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The course textbook is Numerical Optimization by Nocedal and Wright, second edition. You
can get a PDF of it here: https://link.springer.com/book/10.1007/978-0-387-40065-5.
(Download is free if you are on EPFL network.)

The official programming language for the course is Matlab. This being said, you are free
to use another language to complete assignments (for example, Python or Julia) provided (a)
you get approval from the TAs (who will have to run your code), and (b) you are comfortable
enough to translate Matlab instructions to your chosen language yourself.

You can get Matlab here: https://ch.mathworks.com/academia/tah-portal/ecole-p
olytechnique-federale-de-lausanne-epfl-303238.html.

Matlab Tutorials: http://ubcmatlabguide.github.io/ and https://learnxinyminut

es.com/docs/matlab/. See also the Matlab course linked on the Moodle page.
Matlab cheat sheet: http://web.mit.edu/18.06/www/MATLAB/matlab-cheatsheet.pdf.
Absolute best Matlab command ever: help. For example, type help fminunc (or help ...

fmin + hit TAB for auto-completion) for an explanation of how fminunc works. Want more
info? Type doc fminunc instead. At the end of a help section, there are links to related
functions: explore.

1. Model the following situations as optimization problems. Remember, an opti-
mization problem has two ingredients: a set S and a function f : S → R. Write them in
minimization form, as: minx∈S f(x). (No need to solve the resulting optimization prob-
lems; just write them down mathematically.)

1. A probability distribution over n objects is a vector p ∈ Rn whose entries sum to one and
are nonnegative. The entropy of p is

H(p) = −
n∑

i=1

pi log(pi),

where we continuously extend the function x 7→ x log(x) at zero (so 0 log(0) ≜ 0). Which
distribution has maximal entropy?

2. Given k points x1, . . . , xk ∈ Rn, find the smallest ball in Rn that contains them.

3. We have n power plants that need to provide electricity to m cities. Each power plant has
a maximum energy production capacity of wi megawatt-hours for i = 1, . . . , n and each
city has an energy demand of dj megawatt-hours for j = 1, . . . ,m. The cost of sending
energy from plant i to city j is cij CHF per megawatt-hour. How can we minimize the
cost of energy distribution to meet the demand?
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2. Gradients. We will often need to compute gradients (and later, also Hessians) of mul-
tivariate functions. Recall that on a Euclidean space E with inner product ⟨·, ·⟩ and associated
norm ∥ · ∥ the gradient ∇f(x) of a function f : E → R at x is defined by the property:

∀v ∈ E , ⟨∇f(x), v⟩ = Df(x)[v], where Df(x)[v] = lim
t→0

f(x+ tv)− f(x)

t
.

Let’s make sure we are fully comfortable with that definition.

1. Show that if f is differentiable at x then ∇f(x) as characterized above exists and is
unique. Hint: as often when working in linear spaces, it is convenient to introduce a
basis.

2. For the special case E = Rn with the usual inner product ⟨u, v⟩ = u⊤v = u1v1+ · · ·+unvn,
show that the gradient is nothing but the vector of partial derivatives of f ,

∇f(x) =


∂f
∂x1

(x)
...

∂f
∂xn

(x)

 ,

thus recovering (in this special case) what is often presented as the definition of the
gradient.

3. For the special case just described, compute the gradient of the function

f(x) =
1

2
x⊤Ax+ b⊤x+ c,

where A ∈ Rn×n is a symmetric matrix, b ∈ Rn is a vector and c ∈ R is a scalar. Try to
do it using the definition of the gradient, that is: obtain an expression for Df(x)[v] first,
then try to express the latter in the form ⟨. . ., v⟩. Use a uniqueness argument to deduce
a formula for ∇f(x). We believe that you will, with experience, find this approach much
faster and more comfortable than using partial derivatives.

4. We now let S ∈ Rn×n be an arbitrary symmetric positive definite matrix, and we define
an inner product ⟨u, v⟩ = u⊤Sv. Using this inner product, compute the gradient of the
quadratic function f from the previous part. As a sanity check, note that we recover the
usual Euclidean inner product when S is the identity matrix.

3. A Euclidean space of matrices. We get another interesting Euclidean space by con-
sidering matrices. Let E = Rm×n and define the inner product

⟨U, V ⟩ =
m∑
i=1

n∑
j=1

UijVij.

Convince yourself that this is the same as the Euclidean space of vectors above, only with n
replaced by mn.

1. Verify that ⟨U, V ⟩ = Tr(U⊤V ) where Tr(M) =
∑

i Mii.

2. What is the norm ∥U∥ =
√
⟨U,U⟩ associated to this inner product? (It has a name.)
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3. Show that for all U, V ∈ E we have Tr(U⊤V ) = Tr(V U⊤). This implies that when we
take the trace of a product of matrices of appropriate shapes we can cycle the order:

Tr(ABCD) = Tr(BCDA) = Tr(CDAB) = Tr(DABC).

This property is known as the cyclic invariance of the trace. What is the equivalent
property in terms of inner products?

4. Compute the gradient of the function f : E → R defined by

f(X) =
1

2
∥A⊤X −M∥2,

where A ∈ Rm×n and M ∈ Rn×n are fixed matrices. Here too, the most convenient way
is to expand the norm using inner products, obtain an expression for Df(X)[V ], and
massage that expression until it has the form ⟨. . ., V ⟩. You can then identify the gradient
by uniqueness.

4. Strict vs isolated local minima (optional). Read page 13 of the N&W textbook.

1. Plot the function f(x) = x4 cos(1/x) + 2x4 near x = 0 (we define f(0) = 0).

2. Convince yourself that it has a strict local minimum at x∗ = 0 yet that this point is not
an isolated local minimum.

3. The other way around, argue briefly but conclusively that isolated local minima (of any
function f) are strict.
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