## MATH-329 Nonlinear optimization Exercise session 8: Convex optimization

Instructor: Nicolas Boumal TAs: Andreea Musat, Andrew McRae

## Document compiled on November 4, 2024

- 1. Sufficient optimality conditions. Mind the following: in Theorem 9.2, it is important to check *all three* of the following boxes:
  - (a) We are *minimizing* (and not maximizing).
  - (b) The cost function f is convex.
  - (c) The search space S is convex.

To really appreciate this fact, do the following:

- 1. Give examples of optimization problems which check two of the above but not all three of the above, and for which there exists a non-optimal stationary point.
- 2. If given a maximization problem, explain how you can get an equivalent minimization problem.
- 3. If the cost function is not convex, explain how you can get an equivalent problem with a convex cost function (you can even make the cost function linear).
- 4. If the constraint set is not convex, explain how you can get an equivalent problem with a convex search space (you can even make the problem unconstrained)—you will need to make the cost function a bit weird for this though (hint: "indicator function" with values in  $\{0,\infty\}$ ).

For each of the above, explain how we should understand Theorem 9.2 against the modified problem, specifically to verify that, sadly, there is no free lunch.

- **2.** Discontinuous projection. Show with a drawing that  $\operatorname{Proj}_S$  may be discontinuous if S is non-empty and closed but fails to be convex. This reveals why the PGD iteration map  $x \mapsto \operatorname{Proj}_S(x \alpha \nabla f(x))$  could be discontinuous if S is not convex. It would be much harder to analyze the algorithm if we allowed that to happen.
- **3. Trust-region subproblem.** Let  $S = \{x \in \mathbb{R}^n : ||x|| \le 1\}$  be the unit norm ball. Give an expression for  $\operatorname{Proj}_S$ . Given a symmetric matrix A of size n and  $b \in \mathbb{R}^n$ , let  $f(x) = \frac{1}{2}x^{\top}Ax + b^{\top}x$ . What is the Lipschitz constant of  $\nabla f$ ? Can you easily compute an upper bound for it? Implement projected gradient descent (see lecture notes) for this problem, with a proper choice of step-size. Do you expect that this method would converge to a global minimizer? Note: this is a fairly terrible algorithm for the trust-region subproblem but it has the merit of being simple.

- **4.** Image and inverse image of affine function. Let  $f: \mathbb{R}^n \to \mathbb{R}^m$  be an affine function, that is, there exists  $A \in \mathbb{R}^{m \times n}$ ,  $b \in \mathbb{R}^m$  such that f(x) = Ax + b for all  $x \in \mathbb{R}^n$ .
  - 1. Let  $S \subseteq \mathbb{R}^n$  be a convex set. Show that the image of S under f,

$$f(S) = \{ f(x) \mid x \in S \},\$$

is convex.

2. Let  $S \subseteq \mathbb{R}^m$  be a convex set. Show that the inverse image of S under f,

$$f^{-1}(S) = \{ x \in \mathbb{R}^n \mid f(x) \in S \},$$

is convex.

3. Let  $g: \mathbb{R}^m \to \mathbb{R}^n$  be a convex function. Show that  $g \circ f$  is convex.

## Supplementary exercises

- **1. Convex combination.** Let  $C \subseteq \mathbb{R}^n$  be a convex set,  $x_1, \ldots, x_k \in C$  and  $\theta_1, \ldots, \theta_k \geq 0$  be non-negative coefficients such that  $\theta_1 + \cdots + \theta_k = 1$ . Show that the convex combination  $\theta_1 x_1 + \cdots + \theta_k x_k$  is in C.
- **2.** Intersection with a line. Show that a set is convex if and only if its intersection with any line is convex.
- **3.** Sublevel sets. Let  $f: \mathbb{R}^n \to \mathbb{R}$  be a convex function. Show that for all  $\alpha \in \mathbb{R}$  the sublevel set  $\{x \in \mathbb{R}^n \mid f(x) \leq \alpha\}$  is convex.