Consider the definition vn ≜ vn−1+ tpn−1

and the equation ∥vn∥2 = ∆2 (where the unknown is t) from the truncated conjugate gradients
algorithm in the course.

1. Show that the equation is indeed quadratic in t.

2. In the context above, argue that there is one positive root and one negative root (in particular,
they are distinct). Give an expression for the positive root.

It is possible to show that choosing the positive root induces the smaller model value.

Answer.

1. The quadratic equation is

t2∥pn−1∥2 + 2t ⟨pn−1, vn−1⟩+ ∥vn−1∥2 −∆2.

since ∥vn−1∥ < ∆ (otherwise, the algorithm would have stopped at iteration n − 1), the
equation discriminant is positive and there are two disctinct roots given by

−⟨pn−1, vn−1⟩ ±
√

⟨pn−1, vn−1⟩2 + ∥pn−1∥2 (∆2 − ∥vn−1∥2)
∥pn−1∥2

.

2. The positive root can be computed by choosing the + sign in the equation above.

3. We choose t to be positive so that we move in the direction of pn−1. This choice guarantees
that the model decreases; see Eqn. (6.19) of lecture notes.

If the root is double, then ∥pn−1∥2 (∆2 − ∥vn−1∥2). Either pn−1 = 0, which means that the
algorithm has reached the standard termination criterion of CG, or ∥vn−1∥ = ∆, and we
stopped at iteration n− 1. Either case, it is fine to stop.

■
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2. First iterate of tCG.

1. Verify that the first iterate of tCG, that is, v1 as produced by the algorithm in lecture notes,
is exactly the Cauchy step.

2. What can you conclude regarding the global convergence of the trust-region method with
tCG?

Answer.

1. We consider three different scenarios for the first step of tCG.

(a) ⟨p0, Hp0⟩ ≤ 0: then v1 =
∆
∥b∥b.

(b) ⟨p0, Hp0⟩ > 0 and ∥v+0 ∥ ≥ ∆ (meaning ∥b∥3
⟨b,Hb⟩ ≥ ∆): then v1 =

∆
∥b∥b.

(c) ⟨p0, Hp0⟩ > 0 and ∥v+0 ∥ < ∆: we have v1 =
∥b∥2
⟨b,Hb⟩ .

Cases (b) and (c) can be written compactly as

v1 = min

(
∥b∥2

⟨b,Hb⟩
,
∆

∥b∥

)
b,

This matches the expression of the Cauchy step.

2. Since the model value decreases during tCG, its value at the last iterate vN cannot be worse
than that of the first iterate v1, which corresponds to the Cauchy step. This means that the
step uk computed by tCG at iteration k of trust-region does at least as good as the Cauchy
step, which is sufficient to guarantee global convergence (Section 6.2 of lecture notes).

■

3. Improving the TR method with tCG.

1. Implement the truncated conjugate gradients method (tCG) as explained in the lecture notes.

2. Implement the trust-region algorithm using the tCG algorithm to approximate the solution
to the subproblem. You can simply modify the implementation you did for exercise session
5.

3. Run the trust-region algorithm with tCG on the multidimensional Rosenbrock function (see
the definition at the end of the exercise sheet). We provide files on Moodle to compute the
function value, the gradient and the Hessian. You may use n = 10, x0 = randn(n,1).

4. Compare its performance on this problem with trust-region using the Cauchy point as ap-
proximate solution to the trust-region problem. Comment on your observations.
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Answer.

1. See lecture notes for pseudo code.

2. See lecture notes for pseudo code.

3. The TR algorithm with tCG finds a point where the gradient norm is less than 10−10 in
approximately 50 iterations. Due to random initialization, sometimes this critical point is
the local minimum (−1, 1, . . . , 1)⊤and sometimes the global minimum (1, . . . , 1)⊤. In Figure 1
we can appreciate the quadratic convergence of the functions values and gradient norms.

4. In previous exercise sessions we observed that TR with Cauchy point would need several
dozens of thousands of iterations to reach an approximate critical point (see Figure 2). The
tremendous improvement we observe when using tCG suggests how suboptimal the Cauchy
point is as a solution to the TR subproblem. Yet, the Cauchy point is sufficient to guarantee
global convergence: it remains an acceptable worst case alternative when the approximate
solution to the TR subproblem is not satisfactory (with tCG we always get something at
least as good but other strategies to solve the subproblem might not).

Figure 1: Objective value and gradient norm throughout the iterations of TR with tCG on the
multidimensional Rosenbrock function (n = 10, x0 = randn(n,1)).

■

Multidimensional Rosenbrock function. We generalize the Rosenbrock function in n dimen-
sions as

f(x) =
n−1∑
i=1

[
100

(
xi+1 − x2

i

)2
+ (1− xi)

2
]
.

The vector of ones is the unique global minimum (because the function is non-negative and is zero
if and only if all entries are ones). The gradient at x ∈ Rn is given by

∇f(x)i =


−2(1− x1)− 400x1(x2 − x2

1) if i = 1

200(xi − x2
i−1)− 2(1− xi)− 400xi(xi+1 − x2

i ) if 1 < i < n

200(xn − x2
n−1) if i = n.
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Figure 2: Objective value and gradient norm throughout the iterations of TR with Cauchy point
on the multidimensional Rosenbrock function (n = 10, x0 = randn(n,1)).

The Hessian at x is a symmetric tridiagonal n×n matrix. The main diagonal and the first diagonal
above are given by 

2 + 1200x2
1 − 400x2

202 + 1200x2
2 − 400x3

...
202 + 1200x2

n−1 − 400xn

200

 and

 −400x1
...

−400xn−1



respectively. In practice we never build the full matrix but solely compute matrix/vector products.
This can be done efficiently because the matrix is sparse.
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