MATH-329 Nonlinear optimization Exercise session 9: Constraint qualification

Instructor: Nicolas Boumal TAs: Andrew McRae, Andreea Muşat

Document compiled on November 12, 2024

- 1. Constraint qualification or not? For the following sets defined by equality and inequality constraints, determine whether they satisfy constraint qualifications everywhere or if they fail at some point.
 - $S = \{x \in \mathbb{R}^n \mid Ax = b \text{ and } Cx \leq d\}$ for some $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, C \in \mathbb{R}^{p \times n}, d \in \mathbb{R}^p$.
 - $S = \{(x, y) \in \mathbb{R}^2 \mid y = x^2\}$. More generally, what can you say in general about a set S defined as the graph of a differentiable function?
 - $S = \{(x, y) \in \mathbb{R}^2 \mid x^2 = y^3\}.$
 - $S = \{(x, y) \in \mathbb{R}^2 \mid y^2 = x^3 + x^2\}.$
 - $S = \{(x,y) \in \mathbb{R}^2 \mid (x-1/2)^2 + y^2 \le 1 \text{ and } (x+1/2)^2 + y^2 \le 1\}.$
- **2.** A particular stationary point. Let $\mathcal{E} = \mathbb{R}^2$. Consider the function $f(x) = x_2$, to be minimized on the set $S = \{x \in \mathbb{R}^2 : ||x|| \ge 1\}$ (the complement of the open unit disk). Consider the special point $x^* = \begin{bmatrix} 0 & 1 \end{bmatrix}^\top$.
 - 1. Draw the situation.
 - 2. Show that x^* is stationary for f on S (you can do this using normal cones for example).
 - 3. Show that x^* is not a local minimum for f on S.
 - 4. What does this exercise highlight about the optimality conditions discussed in class?
- **3. Intersection of disks.** We let $a \ge 0$ be a real parameter and define the set $S \subseteq \mathbb{R}^2$ through the two following inequality constraints: $g_1(x) = (x_1 a)^2 + x_2^2 1 \le 0$ and $g_2(x) = (x_1 + a)^2 + x_2^2 1 \le 0$.
 - 1. Draw the set S for a few interesting values of a. (Which values? Think about it.)
 - 2. Consider the point $x = (0, \sqrt{1 a^2})$; show it in your drawings. For which values of a is x in S?

- 3. For which values of a does the LICQ constraint qualification hold at x, and for which does it not?
- 4. Same question for MFCQ.
- 5. What is your conclusion regarding the relationship between the tangent cone and the cone of linearized feasible directions at x? Discuss carefully as a function of a. If there is a value of a for which none of the CQ holds, figure out the tangent cone "by hand".

Supplementary exercises

The following two exercises establish that the dual and the polar of a cone are *always* closed, convex cones.

- 1. Dual and polar cones are closed. Let C be a cone. Show that C^* and C° are closed cones (even if C is not closed.) Hint: recall what happens when we take the intersection of infinitely many closed sets.
- **2.** Dual and polar cones are always convex sets. Remember that a set S is convex if for all $x, y \in S$ and all $t \in [0, 1]$ we have $(1 t)x + ty \in S$. Show that the dual and the polar of a cone C are convex (even when C is not convex).
- 3. Polar and dual invert inclusion. Let C and C' be two cones in \mathcal{E} such that $C \subseteq C'$.
 - 1. Show that $(C')^{\circ} \subseteq C^{\circ}$.
 - 2. Show that $(C')^* \subseteq C^*$