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1. Quadratic functions and condition number. Let & = R" with the usual inner prod-
uct. Consider the quadratic function f : & — R defined by

1
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where A € R™" is symmetric and nonzero, b € R", and ¢ € R.

1. Give an expression for the gradient of f. What is the set of critical points? Argue that
it is nonempty if and only if b is in the image of A.

2. Show that if f is lower-bounded then b is in the image of A. Hint: remember that we have
im(A) = ker(A) because A is symmetric. Apply f to vectors from the null space of A.

From now we assume that b is in the image of A and we let d € £ be a vector such that
Ad = —b.

3. For all z € £ find an expression for f(z + d). Use it to deduce that f is lower-bounded if
and only if A is positive semidefinite.

The last two questions showed that f is lower-bounded if and only if A is positive semidefinite
and b € im(A). We assume that these conditions hold; otherwise minimizing f would not make
sense.

4. Argue that f attains its minimum value. What is the set of global minima? Under what
condition is there a unique global minimum?

5. Does f admit local minima that are not global?
6. Show that V f is Lipschitz continuous. What is the smallest Lipschitz constant L7

We found that f is lower-bounded and has Lipschitz continuous gradients: that’s all the prop-
erties we need to apply gradient descent with constant step-size. In Question 4, you should have
found that global minima of f coincide with the solutions of a linear system of equations. This
leads to a dual perspective: we could use standard linear algebra algorithms such as Gaussian
elimination to minimize f...Or: we could apply optimization algorithms to f to solve the linear
system. We adopt this second viewpoint here. To perform an iteration of gradient descent we
only need to compute a matrix-vector product with A. If A is structured (for example if it is
sparse) this operation can be done efficiently even when A is huge.



From now we consider the case where f has a unique global minimum. For a symmetric
matrix A, we define the condition number x > 1 as the ratio of its maximal to minimal
eigenvalues, that is,
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7. For n = 2 plot the level sets of f around its global optimum for kK = 1 and k = 5. We
can choose A diagonal, b = 0 and ¢ = 0 for simplicity. For example:
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A—[O 1] and A—[O 1].

In what situation do you expect gradient descent to work the best?

8. Write a script to run gradient descent with constant step-sizes 1/L. Choose a random
initial point. Try with other step-sizes, for example 1/2L and 2/L. Plot the sequence of
points that gradient descent outputs along with the level sets of f. What do you observe?

9. Can you improve the practical behavior of the algorithm with a linesearch method? In
particular, can you solve the linesearch problem exactly?

2. The 2D Rosenbrock function.  The Rosenbrock function (https://en.wikipedia.o
rg/wiki/Rosenbrock_function) is a classical benchmark for testing optimization algorithms.
Its original definition is the bivariate function given by

f(z,y) = (a—2)* +bly — %)% with a,b> 0.
1. Show that the Rosenbrock function has a unique global minimum (z*,y*) = (a, a?).
Restrict now to the case a = 1, b = 100. The minimizer is (z*,y*) = (1, 1).
2. Compute the gradient of f.

3. Implement a fixed step-size gradient descent algorithm. Stopping criteria should include
a maximum number of iterations and a tolerance on the gradient norm.

4. Argue that V f is not Lipschitz continuous.

Gradient descent does not have global convergence guarantees with a fixed step-size because
V f is not Lipschitz continuous. However, the gradient is Lipschitz continuous in a compact
neighborhood of the global minimum. So we expect the algorithm to converge to the minimum
if we start sufficiently close, provided that the step-sizes are small enough. Consider for now
the initial point (xg,y0) = (1.2,1.2).

5. Assess the first few iterations of your algorithm with step-size o = 1072. Does it appear
to be a good step-size?

6. The step-size a = 1073 should work better. Run your algorithm for 10° iterations and
plot the gradient norms. How close to the optimum do you get? Is starting closer
to the optimum significantly improving the convergence speed? Try for example with
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The convergence of gradient descent with fixed step-sizes is very slow for this problem. This is
coming from the properties of f around the minimizer.
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7. Compute the Hessian of f, that we denote by V2f. Compute the eigenvalues of V2f at
the minimizer (you can use the function eig in MATLAB). Can you diagnose the problem
of gradient descent for this optimization problem?

8. Implement gradient descent with backtracking line-search (Algorithm 3.1 in Nocedal and
Wright). Run it on the instances in Question 6 with @ =1, p = 0.5, ¢ = 10™*. Is adaptive
step-sizing more efficient?



