LECTURE NOTES "TOPICS IN COMPLEX ANALYSIS’

MATTHIAS RUF

0. RECAPITULATION OF SOME RESULTS IN COMPLEX ANALYSIS

In this section we recall some standard theorems from complex analysis that we will use in the course.
We give no proofs as they can be found in (almost) any text book on complex analysis.
If not stated otherwise we shall use the following notation:
e C: complex numbers
e U: an open subset of C
e D: a domain (open and path-connected subset of C)
e B.(z0) ={z€C: |z— 2| < r} open ball with radius » > 0 and center zy € C

Definition 0.1. A function f : U — C is called complex differentiable in zy € U if there exists the limit

h—0 h
h#0

eC.

It is called holomorphic on U if it is complex differentiable in every zg € U.

Theorem 0.2 (Cauchy’s integral formula). Let f : U — C be holomorphic and suppose that the closed
disc By(zp) is contained in U. Then for every a € B.(z9) we have

fla)= = /8 @ g

- 211 B(z0) 2 — @

where the circle OB, (zo) is oriented counterclockwise.

Corollary 0.3 (Analyticity of holomorphic functions). Under the assumptions of Theorem 0.2 the func-
tion f is analytic on U and each f*) : U — C is holomorphic with

k!
FPa) = i /63 o) (2 f(;)>k+1 dz.

Corollary 0.4 (Liouville’s theorem). FEvery bounded holomorphic function f: C — C is constant.

Theorem 0.5 (Morera’s theorem). Let f : U — C be continuous. If for each triangle A C U it holds
that

f(z)dz =0,
OA
then f is holomorphic on U.

Theorem 0.6 (Identity theorem). Let D C C be a domain and f,g: D — C be holomorphic. If the set
{z € C: f(2) = g(2)} has an accumulation point in D, then f = g.

Theorem 0.7 (Open mapping theorem). Let D C C be a domain and f : D — C be a non-constant
holomorphic function. Then f(D) is a domain as well.

Corollary 0.8 (Maximum principle). Let D C C be a domain and let f : D C C be a holomorphic
function. If | f| attains its mazimum on D then f is constant.
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2 MATTHIAS RUF

Singularities of holomorphic functions. Isolated singularities of holomorphic functions are subdi-
vided into three categories.

Definition 0.9. Let U C C be open and let 2y € U. Assume that f: U\ {z0} — C is holomorphic. zq is
called
(i) a removable singularity if f can be extended to a holomorphic function f:U—=C;
(ii) a pole if there exists m € N such that z — (z — z9)™ f(2) has a removable singularity in zy. The
smallest such m is called the order of the pole;
(iii) an essential singularity if zg is neither a removable singularity nor a pole.

Theorem 0.10 (Laurent series expansion). Let 0 <r < R andlet f : {z€ C: r<|z—2z| <R} - C
be holomorphic. Then f has the representation

where, for alln € Z andr < p < R,
_ 1 f(z)
Cn =5~ (54— o yntl =~
211 Jap, () (z — 20)

n

The term 21 cn(z — 20)™ is called principal part of f, while the term > oenl(z — 20)" is called

n=—oo

regular (or holomorphic) part of f.

Corollary 0.11. Let f: U\ {20} — C be holomorphic. Then zy is
(i) a removable singularity <= ¢, =0 Vk <0 < [ is bounded near zy;
(ii) a pole of order m <= ¢, =0 Vk < -—-m and c_,, #0;
(iti) an essential singularity <= ci # 0 for infinitely many k < 0.

1. SEQUENCES OF HOLOMORPHIC FUNCTIONS

Next we consider sequences of holomorphic functions f,, : U — C and their convergence properties,
i.e., compactness, convergence criteria and properties of the limit. As we shall see the following notion of
convergence is well-suited with regard to the above properties.

Definition 1.1. A sequence f,, : U — C of holomorphic functions is said to converge locally uniformly
to some function f : U — C if for each zg € U there exists r > 0 such that

sup |fn(2) = f(2)] =0 asn — +oo.
z€Br(z0)

Remark 1.2. Local uniform convergence is equivalent to uniform convergence on each compact subset
of U.

The following theorem shows that local uniform convergence preserves holomorphy.

Theorem 1.3. Assume that a sequence f,, : U — C of holomorphic functions converges locally uniformly
to some f:U — C. Then f is holomorphic.

Proof. Note that f is continuous as the locally uniform limit of continuous functions. Hence by Morera’s
theorem it suffices to check that for each triangle A C U we have

(z2)dz =0.
oA
Since f, — f uniformly on A by Remark 1.2 we conclude from Cauchy’s theorem that

0= lim aAfn(z)dz:/aA f(z)dz,

n—-+o0o

where the last equality can be justified for instance by Lebesgue’s dominated convergence theorem. This
proves the claim. O
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Remark 1.4. Theorem 1.3 is in general false for pointwise converging sequences of holomorphic functions
(an example can be found in [1]). However, Osgood’s theorem [4, p. 151] (see also exercise H 2.4) ensures
that the pointwise limit is holomorphic on a dense, open subset of U.

For sequences f, : R — R uniform convergence does not allow to conclude convergence of the
derivatives. For instance, the sequence f,(x) = %sin(nw) converges uniformly to 0, but its derivative
fl(x) = cos(nx) does not even converge pointwise. As we prove next, holomorphic functions behave
much better.

Theorem 1.5. Let f, : U — C be a sequence of holomorphic functions that converges locally uniformly
to f:U — C. Then for each k € N the sequence f,(Lk) converges locally uniformly to f*).

Proof. Let zyp € U and r > 0 be such that By.(z9) C U. Due to Cauchy’s integral formula, for all
2" € By(20) we can write

k! z) — fn(z
R M et

Note that for 2’ € B,(z0) and z € 0Ba,(2p) it holds that |z — 2’| > r. Since the length of dBs,(20) equals
4mr we deduce that

2k!
sup |fO() = IO < S sup () = fu(#)].
2’ €Br(z0) T 2€By,(20)
Due to Remark 1.2 the right hand side converges to 0 when n — +o0o and we conclude the proof. O

The previous theorem allows to control the number of zeros of the limit of holomorphic functions.

Corollary 1.6. Let D C C be a domain and f, : D — C be a sequence of holomorphic functions that
converges locally uniformly to f : D — C. If each f, has at most m zeros (counted with multiplicity),
then either f =0 or f has at most m zeros.

Proof. Let f # 0 and assume by contradiction that f has distinct zeros 21, ..., z; with total multiplicity
larger than m. By the identity theorem the zeros of f are isolated, so that for each z; we find a ball
B, (z;) such that

1) {f=0}NB.(z) ={z}

(i) Br(zj) N Br(z;)) =0 V1<j#i<L
The argument principle then implies

¢ /
(2) fa(2)
1< lim n dz <
m+ zm / DIy B - e

B(Zj)fz 1

j=
where in the second equality we used Theorem 1.5 and that for n large enough we have f,, # 0 on the
compact set 9B, (z;). This yields a contradiction. O

Next we turn our attention to convergence criteria. The first one is a general compactness result.

Theorem 1.7 (Montel’s theorem). Let f,, : U — C be a sequence of holomorphic functions that is locally
uniformly bounded, i.e., for each zg € U there exists r > 0 and C' < 400 such that

swp sup |fa(2)] < C.
neN zeB, (z9)

Then there exists a subsequence fy,, that converges locally uniformly to a holomorphic function f : U — C.

Proof. Take a countable, dense subset S of U (e.g. (Q +iQ) NU) and let us write S = {z1, 22,23, ... }.
Since the sequence {f,(z1)}nen is bounded, we may apply the Bolzano-Weierstrass theorem in order
to extract a subsequence ng,1 such that fy,  (z1) converges to some value f., € C. In a next step we
note that the sequence {f,, ,(22)}ren is again bounded, so that by the same reasoning we find another
subsequence ny » of the previous subsequence such that {f,, ,(22)}ren converges to some value f., € C.
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In the j*" step we choose a subsequence ny,; of all previous subsequences such that { T }ren converges
to some value f., € C. For k € N we finally set ny := nj . Then the sequence fy, (2;) converges to f.,
for all j € N since except for finitely many terms the sequence ny, is a subsequence of {ny, ;}ren. Thus we
found a subsequence f,, such that f,, (z) converges to some value f, € C.

Next we show that f,, is equicontinuous, i.e., the e—§ definition of continuity is valid with § independent
of n. Fix zp € U and let r > 0 be such that Bs,.(29) C U and such that there exists C' < +oo with

sup sup |fa(2)| < C.
nEN 2€B,.(20)

By Cauchy’s integral formula, for all 2’ € B,.(z) we have

1 fn(2) _ fn(2) 5
7/8 d

270 JoBy,(z) 2 — 22— 20

_ |2" — zo]

|fn(zl)_fn(20)| = o1

/aBWO) CEFCErSh

<|z’ — 20| C-dmr  C|2' — 2
- 2 2r2 r ’
where we used that |z—2z'| > r and |z—2zg| > 2r for all z € 9Ba,(z0). The right hand side is independent of
n, 80 given £ > 0 we can choose 6. = min{r, e} in the definition of continuity. Hence f,, is equicontinuous.
Equicontinuity allows us to show that {f,,(2)}ren is a Cauchy sequence for all z € U. To reduce
notation, we skip the subscript k. For z € U and € > 0 we first choose z* € S such that |z — z*| < 0 2,
where . . satisfies the equicontinuity condition

€
y—2<d. = |faly) —fal2)l <5 VneN (1)
To find such a z* is possible due to the density of S in U. For m > n we then have
|fm (2) = fn(2)] < [fm(2) = fm (27)| +[fm(z7) = fu(2")| + [[u(27) = fu(2)]
— —
<e/3 <e/3

Since z* € S the convergence on S implies that there exists n. € N such that for all m > n > n. we have
|fm(2*) = fn(2*)] < §. Then for all m > n > n. we conclude that

|fm(z) - fn(z)| <e.

Hence {f,(2) }nen is Cauchy sequence as claimed, so that there exists f, = lim,_, ;o fn(2) for all z € U.
Finally, we show that f, converges locally uniformly to f(z) := f.. Fix a compact set K C U. Given
€ > 0and z € K we choose 6, . > 0 satisfying (1) above. Then the family of discs {Bs. _(2)}.cx forms an
open cover of K. By the (topological) definition of compactness there exists a finite sub-family {Bs, _ }/*,
with z; € K that still covers K. Thus for any z € K we find z; such that |z — 2;| < J. .,. Since the {z;}
are only finitely many there exists n. € N such that for all n > n. it holds that
€

|f(2i) — fulzi)| < 3

Moreover, observe that (1) also holds for the limit function f as we can pass to the limit in this estimate.
Consequently, for n > n. we deduce that for all z € K we have

1f(2) = fn(2)] < [ f(2) = f(z)| + | f(2:) = fulzi)| + | fu(zi) — fu(2)] <,

/3 <e/3 <e/3

which shows the uniform convergence of f,, to f and we conclude the proof. O

Finally, we state two criteria which ensure the convergence along the whole sequence.

Theorem 1.8 (Vitali’s theorem). Let D C C be a domain and let f, : D — C be a sequence of
holomorphic functions that is locally uniformly bounded. If the set L := {z € D : lim, o fn(z) exists}
has an accumulation point in D, then f, converges locally uniformly to some holomorphic function f :
D — C.
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Proof. Due to Montel’s theorem there exists a subsequence f,, that converges locally uniformly to a
holomorphic function f : D — C. Note that local uniform convergence is induced by a topology. Hence
the non-convergence of the whole sequence to f implies that there exists another subsequence which
has no subsequence that does converge locally uniformly to f. Applying Montel’s theorem along this
subsequence, we obtain another subsequence f,, , that converges locally uniformly to a holomorphic
function h : D — C. Then h # f, but h(z) = f(z) for all z € L, which contradicts the identity
theorem. g

Theorem 1.9. Let D C C be a domain and let f, : D — C be a sequence of holomorphic functions that
is locally uniformly bounded. If for all k € NU{0} and some zg € D the sequences f,(Lk)(zo) converge, then
fn converges locally uniformly to some holomorphic function f: D — C.

Proof. See Exercise H 2.1. O

Local normal convergence. In the next chapter the focus will be on series of holomorphic functions.
For those the following concept of convergence will be useful.

Definition 1.10. Let f; : U — C be a sequence of complex-valued functions. The series Z]oil f; is called
locally normally convergent if for each zg € U there exists r > 0 such that

oo

Y. osw |f;(2)] < +oe.

=1 z€Br(z0)

As shown in the lemma below, local normal convergence implies local uniform convergence. In the
exercises we will see that the converse is false in general.

Lemma 1.11. Let f; : U — C be a sequence of complex-valued functions. If the series E;il f; con-
verges locally normally, then it also converges locally uniformly. In particular, if each f; is in addition
holomorphic, then z — Zjil fi(2) is holomorphic, too.

Proof. See exercise H 3.4 and Theorem 1.3 a

2. THE MITTAG-LEFFLER THEOREM

We start with the following simple observation: If {dy,...,d,} C C is a finite set and for each d,, the
function ¢, : C\ {d,} — C denotes a finite principle part at d, given by ¢,(z) = Z;”:"l anj(z — dy) ™7,
then the function

f2) =2 an(2)

is meromorphic on C and at each d,, € C the principal part of its Laurent series agrees with ¢,. In
1876/77 the Swedish mathematician Gosta Mittag-Leffler extended the above result to (in C) discrete
sets {d, }nen (i.e. with no accumulation point). In 1880 Karl Weierstrafl found a simplified proof which
in general also allows for m,, = 400 (albeit some implicit growth conditions on the coefficients a,; by
requiring that ¢, : C\ {d,} is holomorphic). In this course we shall follow the argument of Weierstrass
but prove a more general version valid on open sets. To reduce notation, we introduce some vocabulary.

Definition 2.1. Let d € C and ¢ : C\ {d} — C be a holomorphic function. ¢ is called a principal part
at d when its Laurent series expansion around d has no regular part.

With this definition the theorem of Mittag-Lefller on C reads as follows:

Theorem 2.2 (Mittag-Leffler on C). Let S = {dn}neny C C be a discrete set. For each d, € S let
gn : C\ {d,} = C be a principal part. Then there exists a holomorphic function f : C\ S — C such that
at each d, € S its principal part of the Laurent series is given by q,. The function f can be taken to be
of the form

1) =3 u() — pul2),

where p, : C = C is a polynomial and the sum converges locally normally on C\ S.
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Proof. Without loss of generality we may assume that 0 < |di| < |da] < ... (if d; = 0 then set p; =0
and separate this term from the analysis). Once cannot expect that the series Y | ¢, converges. Hence
we have to use the polynomials to ensure convergence. As they should be close to g, we take suitable
Taylor-polynomials. Since g,, is holomorphic on B4, |(0) it has a convergent series expansion on this ball,
i.e., for any z € Bjg,|(0) it holds that

o
qn(z) = Z anj 2.
=0

By general properties of power series we know that on the smaller ball Bj /54, |(0) the above series
converges uniformly. Hence for each n € N there exists a number j, € N such that

Jn
sup |n(2) — Za"j 2| <27 (2)
2E€B1/2(d,(0) =0
—_———
::Pn(z)

Next fix a compact set K C C\ S. Due to the discreteness of S we know that lim,, |d,| = +00. As K is
in particular bounded we find a number n(K) € N such that for all n > n(K) we have K C By /q,(0).
Consequently, from (2) we infer that

Y oswlaa(z) =) < Y. sup ga(2) —pa(2)] < D 27" < oo
nzn(K)zeK n>n(K) 2€B1/21d51(0) n>n(K)

Since K is a compact subset of C\ S all functions ¢, — p,, are bounded on K. Hence we have shown that

the series
o0
f= Z dn — Pn
n=1

converges locally normally on C\ S. In particular, by Lemma 1.11 it is holomorphic. Finally, in order to
obtain the principal part at a point d,, we argue as follows: choose p > 0 such that Bs,(d,,) N S = {d,}.
Then by the formula for the Laurent coefficients and local uniform convergence of f we deduce that the
jth Laurent coefficient at d,,, denoted here by a;(d,), is given by

‘ _ f(2) 1 ar(2) — pi(2)
(Z](dn) - o \/(9Bp(d’n,) (Z _ dn)jJrl dz = ; i /8Bp(dn) (Z — dn)jJrl dz.

For j < —1 the only integrand that is not holomorphic on Ba,(d,) is ¢u(2)(z — d,)~UFY. All other

contributions vanish due to Cauchy’s integral theorem. Hence for 7 < —1 we deduce that
1 qn(2)
a;j(dy) = — —— g,
J( ) 27 9B, (dy) (Z — dn)]+l

which coincides with the jth Laurent coefficient at d,, of ¢,. Thus the principal part at d,, is given by ¢,
as claimed. 0

Remark 2.3. Any other holomorphic function f : C\ S — C with the same principal parts at d,, € S
differs from f by an entire function. Indeed, the difference f — f has removable singularities at each
d,, € S since all its Laurent coefficients with negative index vanish.

Now we prepare for extending the previous theorem to general open sets U C C and point sets
S = {dn}nen C U, which are discrete in U (but may have accumulation points at OU). Instead of
polynomials we will use truncated Laurent series to ensure convergence of the series.
Definition 2.4. Given a principal part ¢(z) = Z;il a_j(z—d)™7 and k € N we define the truncated
Laurent series ¢*(z) = 25:1 a_j(z—d)™.

Before we prove the general Mittag-Leffler theorem for special sets S we need some auxiliary results
concerning principal parts.
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Lemma 2.5. Let ¢: C\ {d} — C be holomorphic.
(i) q is a principal part <= lim|;|_ 4 q(2z) = 0.
(i1) If q is a principal part then on the annulus A. = {z € C: |z —c| > |d — ¢|}, ¢ € C, the function
q admits a Laurent series expansion of the form

a(x) =Y aj(z—c) 7.
j=1

Proof. (i) By Theorem 0.10 we can write ¢ = ¢* + ¢~, where the regular part ¢* : C — C is an entire
function and the principal part ¢~ : C\ {d} — C is of the form ¢~ (z) = 3772, a_;(» — d)~7. First we
recall a general bound on the coefficients of a Laurent series expansion. In our case, for all p > 0 and
J € 7Z it holds that

SupzeaB,,(d)\Q(Z)\< sup Iq(z)\,o_j. 3)

a;| = 1 —
a5 pItt 2€0B,(d)

1
< — Length(0B,(d))
—_—

1 / q(2)
21 8Bp(d) (Z — d)j+1 27

=2mp
Inserting p = 1 we see that |a;| < C for some constant independent of j. From that it is not difficult to
prove that
lim ¢ (2)=0. (4)

|z| =400
If ¢ is a principal part, then ¢* = 0 so that (4) implies that lim|.|_,; ¢(z) = 0. On the other hand, if
lim.| 4o q(2) = 0 then (4) yields that lim|.|_, ;o ¢*(2) = 0. Since ¢ is an entire function we deduce
from Liouville’s theorem that ¢ = 0, so that ¢ is a principal part. This proves the equivalence (i).

(ii) In order to prove the second statement, note that since ¢ is holomorphic on A, C C\ {d} it admits
a Laurent series representation centered at c. Similar to (3) the coefficients satisfy for any p > |d — ¢| the
estimate

I

laj] < sup |q(2)
z€0B,(c)

For p > 1 the factor p=7 is bounded for all j > 0. By (i) we know that the supremum vanishes when
p — +oo. Hence a; = 0 for all j > 0 as claimed. OJ

Now we can prove the general Mittag-Lefller theorem for a special class of sets S. First some notation.
Given a set S C U that is discrete in U, we define S’ = S\ S as the set of its accumulation points in C.

Proposition 2.6. Let S = {d,}nen C U be a countable set that is discrete in U and for each d,, € S let
qn : C\{d,} — C be a principal part. If there exists a sequence {¢ptneny C S’ such that lim, |d, —¢,| =0
then there exist truncated principal parts ¢k centered in c,, (cf. Lemma 2.5(ii)) such that the series

oo
f= ZQH - Qfﬁ
n=1

converges locally normally in C\ S D U\ S and at each point d,, € S the principal part of f is given by
dn -

Proof. Note that by Lemma 2.5(ii) and general properties of Laurent series the sequence of truncated
Laurent series centered at ¢, converges uniformly to ¢, on the smaller annulus A2 :={z € C: [z—c,| >
2|dy, — cn|}. Hence for each n € N there exists k,, € N such that

lan(2) —ain(2)] <27 Vz e AL (5)

Now fix a compact subset K of C\ S. Then dist(S, K) > ¢ for some ¢ > 0 and since lim,, |d,, — c,| = 0
we find an index n(K) € N such that for all n > n(K) it holds that

KCA? ={z€C: |z—c,| >2|dy —cnl},
—_—  ———

>e on K —0
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where we recall that ¢, € S’ C S. Consequently we can use (5) to estimate

> swlm(z) —ahr ()< Y 27" < +oo

n>n(K) € n>n(K)

Since the singularities of ¢, and ¢*» are contained in S all functions g, — ¢®» are bounded on K. Hence
we have shown the local normal convergence of

o0
F= an—dr
n=1

In particular, f is holomorphic on C\ S. Finally, since each ¢*» is holomorphic on U (recall that we have
chosen the centers of the truncated Laurent series in S’ C 9U), by the same reasoning as for Theorem 2.2
we conclude that at each d,, € S the principal part of f is given by g,. ]

As a next step we divide the set of singularities .S in suitable way so that for one subset we can apply
the Mittag-Leffler theorem on C and on the other set we apply the special version above. The basic idea
is to split the points into a closed set and sets close to an accumulation point. The following lemma makes
this splitting precise.

Lemma 2.7. Let S C U be a discrete set in U such that S’ = S\ S # 0. Define
S1:={z€8: |z[dist(S5,2) > 1}, Sy :={z€ 5 |z|dist(5,2) < 1}.
Then Sy is closed and for every € > 0 the set Sa(e) := {z € Sy : dist(S’, z) > €} is finite.

Proof. We first prove that Sy is closed. Let {z,}nen € S1 be a sequence such that z, — z* for some
z* € C. Due to the continuity of the function z — |z|dist(S’, 2) we know that |z*|dist(S’,2*) > 1. We
claim that z* € S which shows that S; is closed. Indeed, assume by contradictions that z* ¢ S. Then by
definition z* € S’, which contradicts the fact that |z*|dist(S’, z*) > 1.
In order to prove the second assertion, note that for any z € Sa(e) we have by definition
2] < dist(S", 2)~! < é

Thus, assuming by contradiction that the cardinality of Sa(e) is infinite for some € > 0, there exists a
sequence of distinct points {z, }nen C S2(g) such that z, — 2* for some z* € S. Since S C U does not
contain any accumulation point it follows that z* € S’. But due to continuity it holds that dist(S’, z*) > e,
which yields a contradiction. O

The splitting S = S U S5 can be further justified by the following property which will allow us to
apply Proposition 2.6.

Lemma 2.8. Let So = {dn}nen C U be as in Lemma 2.7 and assume that S4 # (). Then there exists a
sequence {cptnen C Sh such that lim, |d,, — ¢,| = 0.

Proof. First note that S5 is closed (this is a general fact which can be proven by a diagonal argument).
Hence for each n € N there exists ¢, € S such that dist(S5, d,) = |d, — ¢,|. If the latter term does not
converge to zero, then for some € > 0 the cardinality of S2(¢) defined in Lemma 2.7 would be infinite.
Indeed, the assumption S5 # () implies that the cardinality of S, is infinite. Moreover, we have that
S’ = S} since the set S; is closed. O

Now we can state and prove the full theorem of Mittag-Leffler on open sets, which will be the final
result of this chapter.

Theorem 2.9. Let U C C be open and let S = {dp}nen C U be discrete in U. For each d,, let g, :
C\ {d,} — C be a principal part. Then there exists a holomorphic function f : U\ S — C such that at
each dy, its principal part is given by q,. The function f can be taken to be of the form

f= an = N,
n=1
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where each hy, : U — C is holomorphic and the series converges locally normally on U \ S.

Proof. Without loss of generality we may assume that S’ = S\ S # 0 (otherwise S is discrete in C and
we can apply Theorem 2.2). Let S; and S5 be defined as in Lemma 2.7. Since S is closed by that lemma
we know that S{ = () and therefore S5 = S’. Let us write S1 = {d,,,1},, and Sy = {d,, 2} (we don’t claim
that both are infinite). Since S; C S is discrete in C we can apply Theorem 2.2 to deduce that there
exists a family of polynomials p,, ; : C — C such that

flz Z dn,1 — Pn,1

dn,1€51

is holomorphic on C\ Sy, at each d, 1 € S; its principle part is given by ¢, 1 and the series converges
locally normally on C\ 5.

Next we treat the set So. On this set we can apply Proposition 2.6 (cf. Lemmata 2.7 & 2.8) to deduce
that there exists holomorphic functions hy, 2 : U — C such that

f2 = Z qn,2 — hn,2

dn,2€S2

is holomorphic on U \ Sa, at each d,, 2 € Ss its principle part is given by ¢, 2 and the series converges
locally normally on U \ Ss.
Since S = S;US, the function f = f; + f» thus satisfies all the claimed properties. O

3. INFINITE PRODUCTS

In this chapter we deal with the counterpart of series for products. The definition of infinite products
11 j>1 @ seems quite obvious considering the Cauchy-criterion for finite partial products. However, it is
customary to exclude some cases, for instance when some factors a; equal zero or also when the limit
equals zero. In this course we allow for the first case. Then the definition reads as follows:

Definition 3.1. Let {a;}jen C C be a sequence of complex numbers. The infinite product Hjoil a; is
said to converge if there exists jo € N such that a; # 0 for all j > jo and there exists the limit

a(jo) == m]irﬂw H a; # 0.
J=jo
jo—

j:11 a;. Note that this definition is independent of the number jo.

In this case we set [[72, a; = a(jo)

With the above definition an infinite product is zero if and only if one factor is zero. Moreover, similar
to series we have a simple necessary condition for convergence.
o0
Jj=1

— oo . ) 1 = 1 ;=
product a(m) = [[;Z,, a; exists. Moreover, mgﬁlma(m) 1 and jBI-Foo a; =1.

Lemma 3.2. Assume that the infinite product a = [[._, a; converges. Then for all m € N the infinite

Proof. Without loss of generality we may assume that a; # 0 for all j € N. The existence of the products
a(m) follows from the definition. Moreover we have

n m—1
a HJ‘:1 a; _
ITa

= 1. —_—
a(m) ~ ntee [T, a5

—a as m——+oo

Letting m — 400, we deduce that

lim a(m)a = a.
m——+oo

Since a # 0 by definition we deduce that hrﬂ a(m) = 1. Moreover, since a; = a(j)/a(j + 1) we also
m——+00

conclude that lim a; =1 O
Jj—+oo
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Next we prove an elementary, but useful criterion for the convergence of infinite products. Without
loss of generality we shall assume that all factors differ from the non-positive real axis.

Lemma 3.3. Let {a;}jen C C\ {(—00,0]} be a sequence. Then [[;2, a; exists if and only if the series
2;11 log(a;) exists, where log denotes the principal branch of the logarithm.

Proof. First assume that Zj‘;l log(a;) exists. Then taking the complex exponential we deduce that

0 # exp (]Zl log(aj)) = nll)r-&I-loo exp (; log(aj)> = ngrfwjl;ll a;.

This proves the convergence of the infinite product since we assumed that all factors are different from
Zero.

To prove the reverse direction, we set P, = H;-Lzl a;. It seems natural to take the logarithm of P,.
However, the equality log(z122) = log(z1) + log(z2) is only valid up to an additive multiple of 27 on
C\ {0}. Nevertheless, since Hjoil a; # 0 we can find ng € N such that for all m > n > ng it holds that

1
|Pn_Pm|§§‘Pn|a

or equivalently,

P, 1
1— =" < -,
P, | =2

In particular, all the products H?ln 415 are contained in the right half-plane. Hence we have by the
definition of the principal branch of the logarithm that
m m
log ( H aj) = Z log(a;).
Jj=no+1 Jj=no+1

Passing to the limit as m — +oo we deduce the claim from the continuity of z — log(z) on the right
half-plane. O

For infinite products defining absolute convergence as the convergence of H;il la;| is not beneficial.
On the one hand, it would not imply the convergence of [T7Z, a; (for instance, take a; = (—=1)7). On the
other hand, the convergence of H]Oil a; always implies the convergence of Hj’;l |a;| due to the property
la - b] = |a| - |b]. However, Lemma 3.3 motivates the following definition.

Definition 3.4. An infinite product H;’il a; is called absolutely convergent when there exists an ng € N
such that for all n > ny we have a,, ¢ (—o0,0] and if the series Z;‘;no log(a;) is absolutely convergent.

With this definition absolute convergence implies convergence by the corresponding result for series
and Lemma 3.3. Moreover, we can formulate the second useful convergence criterion.

o0 o0
Lemma 3.5. An infinite product H(l + a;) converges absolutely if and only zfz la;| converges.
j=1 j=1

Proof. See Exercise H 4.2. O

Next we deal with infinite products of (holomorphic) functions. Given a sequence f; : U — C we
distinguish two types of convergence of the product Hj’;l f;+ local uniform and local normal convergence
(cf. the corresponding notions for series).

Definition 3.6. Let f; : U — C be a sequence of continuous functions. An infinite product H;’il fi:
U — C is called locally uniformly convergent if for every zo € U there exist » > 0 and jo € N such that
[1}-,, fi converges uniformly on B,(z9) to some non-vanishing function.

It follows from the definition that a locally uniformly convergent product converges also pointwise.
There are further immediate consequences that we summarize in the corollary below.
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Corollary 3.7. Let f; : U — C be a sequence of continuous functions. Assume that f = Hjoil fi:U=C
converges locally uniformly.
(i) Then the sequence H]Oin f; converges locally uniformly to 1 as n — +o00. In particular, we have
that f; — 1 locally uniformly as j — 400,
(i) if Hj’;l g; : U — C is also locally uniformly converging, then so is Hjil fig;;
(i11) if each f; is holomorphic then so is H;’il fi

Proof. (i) By Lemma 3.2 the sequence g, (2) = [[;2,, f;(2) is pointwise well-defined. Fix 29 € U and let
r > 0 and jo € N be as in Definition 3.6. The continuity of each f; and the local uniform convergence
imply that g, is continuous. Since g;,(z) # 0 for all z € B,(zp) it holds that

inf , =:2¢> 0.
Z&gWMMJ@\ c

Since H;Zjlo fi(2) = gj, uniformly on B,(z) we find an index ng € N such that for all n > ng

n—1
inf H fi(z)] >ec

ZGBT/2(Z(]) fuirs
Then, for n > max{jo,no} and z € B, /3(20),
n—1
950 (2) 1
mM@—HS*4lL4*—1SEQMd—IIﬁ@%

[T, £i(2)
This proves the first part of (i) as by assumption the last term vanishes uniformly on B, s(zo) for
n — 400. The second one follows from the first one since f; = gfil'

(ii) This follows essentially from the definition since the product of two locally uniformly converging
sequences that are locally equibounded still converges locally uniformly.

(iii) Apply Theorem 1.3. O

Jj=Jo

One drawback of local uniform convergence of products is that there is no invariance under rearrange-
ment, i.e., the limit of infinite products might depend on the order of the sequence f;. Hence we introduce
the more stable notion of local normal convergence relying on Lemma 3.5.

Definition 3.8. An infinite product of the form H;‘;l(l +g;) with g; : U — C is called locally normally
convergent if the series Z;’;l g; is locally normally convergent.

We next prove that local normal convergence of products implies local uniform convergence.

Lemma 3.9. Assume that the product H?;(l + g;) converges locally normally. Then it converges also
locally uniformly.

Proof. Fix zg € U and let r > 0 be such that

oo

S s g(2)] < +oo.

j=17€Br(20)

is

N[

Then there exists jo € N such that for all j > jo we have sup,cp (., [9(2)| < d, where 0 < ¢ <
chosen such that

1
§|z\ < |log(1l+ z)| < 2z Vz € Bs(0).
In particular, we have

sup  |log(1 + g;(2)| < +oo0.
>0 2€ By (z0)
Hence by Lemma 1.11 the series >, ; log(1+g;) converges uniformly on B, (20). Taking the exponential
yields the claim as the exponential function never vanishes and is continuous. O
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o0

Remark 3.10. If H;’il(l + g;) converges locally normally, then taking the logarithm of Hj:jo(l +95)
for a suitable large jy, we also see that local normal convergence is invariant under rearrangements of the

sequence {g;}jen.

In Chapter 4 we will analyze the zeros of infinite products that converge locally normally. Given a
holomorphic function f : U — C we denote by Z(f) the set of its zeros and by o.(f) € NU {0, +oco} the
order of a zero ¢ € U (with the convention that o.(f) = 0 means f(c) # 0, while o.(f) = 400 if and only
if f vanishes in a neighborbood of ¢).

Note that if f1,..., fn : U — C is a finite family of such functions, then

N N
Z(h- ) =200, o ) =3 oelfo):

i=1
In the proposition below we generalize this result to infinite products that converge locally uniformly.
Lemma 3.11. Let f; : U — C be a sequence of holomorphic functions. Assume that f = H;‘;l £
converges locally uniformly. Then
z(N=U2f).  odf)=) ocfy) YeeU.
j=1 j

Jj=1

Proof. Fix ¢ € U. Since H;’;l fj(c) converges there exists jo € N such that f;(c) # 0 for all j > jo. Write

f=h fijo—1- Hfj
J=jo
=%

Since g is holomorphic due to the local uniform convergence, and g(c) # 0, we conclude that

oc(f) = Z 0c(fj) +oc(g) = Zoc(fj)-

j=1

The previous equality also proves that Z(f) = U;’il Z(f)- a

In the exercise classes we will show the product formula for the sinus

00 2
sin(mrz) = 7z | I (1 - %)
n
n=1

For the proof we need the logarithmic derivative of infinite products, which will be the last topic of
this chapter. Recall that the logarithmic derivative of a holomorphic function f : U — C (f # 0) is

by definition the holomorphic function h : U \ Z(f) — C given by h = fTI For infinite products the
logarithmic derivative has a special structure.

Proposition 3.12. Let f; : U — C be a sequence of holomorphic functions such that the product
= H;’il fi + U = C converges locally normally. Then the logarithmic derivative fT/ :U\NZ(f) = C s
given by

oo /
where the series Z —7 converges locally normally on U\ Z(f).
g=1"7
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’

Proof. Note that all functions h; = ;—’ are holomorphic on U \ Z(f). Moreover, we can write

f:fl'-~-'fn—1Hfj7

=gn
with g, holomorphic due to local normal convergence and g, (z) # 0 for all z € U \ Z(f). By iteration of
the standard product rule we then calculate

n—1 —1
f/ Z f/ HZL 1 f@gn + H?:l f]g; n—1 f/
A— — J + In
f Hj:l fign f i 9n
Combining Lemma 3.9 and Corollary 3.7 (i) we know that g, converges locally uniformly to 1. From
Theorem 1.5 we infer that also g/, — 0 locally uniformly. In particular, since g, converges to a non-

vanishing function, this implies that the logarithmic derivative Z—/" converges locally uniformly to 0. Thus

f, n—1 ¢ oo g/

— = lim Z —= = - locally uniformly.

It remains to show that the series converges locally normally on U \ Z(f). Fix zo € U \ Z(f) and let
r > 0 be such that B, (29) C U \ Z(f). By Corollary 3.7 (i) the sequence f; converges locally uniformly
on U to 1. Hence we find an index jo € N such that |f;(z)| > 3 for all j > jo and z € B, (). Setting
g; = fj — 1 we conclude that

oo

Z sup

15, 2€B(z0) fg

where in the last inequality we used the standard Cauchy estimate for derivatives derived from Corollary

0.3 in the form
1 .
— / gﬂ (ZA) 5 dZ
27TZ aBQr(ZO) (Z - Z)

By the local normal convergence of the infinite product the last sum in (6) is finite. This proves the claim.
O

<23 s G4 s g0 (6)

J=Jo z€B,(z0) J=d0 2€0B2,(20)

2 .
< - sup |g;(2)] VZ € B,(20).

195(2)] = <
’ T 2€8Ba.(20)

Remark 3.13. (i) Proposition 3.12 holds verbatim if we replace local normal convergence by local
uniform convergence everywhere. The proof remains unchanged except that we do not need the
last argument.

(ii) Even if each f; # 0, it can happen that Z(f) = U when U is not connected (take for each
connected component an f; that vanishes only on this component). If instead U is connected,
then Z(f;) is at most a countable set, so that Z(f) can be at most countable.

This was the last result we wanted to prove on infinite products. Next we apply them to prove the
celebrated product theorem of Weierstrass.

4. THE WEIERSTRASS PRODUCT THEOREM

The zeros of a non-constant entire function are always discrete by the identity theorem. In this chapter
we study the reverse problem: given a discrete set S = {a, }nen C C, does there exist an entire function
f : C — C such that Z(f) = S with prescribed multiplicity at each zero. If the set S is finite, say

ai,...,an (with multiple occurrences allowed), then the polynomial
N
P(z)=[[Gz=an)
j=1

satisfies all properties. The Weierstrass product theorem gives an existence result in the infinite case.
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In general one cannot expect the convergence of the infinite product

oo

(-

n=1
Hence we add factors g, : C — C\ {0} such that (1 — =)g, () is close to 1. Since |a,| — +0o0 it suffices
to note that for |z| small enough we have

(1 —z)e leell=2) —

Hence we consider a suitable Taylor-polynomial of the function z — —log(1 — z) at the origin. Note that
for |2| < 1 we can write

—log(1l —2) Z =
This motivates the definition of the so-called Welerstrass factors given by
Eo(2) =1-z, En(z) = (1 — z)eXi= *
The following estimate turns out to be very useful for proving the Weierstrass product theorem.

Lemma 4.1. It holds that |E,(z) — 1| < |z|""! for all 2 € B1(0).

Proof. The claim is trivial for n = 0. Hence fix n > 1. To reduce notation we set p,(z) = >__, 4. Then
on the one hand
n—1
(=) =(1=2) 3 b =12
k=0

and therefore by the product rule
E'(2) = —ePn®) 4 (1 — 2)ePr Byl (2) = —z"ePn (),
On the other hand, denoting by > 72 arz" the Taylor series of E,, at the origin we have that

o0
= Zkakzkfl = —z"ePn(3),

The right hand side term has a zero of order n in z = 0. Hence we conclude that
ap =0 V1<k<n.

Moreover, as the coefficients of the Taylor series of z — eP»(?) are all non-negative, we conclude that
lak| = —ag Yk > n.

Since 1 = E,(0) = ap and therefore 0 = E,, (1) =1+ >, ax, we conclude by Holder’s inequality that

oo oo
Ba(z) =11 < Y agllzl* <suplzf® Y Jan] = |2,
k=n+1 > k=n+1
=|z|n+1 1
where we used that |z| < 1. This concludes the proof. O

With the previous lemma at hand we can now show the Weierstrass product theorem on the complex
plane. Note that the existence result remains valid on any open set, but the structure of the function f
will be slightly different (cf. the non-mandatory exercise H 7.3).

Theorem 4.2. Let (an)nen be a sequence of complex numbers that is discrete in C. For each n € N set
on = #{k € N: ap = a,}. Assume that a,, # 0 and 0, < +oo for alln € N. Then

=TT et = [T (1- 2o 3 )

n=1
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converges locally normally and defines an entire function with Z(f) = {an}nen and o4, (f) = 0, for all
n € N.

Remark 4.3. Note that the function z + z¥ f(2) allows to add a zero in z = 0 with multiplicity k € N
to the above result.

Proof of Theorem 4.2. We show that the infinite product defining f converges locally normally on C. To
this end, fix a compact set K C C. First note that lim,,_, . |a,| = +00. Hence there exists ng € N such

that ai‘ < % for all z € K and n > ng. In particular, we can apply Lemma 4.1 to deduce that
oo o0
Z sup [En (=) — 1] < Z 2~ < foo.
n=no ZEK n=no

By definition this shows the local normal convergence of the product. Corollary 3.7(iii) then implies that
the function f is entire. Moreover, by Lemma 3.11 we know that

Z(f) = U Z(En(?n)) = {an}neN, Oan(f) = Zoan (En(?n)) = Onp,
n=1 Jj=1

where in the last equality we used that each F,, as a first order zero in z = 1. (|
The Weierstrass product theorem implies the following representation result of entire functions.
Corollary 4.4. Let g : C — C be an entire function such that g # 0 and write its zeros in C\ {0} as

(ai,...,a1, ag,...,a2,...) =: (s1,82,82,...) = §
—_——— ———
0a,(g) times 04,(g) times

Then we can write

where h : C — C is an entire function.

Proof. Applying the Weierstrass product theorem (or its finite analogue) to the sequence (s,)nen yields

that the function
dim(S)

fz) =29 ] Eu(Z)
n=1

is entire with Z(f) = Z(g) and 0,(f) = 0,(g) for all z € C. Hence the quotient g/f has only removable
singularities and therefore represents an entire function that never vanishes. It is a well-known result
from complex analysis that on the simply connected domain C this implies that g/f = e" for some entire
function h : C — C (see also Corollary 5.8). This finishes the proof. O

5. PICARD’S LITTLE AND GREAT THEOREM

We now come to two celebrated theorems in complex analysis for functions in one variable. The two
theorems by Picard provide a very fine description of the image of entire functions (Picard’s little theorem)
or the image of a neighborhood of an essential singularity (Picard’s great theorem). We will see that the
little theorem follows (in an even stronger form) from Picard’s great theorem. Let us first formulate the
two theorems.

Theorem 5.1 (Picard’s little theorem). Let f : C — C be a non-constant, entire function. Then f
assumes each value in C except at most one.

Theorem 5.2 (Picard’s great theorem). Let f : B.(z9) \ {z0} — C be holomorphic and let zo be an
essential singularity. Then in each punctured neighborhood of zg f assumes each value in C infinitely
many times except at most one.
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Proof of Theorem 5.1 based on Theorem 5.2. If f is a polynomial then the claim follows by the funda-
mental theorem of algebra as z — f(z) — w as a zero for every w € C, so that f is surjective. If f is not
a polynomial, then z — f (%) has an essential singularity in z = 0 (this follows from the characterization
via the principal part of the Laurent series expansion). Hence the claim follows from Theorem 5.2 as the
map z — < is one-to-one from C\ {0} onto itself. O

Remark 5.3. (i) The above proof shows that if f is not a polynomial then f assumes each value
even infinitely many times except at most one.
(ii) Considering the function z +— e* shows that Theorem 5.1 is sharp.

Next we turn to the proof of Picard’s great theorem. On the way we prove several theorems that are
interesting on their own. Picard’s great theorem will then be a consequence of a strengthened version of
Montel’s compactness theorem. Let us mention that Picard proved the two theorems by different means.

We start with Bloch’s theorem which gives a lower bound on the size of maximal discs contained in
the image of non-constant holomorphic functions. In what follows we denote by H(U) those functions
which are holomorphic in a neighborhood of U.

Theorem 5.4 (Bloch’s theorem). Let f € H(B1(0)) be such that f'(0) = 1. Then there exists p € C such
that B%_ﬁ(p) C f(B1(0)).

Proof. We divide the proof into three steps. The first two are more general statements.

Step 1: We show that if U C C is a bounded domain, g € H(U) is not constant and a € U is such
that s = inf,cop |g(2) — g(a)| > 0, then Bs(g(a)) C g(U).

Indeed, due to the boundedness of g on U the set dg(U) is compact. Hence there exists w € dg(U)
such that dist(9g(U),g(a)) = |w — g(a)|. We argue that |w — g(a)| > s which proves the first step. To
this end, note that there exists a sequence z, € U such that ¢g(z,) — w and without loss of generality
also 2, — 2z € U. Then by continuity g(z) = w € dg(U). By the open mapping theorem it follows that
z € OU. Hence by definition |w — g(a)| > s.

Step 2: Next we prove that if g € H(B;(a)) is not constant and sup,¢p, (4 |9'(2)| < 2|g'(a)|, then
Br(g(a)) C g(By(a)) for R = (3 — 2v2)r|¢(a)|.

Here comes the argument. Upon considering z — ¢g(z 4+ a) — g(a) we can assume that a = g(a) = 0.
Then the function A(z) = g(z) — ¢’(0)z satisfies

A@w:AMf%o—y%mdg

so that by the definition of the path-integral we have the bound

K/mm (0)]2] dt.

In order to bound the difference in the integrand we express it by Cauchy’s integral formula as
1 g g v g'(¢
O -f 0= [ 1O Qv [ O
27 Jop,0) C — v ¢ 2mi Jap, 0y C(C —v)
so that still for v € B,.(0) we have

lg'(v) =g’ (0)] <

d¢ Vv e B,(0),

v
ML s (g2
r— v 2€B,.(0)

Combined with our assumption this yields the following bound on A(z):
1 2
|t2| 1 |z / |22
[A(2)] S/ sup |g'(2)||2]dt < sup |g'(z)] <
o 7 —Itz| .eB.(0) 27— |z] 2€B,.(0) r— 2]
Since also |A(2)] > |¢'(0)]|z] — |g(2)|, we deduce that for all z € B,.(0) it holds that

A
o)1 (11 - ) o

l9'(0)]-




TOPICS IN COMPLEX ANALYSIS 17

In order to apply Step 1 in the most efficient way we consider the sphere 0B,-(0) where the term
in brackets gets maximal. With elementary analysis one can show that the real-valued function p +—
p— p*(r — p)~! takes its maximum on (0,7) at p* = (1 — 3v/2)r with value (3 — 2v/2)r. Hence applying
Step 1 with U = B,«(0) and a = g(a) = 0 yields Br(0) C g(B,(0)) with R as claimed.

Step 3: Conclusion.

To the function f € H(B1(0)) we associate the function z — h(z) := |f/'(2)|(1—|z|), which is continuous
on B;(0). Since by assumption f'(0) =1 it follows that the maximum of h on B;(0) is assumed at some
point p € Bi(0) with M := h(p) > |f(0)] = 1. Setting r = (1 — |p|) we have M = 2r|f'(p)| and
B.(p) C B1(0). Moreover, note that for z € B,.(p) it holds that

lz| <|p|+r=1-r,

or equivalently (1 — |z|) > r. Using the maximality |f'(z)|(1 — |z|) < 2r|f’(p)| we conclude that |f/(z)] <
2|f'(p)| for all z € B,.(p), so that Step 2 implies that Br(f(p)) C f(B1(0)) for

=@B-2v2)|f' (0| = (5 - V2)M > (5 - V2)
as claimed ]

Bloch’s theorem might seem quite restrictive as formulated only on the unit disc. But there are some
straightforward consequences.

Corollary 5.5. If f : U — C is holomorphic and f'(c) # 0 at a point ¢ € U, then f(U) contains
discs of every radius (3 — v/2)s|f'(c)| for 0 < s < dist(c,0U). In particular, if f : C — C is entire and
non-constant, then f(C) contains discs of arbitrarily large radii.

Proof. See Exercise H 8.1. O

Both Picard’s little and Picard’s great theorem deal with functions that omit two values. Hence we
need to study them more in detail. Before we continue, we recall the notion of simply connected (open)
sets.

Definition 5.6. Let G C C be an open set. We say that G is simply connected if it is path-connected

and every closed curve v C G can be contracted in G to a point, that is, for every continuous curve

v :[0,1] = G with v(0) = (1) there exists a point zp € G and a continuous map H : [0,1] x [0,1] = G
such that

(i) H(0,t) =~(t) vt € [0,1];

(i) H(1,t) = 2o vt € [0,1]

(iil) H(s,0) = H(s,1) Vs € [0,1].

We will heavily rely on the fact that on simply connected domains every holomorphic function has a
primitive. We omit its proof as it is treated in basic courses on complex analysis.

Theorem 5.7. Let G C C be a simply connected domain and let f : G — C be holomorphic. Then there
exists a holomorphic function F' : G — C such that F'(z) = f(z) for oall z € G. O

Based on that theorem we can show that on simply connected domains there always exist holomorphic
logarithms and n*"-roots.

Corollary 5.8. Let G C C be a simply connected domain and let f: G — C\ {0}. Then there exists a
holomorphic function log(f) : G — C such that exp(log(f)) = f. Moreover, for each n € N there exists a
holomorphic function /f : G — C such that ({/f)" = f.

Proof. Consider the logarithmic derivative h : G — C defined by h = f’/f, which is holomorphic on G.
Choose a primitive H : G — C such that for some zy € G we have H(zg) = log(f(20)). Then by the
product rule we have
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Since also exp(H(29)) = f(z0) we deduce from the path-connectedness of G that exp(H(z)) = f(z) for
all z € G. Thus setting log(f) = H shows the first assertion.
In order to prove the second statement, it suffices to define {/f : G — C by /f(z) = exp(+H(z)). U

1
n
Now we are in a position to show the following auxiliary result on holomorphic functions that omit
two values.

Lemma 5.9. Let G C C be a simply connected domain and let f : G — C be holomorphic such that
{=1,1} N f(G) = 0. Then there exists a holomorphic function h : G — C such that

f = cos(h).

Proof. Note that the function z — 1 — f(2)? never vanishes on G. Hence by Corollary 5.8 there exists a
holomorphic square root g = 1/1 — f2, which satisfies in particular

(f +ig)(f —ig) = f*+4° = 1. (7)

Thus (f +ig) has no zeros in G and therefore we can write (f +1ig) = e for some holomorphic function

h: G — C. Then by (7) it holds that (f —ig) = ™", so that f = 1(e'" + e~"") = cos(h) as claimed. O
With this lemma we can prove the following crucial proposition.

Proposition 5.10. Let G C C be a simply connected domain and let f : G — C be holomorphic such
that {0,1} N f(G) = 0. Then there exists a holomorphic function h : G — C such that

f= % (1 + cos(m cos(mh))) .

Ifﬁ : G = C is any holomorphic function satisfying the above equation, then E(G) contains no disc of
radius larger or equal than 1.

Proof. First note that the function 2f — 1 omits the values —1 and 1, so that by Lemma 5.9 we find
a holomorphic function h; : G — C such that 2f — 1 = cos(why). Observe further that h; must omit
all integer values. Hence again by Lemma 5.9 we can write h; = cos(mh) for some holomorphic function
h: G — C. The first claim then follows by rearranging terms.

Now let h : G — C be any such function. Define the grid-like set

L={m=*ir tlog(n++vn2—1): meZnecN\{0}}
We shall prove that £ N a(G) = 0. Indeed, for 2 := m £ ir~*log(n + v/n? — 1) € £ we have that

1, .. s 1

cos(mz) :5(6“72 +e7) = 5(—1)’" ((n +vn2—1)T +(n+vn?— 1)*)
1( 1)an—l—nZ—1—|—2n\/112—1—|—1 (—1)m
=—(— = (—-1)"n.

2 n+vn?—1
Thus cos(mcos(w2)) = =1 for all 2 € £. Since f(G) N {0,1} = § we conclude that h(G) N L = () as
claimed. It remains to estimate the grid-size of £. Note that the ’vertical’ distance between neighboring

grid points is bounded by
log <1+n1 +\/1+T>

[log(n+1++/(n+1)2—-1)—log(n+ vVn2—-1)| = Y g

<log(1+n~'+ 14 2n-1) <log(2+V3) <,

where we assumed without loss of generality that the two points are in the upper half plane (note that
for n = 1 the points in £ are on the real line so that there are no neighboring points in different half-
planes). The ’horizontal’ distance is exactly 1. Hence for every z € C there exists 2 € L such that
|Re(z) — Re(2)] < 1/2 and [Im(z) — Im(2)| < 1/2. Hence |z — 2] < 1. So every disc of radius 1 in C
intersects £. Hence E(G) cannot contain a disc of radius larger or equal than one. |
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With Proposition 5.10 one obtains Picard’s little theorem (cf. exercise H 9.1). Towards the proof of
Picard’s great theorem it helps us to prove Schottky’s theorem which controls the growth of functions
omitting the two values 0 and 1.

Denote by 3 > 0 a constant for which Bloch’s theorem holds (e.g. 8 = (3/2 — v/2)). Let us define the
positive function L : (0,1) x (0, +00) — R by

L(0,7) = exp (” exp (” (3 e 5(10—0)»)

Then we have the following result:

Theorem 5.11 (Schottky’s theorem). Let f € H(B1(0)) be such that |f(0)| < r and {0,1}Nf(B1(0))
Then

0.

fR) < L0,r)  V[z[<0,0<6<1

Proof. We divide the proof into several steps.
Step 1: We first show that if cos(ma) = cos(wb), then b = +a + 2n for some n € Z and that for every
w € C there exists v € C such that cos(mv) = w and |v] < 1+ |w|. The first claim follows from the
formula cos(ra) — cos(b) = —2sin(F(a + b)) sin(F(a — b)) and from {sin = 0} = 7Z. Since z > cos(z) is
surjective onto C, for every w € C we can thus find v € C with Re(v) € [—1, 1] and cos(mv) = w. Since
|w|?> = cos?(7Re(v)) + sinh?(7Im(v))
and sinh?(z) > 22 for all z € R (proof by power series representation of sinh for z > 0), we deduce that
o] = V/Re()? + Tm(@)? < /1 F w272 < 1+ Jul.

Step 2: There exists a function g € H(B1(0)) such that

(i) f = 5(1 4 cos(mcos(mg))) with |g(0)] < 3 +2|f(0)];

(ii) |g(2)| < g(0)|+0/(B(1—0)) for all |z2] <0,0< 8 < 1.
Indeed, by Lemma 5.9 we find a function F € #(B;(0)) such that 2f — 1 = cos(wF). Due to Step 1 there
exists b € C such that cos(nb) = 2f(0) — 1 and |b] < 14 |2f(0) — 1] < 24 2|f(0)|. Moreover, again by
Step 1 b = +F(0) 4+ 2k with k € Z. Define F = +F + 2k, so that F' € H(B1(0)). Then 2f — 1 = cos(nF)
and F(0) = b. Since F omits all integer values there exists g € H(B1(0)) such that F = cos(ng). Using
one more time Step 1 we find a € C such that cos(ma) = b and |a| < 1+ |b] < 3+2|f(0)|. By construction
cos(ma) = cos(mg(0)), so that we can again define ¢ = £g + 2m € H(B1(0)) for some m € Z such that
9(0) = a and F = cos(mg). Then f = (1 + cos(w cos(ng))) and |g(0)| = |a|] < 3+ 2|f(0)| as claimed in
(1).

In order to show (ii), note that by Proposition 5.10 g(B1(0)) contains no disc of radius larger or equal
than 1. Since dist(z,0B1(0)) > (1 — 0) for all |z| < 0, the generalized Bloch theorem (cf. exercise H 8.1)
implies that 3(1 — 0)|g’(2)| < 1 for all |2| < §. Rearranging terms yields |¢/(2)| < (8(1 — #))~1. Thus by
the fundamental theorem of calculus

9(2)| < 1g(2) = g(0)] + [9(0)]| S/[ l9"()1 ¢ + [9(0)]

0,z
|z 0
< m +19(0)] < m

+ 19(0)]

for all |z| < 6.
Step 3: Conclusion. We finish the proof by noting that |cos(w)| < el®! (proof via power series) and
1|1+ cos(w)| < el*! (triangle inequality). Indeed, using those bounds and properties (i) and (ii) of Step 2
we deduce that

|f(2)] < exp(mexp(n|g(2)])) < exp(mexp(n(3 + 2/ f(0)] + 0(B(1 — 0))71))) < L(B, ),
where in the last estimate we used that |f(0)] <. O

Schottky’s theorem allows to prove a sharpened version of Montel’s compactness theorem that reads
as follows:
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Theorem 5.12 (Sharpened version of Montel’s theorem). Let D C C be a domain and
F :={f: D — C holomorphic, {0,1} N f(D) = 0}.

Let {fnten C F. Then either {f,} contains a subsequence that converges locally uniformly to some
holomorphic function f: D — C or the whole sequence |f,| converges locally uniformly to +oo.

Remark 5.13. The local uniform convergence to +occ is defined by requiring that 1/ f,, converges locally
uniformly to 0.

Proof of Theorem 5.12. We divide the proof into several steps.
Step 1: For zp € D and r € (0,400) define F(zg,7) :={f € F: |f(20)| < r}. We argue that there exists
a neighborhood of zy on which F(zo, ) is equibounded.

Indeed, choose ¢ > 0 such that Bas(zg) C D. Applying Schottky’s Theorem 5.11 to each function

z— (202 4 z0) € H(B1(0)) for f € F(zo,r) we infer that

sup  sup [f(z)] < L(1/2,7).
fEF(20,r) 2zEBs(20)

This proves the first step.
Step 2: The family F(zp,7) is locally bounded in D.

To prove this claim, first note that U := {z € D : F(z0,r) is equibounded in a neighborhood of z}
is open in D. Moreover zg € U by Step 1. We argue that U is also closed in D. Then connectedness
of D implies that U = D and the claim of Step 2 follows by a covering argument. Let w € U N D be
such that F(zp,r) is not bounded in a neighborhood of w. Then by Step 1 we know that there exists
a sequence { fytnen C F(20,7) such that lim, | f,(w)| = 4+o00. Define g, = 1/f, (which is well-defined),
so that lim,, g,(w) = 0. Hence {g, }neny C F(w, R) for some suitable 0 < R < +o00. Thus by Step 1 the
sequence {g,} is bounded in a neighborhood of w and therefore by Montel’s Theorem 1.7 we can pass to
a subsequence that converges uniformly in a disc B,.(w) to some holomorphic function g : B,.(w) — C.
Since all g,, have no zeros and g(w) = 0, it follows from Corollary 1.6 that g = 0. Since B, (w) NU #
we conclude that limsup,, |f,(z)] = +o0 also for some z € U, which gives a contradiction.

Step 3: Conclusion.

Fix z9 € D and let {f,} C F be a sequence. If infinitely many f,, € F(z¢,1) then the claim follows
from Step 2 and Montel’s theorem 1.7. If only finitely many f,, belong to F(zg, 1), then infinitely many
gn = 1/fn belong to F(zg,1). By Step 2 we conclude that either all subsequences g, converge locally
uniformly to g = 0 or along a subsequence g, converges to a non-zero limit which has then no zero at all
by Corollary 1.6. In the second case also f,, converges locally uniformly along that subsequence. In the
first case | f,| — 400 locally uniformly as claimed. O

Now we can finally prove Picard’s great theorem.

Proof of Theorem 5.2. We have seen in exercise H 9.3 the remarkable statement that Picard’s great
theorem is equivalent to prove that given a holomorphic function f : B1(0)\ {0} — C\ {0, 1} either f or
1/f is bounded in a neighborhood of the origin.

Consider the sequence of holomorphic functions f,(z) = f(z/n) : B1(0) \ {0} — C\ {0,1}. By
Theorem 5.12 there exists a subsequence f,, such that either f,, or 1/f,, is locally uniformly bounded
on B1(0) \ {0}. In the first case there exists 0 < C' < +oo such that

1
sup [f(z/m)| <€ V| = 3.

Hence by the maximum principle |f(2)| < C on each annulus Ay = {z € C: 51— < |2] < ﬁ} Since

2nk 41
A= [ Ay
keN
is a (punctured) neighborhood of the origin, we conclude that f is bounded in a neighborhood of the
origin. The case when 1/ f,, is locally bounded can be treated the same way and hence we conclude the
proof. O
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6. THE RIEMANN MAPPING THEOREM

In this chapter we will prove one of the main theorems in complex analysis. The Riemann mapping
theorem classifies all sets that are biholomorphically equivalent to the open unit disc Bi(0). Here two
sets Uy,U; C C are said to be biholomorphically equivalent if there exists a bijective holomorphic map
f : Uy — Uy such that the inverse map f~!: Uy — Uj is also holomorphic. It follows from the definition
that biholomorphic equivalence of open sets is an equivalence relation.

In order to study the family of sets which are biholomorphically equivalent to the unit disc By(0), first
note that by Liouville’s theorem C cannot belong to that class. Moreover, as biholomorphic functions are
in particular homeomorphisms, all sets belonging to that class share the same topological invariances. In
particular, such sets have to be path-connected (as the unit disc) and also simply connected (cf. Definition
5.6).

Simply connected sets in C can be formally described as having no holes. The surprising fact of the
Riemann mapping theorem is that this topological restriction already ensures biholomorphic equivalence
to the unit disc. In particular, no smoothness of the boundary is required.

In the proof of the Riemann mapping theorem we will use the fact that injective holomorphic functions
are already biholomorphic onto their image. For the sake of completeness we include the proof.

Lemma 6.1. Let f : U — C be holomorphic and injective. Then f'(z9) # 0 for all zo € U and the
inverse function f~1: f(U) — C is also holomorphic.

Proof. Assume by contradiction that f’(z9) = 0 for some zy € U. Upon considering the function z —
f(z+4 20) — f(20) we may assume that zg = f(20) = f'(20) = 0. Since f is injective it is not constantly
zero on any open set, so there exists a minimal k € N such that f(k)(zo) # 0. Hence we can write

o0 (o)
f(z) = Z an?" = 2F Z Appn2™ =: 2Fg(2),
n=~k n=0

with g : U — C holomorphic and g(0) # 0. Since g is in particular continuous, there exists r > 0
such that B,.(0) C U and inf.cp (o) |9(2)| > 0. Since B,.(0) is a simply connected domain, we can apply
Corollary 5.8 to infer that there exists a holomorphic function h : B,(z9) — C such that h¥ = g. Then
for all z € B,.(0) we can write
F(2) = (zh(=)*

Note that the function z — zh(z) is non-constant and holomorphic. Hence by the open mapping theorem
there exists 11 > 0 and 21,20 € B,(0) such that z1h(z1) = r1 and 29h(z2) = r1exp(2mi/k). This
contradicts the injectivity of f since f(z1) = f(22).

Moreover, by the open mapping theorem it follows that the set f(U) is open. Since f’(zg) # 0 for all
z € U the inverse function theorem yields that the inverse map is differentiable as a function of R? to R2.
Since the differential of f is pointwise a scalar multiple of a rotation by the Cauchy-Riemann equations
the differential of the inverse has the same structure. Hence it satisfies the Cauchy-Riemann equations,
too. We conclude that the inverse map is holomorphic. O

The remainder of this chapter will be about the proof of the Riemann mapping theorem. In the proof
we will apply the Schwarz lemma which we recall here.

Lemma 6.2 (Schwarz Lemma). Let f : B1(0) — B1(0) be a holomorphic function such that f(0) = 0.
Then |f(z)| < |z| for all z € B1(0) and |f'(0)| < 1. Moreover, if any of the two is an equality (for some
z € B1(0) \ {0}) then f(z) = az for some a € C with |a| = 1.

Proof. Consider the decomposition f(z) = zg(z). Due to the assumptions we know that g : B;(0) — C is
holomorphic and g(0) = f/(0). For 0 < r < 1 and z € 9B,.(0) we have
<1

@)

o)l < <

Due to the maximum principle this inequality holds true for all z € B,(0). Letting r 1 1 yields that
lg(z)] <1 for all z € B1(0). This implies |f(2)] < |z| and |f/(0)] < 1. If one of the two is an equality
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we deduce that |g(z)] = 1 for some zgp € B1(0). Again by the maximum principle it follows that g is
constant. Hence g(z) = a for some a € C with |a| = 1. This yields the claim. O

Theorem 6.3 (Riemann mapping theorem). Let G C C be a simply connected domain. Then there exists
a biholomorphic map f : G — B1(0).

Proof. Due to Lemma 6.1 it suffices to find a bijective holomorphic map f : G — B1(0). We will prove
the existence of such a map in three steps.

(1) We show the existence of an injective holomorphic map g : G — B;(0) with 0 € ¢g(G). This allows
us to assume that G C B1(0) and 0 € G}
(2) For an injective map f : G C B1(0) — B1(0) with f(0) = 0 we show that surjectivity is ensured
by the maximality of |f'(0)|;
(3) We find a bijective function by maximizing |f’(0)| under all injective holomorphic functions such
that f(0) =0
The desired function can then be obtained as the composition f o g.

Step 1: Assume for the moment that the complement C\ G contains an open ball Ba,.(zg). Then
the map g1 : G — By(0) given by g1(z) = r(z — 29) "' is well-defined, holomorphic and injective. Let
z1 € g(G) C By 2(0). Then the map g(z) = 1(g1(z) — 1) is still injective, holomorphic and 0 € g(G) C
B;(0). This gives the desired map of step 1. However, in general we cannot assume that C\ G contains
an open ball. Therefore we have to transform it via an injective, holomorphic function. The idea is to use
a holomorphic square-root. By assumption there exists zg € C\ G. Then the function z — z — zg never
vanishes on G. Hence by Corollary 5.8 there exists a holomorphic function G 3 z — /z — 25. We claim
that this square-root is injective. Indeed, if \/z1 — 29 = /22 — 20, then by definition

2 2
21— 20 =z —20 =22 —20 =2 — 20,

which implies that zo = z;. Moreover, we argue that C \ v/G — 2y contains an interior point. By the
open mapping theorem there exists 2 # 0 and r > 0 such that Bs,.(2) C VG — 2zp. We claim that
—Bs.(2) € C\ VG — zp. Indeed, assume that there exists z1, 22 € G such that /21 — 20 = —\/22 — 20.
Taking the square yields z; = 22 which is only possible if z; = zy. This contradicts the fact that zo ¢ G.
Thus we are in a position to apply the first part of this step and from now on we can assume that
0 € G C B;(0). Here we also used that the image of G under an injective holomorphic function is still
simply connected (see exercise H 10.1).

Step 2: We claim that if 0 € G C B1(0) and f : G — Bi(0) is injective, holomorphic, satisfies
£(0) = 0, but fails to be surjective, then there exists a holomorphic, injective function f : G — By (0)

with £(0) = 0 and |f(0)| > |f'(0)].
As a first step we note that for any zg € B1(0) the map ¢, : B1(0) — C defined by

zZ— 20

Pz (2) = 1— 2z

is a biholomorphic map onto B;(0) (cf. exercise H 8.2). We assume that there exists zo € B1(0) \ f(G).

Then ¢,, o f : G — B;(0) satisfies ¢.,(f(z)) # 0 for all z € G. By Corollary 5.8 we can define a

holomorphic square-root of this map. Then the function /., o f is holomorphic, injective and z; :=
0z (f = /=2 € B1(0). We define a competitor for f as

- ()021 V (Pzg G — Bl

which is injective, holomorphic and satisfies f(0) = 0. Moreover, setting h : B;y(0) — By(0) as h =
@zt o (¢zh)? it follows that h is holomorphic, satisfies 2(0) = 0 and ho f = f. By the Schwarz Lemma
we know that |h/(0)] < 1 since h is no pure rotation (not even injective). Hence the chain rule implies

LF10)] = |1 (FO) S (©0)] = [W'(0)f(0)] < |](0)]

as claimed.
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Step 3: In order to construct a bijective holomorphic function f : G — B1(0) it is enough to find a
solution to the following optimization problem:

sup{|f'(0)| : f: G — B1(0) holomorphic and injective, f(0) = 0}.
Indeed, by Step 2 such a function is surjective and therefore satisfies the claimed properties. We have
already seen in exercise H 3.3 that a maximizer for the above extremal problem exists provided the class

of competitors is not empty. Since we reduced the analysis to the case that 0 € G C B;(0) the function
z + z is admissible. This concludes the proof. (|

Remark 6.4. One can prove that under the assumption that f(z9) = 0 and f'(20) € (0, 400) for some
20 € G the function f is unique. Indeed, suppose there is another function g : G — B;(0) with the given
properties. Then h := fog~!: B1(0) — B;(0) satisfies h(0) = 0 and h’(0) € (0,+00). The inverse map
h~1 satisfies the same properties. Applying the Schwarz Lemma to both functions yields |h(z)| = |2| for
all z € B1(0). Hence again by the Schwarz Lemma h(z) = az for some a € C with |a|] = 1. Then from
W' (0) = a € (0,400) we infer that ¢ = 1. This proves uniqueness.

We will not discuss whether the map f given by the Riemann mapping theorem can be extended to
the boundary. Let us just mention that such an extension requires some regularity of the boundary of G.

7. HOLOMORPHIC FUNCTIONS ON THE RIEMANN SPHERE

In many situations it is convenient to allow the value oo either in the domain or the image of functions
(cf. meromorphic functions, the sharpened version of Montel’s theorem) This can be done via the one-
pomt compactlﬁcatlon of C, denoted by C=Cu {o0}. Open sets in C are defined to be exactly those
sets U € C such that

(i) U is open in C if oo ¢ U;

(i) U\ {00} = C\ K for some compact set K C C if oo € U.
With this topology one can prove that Cisa compact metrizable space which is homoeomorphic to the
unit sphere S? in R? (cf. exercise H 11.1). Moreover, a sequence {2, }nen converges to oo if and only if
1/z, converges to zero, while the convergence on C \ {o0} = C remains unaffected. In this sense we do
not distinguish in which direction the sequence approaches infinity. Hence in what follows we tacitly set
1/oo =0 and 1/0 = co. Then we have the following definition of holomorphic functions f : U — C:

Definition 7.1. Let U C C be open and let f : U — C be continuous. Then f is called complex
differentiable in zg € U if
(i) f is complex differentiable in the usual sense if zg, f(z0) € C;
(ii) g(2) = (%) is complex differentiable in 0 if zp = co and f(zo) e C;
(iii) g(z) = m is complex-differentiable in zq if zp € C and f(zp) = oo;
)

(iv) g(z) = % is complex differentiable in 0 if zp = f(z0) = co.

z

f is called holomorphic on U if f is complex differentiable in every point zy € U.

Remark 7.2. In the theory of Riemann surfaces the above notion corresponds to holomorphic functions
on a manifold since z — z and z — 1/z are charts for the one-dimensional complex manifold C.

Similar to the case of domains D C C the identity theorem also holds for holomorphic functions
f: D — C (domains D in C are defined to be open, path-connected subsets).

Theorem 7.3 (Identity theorem). Let D c C be a domain and let f0: D — C be holomorphic. If the
set {f =g} has an accumulation point in D, then f = g.

Proof. Let us define S := {z € D: f = g in a neighborhood of z}. We argue that S = D. First note
that S is open. Next we show that S # ). To this end, let 29 € D be an accumulation point of {f = g}.
Then by continuity also f(zo9) = g(20). We apply the classical identity theorem to one of the following
four holomorphic functions for a suitably small r > 0:
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(i) f,9: B,«(zo)—>(then 20, f(20) € C;

(ii) 1/f,1/g : B;(0) — C when 2o € C and f(zo) = o0;

(iii) B,(0) 3z — f(1), (;) if zo = 00 and f(z0) € C;
)

I
(
(iv) B-(0) 3 z— ()ﬁlfzo f(z0) = o0.

In all four cases we deduce from the classical identity theorem that f = g in a neighborhood of zy. It
thus remains to show that S is also closed. Then connectedness of D yields that S = D. Consider a
point sg € D such that there exists a sequence {sp tnen C S with s, — so. If sg ¢ S, then s is also an
accumulation point of {f = g} and as above we can prove that sy € S, which yields a contradiction. This
concludes the proof. O

One can show that holomorphic functions f : U — C which are not constantly oo can be identified
with meromorphic functions since by the previous theorem the set f~!(c0) is discrete in U \ co. We will
show that holomorphic functions f : C — C are exactly rational functions. To this end, we prove several
auxiliary results with a similar flavor.

Lemma 7.4. Let f: C — C be holomorphic. Then f is constant.

Proof. Since C is compact (see exercise H 11.1), it follows that its image is also compact. Hence f(C) C
f(C) c Cis bounded, so that by Liouville’s theorem f|c is constant. By continuity of f at oo we conclude
that f is constant on C. O

When P : C — C is a non-constant polynomial, then one can show that P(co) := oo gives a holomor-

phic extension P : C — C. Our next result states that polynomials are the only class of functions for
which such an extension works.

Lemma 7.5. Let f : C — C be holomorphic and such that f(z) € C for all z € C. Then flc is a
polynomial.

Proof. See exercise H 11.3. ]

The next theorem provides a complete characterization of holomorphic functions f : C—C.

Theorem 7.6. Let f : C — C be holomorphic. Then there exist two polynomials P,Q : C — C such that

_ P

Proof. See exercise H 11.4. a

Vze C\ f(c0).

Remark 7.7. Without loss of generality we can assume that P and @) have no common zeros. The
statement, of the above theorem then holds on C in the sense that (in general) the fraction co/co at
z = oo has to be interpreted depending on the degree (and possibly the leading coefficient) of P and Q.
In that sense one can also show that every rational function is holomorphic on C.

With the above theorem we can easily identify the biholomorphic functions from C to itself.

Corollary 7.8. A function f : C—Cis biholomorphic if and only if f is a so-called Mébius transfor-
mation, i.e., there exist a,b,c,d € C with ad — bc # 0 and

fz) =

with the convention that f(co) =a/c € C and f(=d/c) =0

az+b
cz+d

Proof. First note that when f is of the above type then f is rational, hence holomorphic on C. It has its
only pole in z = —d/c (note that the condition ad — be # 0 rules out cancellations in the singularity). A
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direct calculation shows that its inverse is given by

dz—b :
—cz+a lf z € (C \ {a/c},

f7(z) ={ if z=a/ceC,
-2 if z = o0.

This is again a rational function, so that it is holomorphic on C. Thus f is biholomorphic.

Now we prove the converse statement. If f(oo) = oo, then f(C) C C and by exercise H 10.4 b) we
know that f is affine which yields a # 0, b € C, ¢ = 0 and d = 1. Hence assume without loss of generality
that f(co) € C. Composing f with the Mdbius transformation

1
A (C9)

we obtain a biholomorphic function f : C — C such that f(co) = co. Hence again exercise H 10.4 b)
implies that f is affine, so that there exists a,b € C with a # 0 such that f(z) = az + b for all z € C.
Hence by the first part of the proof

~ _ —f(c0)(az+b) —1 _ —f(o0)az + (=1 — f(oc0)b)

—(az+0) —az—b
is a Mobius transform since f(oo)ab — a(l + f(00)b) = —a # 0 (from a more abstract point of view, we
used that the Mobius transforms form a group with respect to the composition of functions). O

We stop here with the short introduction on holomorphic functions on the Riemann sphere. Further
details should be studied from the more general viewpoint of Riemann surfaces.

8. AN INTRODUCTION TO COMPLEX ANALYSIS IN SEVERAL VARIABLES

In the final chapter of the course we briefly discuss functions f : U — C, where U C C" is open
(n > 2). This introduction is by no means complete and we will omit several proofs.

First let us define what we mean by holomorphic functions in higher dimensions. In what follows we
let || - || be any norm on C™ (recall that all norms on finite dimensional spaces are equivalent).

Definition 8.1. Let U C C" be open and f : U — C. Then f is called complex-differentiable in a € U
if there exists a C-linear map D f(a) : C* — C such that

[f(a+h) = f(a) = Df(a)h|

=0.
h—0 1Al

f is called holomorphic on U if f is complex differentiable in every point a € U. A function f: U — C™
is called holomorphic if each component is holomorphic.

Remark 8.2. Similar to the theory of one complex variable there are several equivalent definitions of
holomorphic functions f : U — C:
(i) for each fixed (z1,...,%j-1,%j41,...,2n) the function z — f(z1,...,2j-1,2,2j41,...2,) is holo-
morphic on the open set
U(z1, . 32§21, 2j415 - 2n) =42 € C: (21,...,2j-1, 2, Zj4+1,.. ., 2n) € U}
(i) fis C! in each complex variable separately and satisfies
0

— = 0
823' ’

o _1( 90 ;0. fa
where 7% = 2 (amj + Zayj)v cf. exercise H 12.1.
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(iii) for each a € U there exists r > 0 such that on B, (@) the function f can be written as an absolutely
convergent power series

1) = calz—a)",

(e

where o € (Np)™ stands for a multi-index.
(iv) f is continuous in each complex variable separately and locally bounded. Moreover, for any w € U
there exists > 0 such that D, (w) C U and for all z € D, (w) it holds that

_ f(Gis- i Gn)
f(z) - (27m)n /K"_wn—r /Cl—wl|—r (Cl - Zl) cee (Cn _ Zn) dfl ce an,

where D, (w) := {z € C" : |z — w;| < r Vi} is the so-called polydisc.

One can show that those four conditions are all equivalent to Definition 8.1. There is however a subtle
point in this statement. While Definition 8.1, (iii) and (iv) imply a local boundedness (or even continuity),
this is not clear from (i) and (ii). It is indeed a deep result due to Hartogs that separately holomorphic
functions are continuous (and smooth) (cf. Theorem 8.19 or [2, Section 2.4] for a proof with all details).

As in the multidimensional real-variable case one can show that the differential Df(zg) is unique,
linear in f and that the chain rule holds.

Next we will introduce a technique that allows to transfer some results on holomorphic functions in
one complex-variable to the several variables case. This is the so-called method of slicing, which is also
used in the calculus of variations.

Lemma 8.3. Let U C C" be open and a € U. For £ € C" define the set U, ¢ by
Ue={teC:a+teU}.
Given a holomorphic function f: U — C we define fo¢: Uy e — C by

fae(t) = fla+t8).
Then Uy e C C is open with 0 € Uy ¢ and fqu ¢ is holomorphic on U, ¢.

Proof. Clearly a € U implies 0 € U, ¢. Note that U, ¢ is open as the preimage of the open set U under
the continuous map ¢ — a + t£. By the chain rule f, ¢ is holomorphic on U, ¢. g

Corollary 8.4. We have the analogues of the following results from the one-dimensional theory:

1. Liouville’s theorem: Every bounded entire function f : C* — C is constant.

2. Identity theorem: Let D C C" be a domain and f : D — C be holomorphic. If f|g a) =0 for
some a € D and r > 0, then f =0.

3. Open mapping theorem: Let D C C" be a domain and f : D — C be non-constant and
holomorphic. Then f(D) is again a domain.

4. Maximum principle: Let D C C" be a domain and f : D — C be holomorphic. If |f| attains
its maxzimum on D then f is constant.

Proof. See exercise H 12.2. O

We saw that slices of holomorphic functions f : U € C* — C allow to transfer some results from
the one-dimensional theory to the several variables case. By a similar consideration one can prove a
suitable higher-dimensional version of Cauchy’s integral formula (see also Remark 8.2(iv)) which implies
also several analogues of the one-dimensional theory (the proofs are almost identical).

In what follows, given a vector r = (ry,...,r,) € (0,400)™ and a € C" we define the polydisc D} (a)
by

Dy (a):={z€C": |z, —a;| <1}

Then we have the following result.
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Theorem 8.5 (Cauchy’s integral formula for polydiscs). Let U C C™ be open and f : U — C be
holomorphic. Let a € U and r € (0,400)™ be such that D?*(a) C U. Then for all z € D} (a) it holds that

_ 1 _ Q9
fe) = (2mi)" /Icnan—rn /Iclal—rl [Timi (G — =) ac

Proof. We prove the statement by induction on n. For n = 1 the claim coincides with Theorem 0.2,
so there is nothing to prove. Next assume that n > 2. Given z € D['(a) it follows that z, € B, (ay)
and (21,...,2n-1) € D?Tzl , 71)(a1, ...,ap_1), whose closure is contained in the open set U,_; = {z €

C"~1: (z,2,) € U}. Hence by the induction hypothesis we can write

1 f(clv"'aCnflaZn)
= o a1 s ddy ... d¢G,—1.
f(Z) (27Ti)"_1 ‘/|<nl_anl|_7'n1 ~/|C1—a1_7'1 Hnil(Ci - Zl) o et

i=1

Note that for fixed (i,...,{,—1 in the domain of integration the function z — f((1,...,(p—1,2) is
holomorphic on B, (a,) and B, (a,) CU :={z€ C: ((1,...,(n—1,%2) € U}. Hence applying again the
one-dimensional result the claim follows from Fubini’s theorem. ]

Similar to the case of one complex variable Cauchy’s integral formula has several consequences that
we list here without proof below. The detailed arguments can be bound for instance in [3].

Corollary 8.6 (Higher dimensional consequences of the Cauchy integral formula). Let U C C™ be open
and f: U — C be holomorphic. Then

(i) f € C®(U) and all derivatives are holomorphic. Moreover, in the situation of Theorem 8.5, for
every multi-index oo € (No)™ it holds that

! f(Q)
D¢ = > L — 17 4
f(Z) (27m')n /gn_(lnl—rn /|C1—fl1|—7“1 (C - Z)a+1 “

where 1= (1,...,1) € N&. In particular,

o al
[D*f(a)l < — sup [f(z)].
™ 2eDr(a)

(i1) [ is analytic, that is for every w € U there exists an open neighborhood V' of w such that on V

we have
o= 3 P

ae(Ng)n

Moreover, the series converges uniformly on every polydisc D*(w) such that D*(w) C U.

Remark 8.7 (Montel’s theorem). Using the bound of Corollary 8.6 (i) one can prove that Montel’s
theorem (in the version of Chapter 1) also holds in the several variables case. Indeed, the bound implies
that a locally uniformly bounded sequence f, : U C C* — C is locally equicontinuous. Then the rest of
the proof of Montel’s theorem remains unchanged. Also the local uniform limit of holomorphic functions
is still holomorphic. This can be shown using the local uniform convergence on slices and the fact that a
function is holomorphic if and only if it is holomorphic in each variable (here we rely on Hartogs’ theorem
in a simpler setting, because we know a priori that the limit is continuous)

Until now we saw that several properties still hold in the multi-dimensional setting. Next we point out
some significant differences.

Remark 8.8 (Some of the differences to the one-variable setting). Let n > 2.

e We will prove below that in C™ holomorphic functions can only have removable isolated singu-
larities. Moreover, there cannot be isolated zeros.

e The above will be a consequence of an extension result which in a more general form reads as
follows: let U C C™ be open and let K C U be a compact set and assume that U\ K is connected.
If f: U\ K is holomorphic then f can be extended to a holomorphic function on U (see [5,
Theorem 5.4.4]).
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o We will also prove that the sets B;(0) and D} (0) are not biholomorphically equivalent which
rules out a Riemann mapping theorem.

Let us formulate the announced extension result in a special situation.

Theorem 8.9 (Special case of Hartogs’ extension theorem). Let D C C"~! be a domain and A(r, R) =
{zeC:r < |zl <R} with0 <r < R< +oc0. Let f: D x A(r,R) — C be holomorphic. Assume that
there exists a € D and € > 0 such that f can be extended holomorphically to Be(a) x Br(0). Then f can
be extended holomorphically to D x Bg(0).

Proof. Denote the points in D x C by (2, 2,). Given r < p < R we define the function

fp(Z/,Zn) _ 1 f(z’,() dC

2w Icj=p § = %n

This function is continuous on D x B,(0) and separately holomorphic in each variable. By Hartogs’
theorem (cf. Remark 8.2 or Theorem 8.19, but again here the continuity is guaranteed a priori) it is
therefore holomorphic on D x B,(0). By assumption there exists ¢ > 0 such that f can be extended
holomorphically to the set B:(a) x Br(0). By the one-dimensional Cauchy-integral formula it holds that
f = f, on Be(a) x B,(0). Next note that the set D x A(r, p) is a domain in C", so that by the identity
theorem we deduce that f = f, on D x A(r, p). Then the function

F(, ) = f(2,zn) if (¢/,2,) € D x A(r, R),
) o2 2n) if (2, 20) € D x B,(0)
is well-defined, holomorphic and extends f. O

Corollary 8.10. Let n > 2.

(i) If f : U\ {a} — C is holomorphic, then f can be extended to a holomorphic function f: U — C.
(i) If K C C™ is compact and such that C\ K is connected, then every holomorphic function f :
C"\ K — C can be extended to an entire function.
(1ii) If f: U — C is holomorphic, then f cannot have an isolated zero.
(iv) If f : C™ — C is entire, then {f = 0} is either empty or unbounded.

Proof. See exercise H 13.3. |

The next result rules out a Riemann mapping theorem in C™ for n > 2. In the proof we will use the
following auxiliary lemma which cannot be deduced from an open mapping theorem.

Lemma 8.11. Let D C C" be a domain and f : D — C™ be holomorphic. If || f||2 is constant, then f is

constant. Here || - ||2 denotes the Euclidean norm on C™.
Proof. Let us apply the differential operator &= = (52 + ia%,) to the equality ||f(2)||3 = ¢. By the
J J I

product rule we deduce that
~ 9 ——= _ \~ 9fx(2) Ofi(2) _ < Ofx
0=3 GG = X R + ()7 = 3 Ao )

where we used that g—% = 0 for every holomorphic function (cf. exercise H 13.1.). Now consider the

differential operator a%j = %(% - za%J) Note that by definition

=

of _ (of of _ (of
(o) 2 ()

It is a well-known fact that due to the Cauchy-Riemann equations, for holomorphic functions % agrees
J

with the complex partial derivative. Hence we conclude that

aZj
k=1 k=1 k=1

2

Afx(2)
8zj
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where we used that the partial derivatives of f are still holomorphic. Since D is connected the above
implies that all f; are constant. Hence f is constant. ]

Finally we will prove that in several complex variables there cannot hold a Riemann mapping theorem.
Indeed, we have the following result.

Theorem 8.12 (Failure of the Riemann mapping theorem in higher dimensions). Let n > 2. Then there
exists no biholomorphic map f : D?(0) — B1(0), where the ball B1(0) is defined with respect to the
Euclidean metric.

Remark 8.13. Since both D7(0) and B;(0) are convex, they are simply connected. Hence the above
result indeed shows that the Riemann mapping theorem cannot hold in higher dimensions. In [5, Exercise
3.2.3] you find an example of a bijective function ¢ : D?(0) — B1(0) such that ¢ and ¢! are real-analytic.

Proof of Theorem 8.12. Assume that there exists a biholomorphic function f : D}*(0) — B1(0). For fixed
w € D}(0) C C define the map

F,:DP 1 0) = C", 2~ %(z’,w).

We will prove that F,, can be extended continuously to D7 ~'(0) by 0. To this end, take a sequence
{#}; C D}?1(0) such that lim; 2 € OD?71(0) and define the sequence f; : D} (0) — B1(0) by f;(w) =
f (zé,w). By Montel’s theorem there exists a subsequence f; (not relabeled) such that f; — ¢ locally

uniformly on D}(0) for some holomorphic function g : D}(0) — B1(0). By construction, for every w €
D}(0) the sequence {(z},w)}; converges to a point z,, € DT (0). We claim that g(w) € 9B (0). Indeed,
otherwise the continuity of f~! on Bj(0) implies that

0D} (0) 3 lm(z},w) = lim 7 (£(z},w) = £~ (g(w)) € DY)

VRl
which gives a contradiction since D7(0) is open. Hence g(D1(0)) C dB;1(0). By the previous lemma g is
constant. Hence Theorem 1.5 implies that
0 =g'(w) =lim f}(w) = lim F,, ().
J j

Since the sequence was arbitrary (and the result is independent of the subsequence) it follows that F,
can be extended continuously to 8D?71(0) via 0. Applying the maximum principle to each coordinate of
F,, we deduce that F,, = 0. By definition of F,, we conclude that det(Df(z’,w)) = 0. However, by the
chain rule

Id=Df™H(f(z',w))Df(z',w),
so that Df(z',w) has a trivial nullspace. This yields a contradiction. O

As a final result, we will prove Hartogs’ theorem on separate holomorphy. For the proof we will need
some results on subharmonic functions and the following definition.

Definition 8.14. Let X be a metric space. A function u : X — RU{%o0} is called lower semicontinuous
if for every zg € X and every sequence x,, — g it holds that

u(zo) < L@H&f u(xy,).

It is called upper semicontinuous if for every zo € X and every sequence x,, — x¢ it holds that

u(xg) > limsup u(zy,).
n—+4oo

We will use the following elementary properties of lower semicontinuous functions.
Lemma 8.15. Let X be a metric space and I be a set of indices. If for all i € I the function u; :
X — RU{=£o0} is lower semicontinuous, then the function u(x) = sup;c; u;(x) is lower semicontinuous.

Moreover, a function u : X — RU{£o0} is lower semicontinuous if and only if the set {x € X : u(zx) <t}
is closed for all t € R

Un general topological spaces the closedness of sublevel sets can be taken as the definition of lower semicontinuity.
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Proof. Let x € X and consider a sequence x,, — . Then

o) = sapeale) < suplim tnf walon) < supim tnf u(en) = I Juf alen)-

Sﬁ(mﬂ)

Hence @ is lower semicontinuous. To prove the second assertion, assume first that « is lower semicontinuous
and that z, € {x € X : u(x) < ¢} for all n € N and that z,, — « for some z € X. Then by the lower
semicontinuity of f we have that
u(z) < liminfu(x,) < t.
n—>+00\v_/
<t
Hence = € {z € X : u(z) < t}. Next, assume that the latter set is closed for all ¢ € R. Fix zy € X and
a sequence (Z,)neny C X such that z, — z. If iminf,, { . u(x,) = 400, then there is nothing to prove.
Hence assume that the liminf is not +o00. Passing to a subsequence realizing the liminf we can assume
that the liminf is actually a limit that we denote by ug € RU{—o00}. Fix any t > ug. Then for all n large
enough we have that z, € {z € X : u(x) < t}. Since the set is closed, it follows that u(zg) < t. This
holds for any t > wyg, so that actually u(zg) < ug. This proves the lower semicontinuity w. O

We next state the definition of subharmonic functions.

Definition 8.16. Let U C C be open and u : U = RU {—o0}. We say that u is subharmonic in U if u
is upper semicontinuous and for all zy € U there exists § > 0 such that for all 0 < r < §? it holds that

1
u(zp) < — u(z) dz. (8)
2777" aBr(Zo)
Remark 8.17. An important class of a subharmonic functions is given by the following example: if
g : U — C is holomorphic, then
u(z) = log(lg(2)[) if 9(z) # 0,
—00 if g(z) =0,

is subharmonic. Indeed, such a function is clearly upper semicontinuous. Moreover, if zy is such that
g(z0) = 0, then (8) obviously holds. If g(zo) # 0, then locally we can find a holomorphic logarithm log(g)
and log(]g|) = Re(log(g)).? Thus (8) holds with equality using the mean-value for holomorphic functions,
which is a consequence of Cauchy’s integral formula.

We will use the following compactness result for sequences of subharmonic functions without proof.

Lemma 8.18. Let u, : U — RU {—o0} be a sequence of subharmonic functions such that there exists
M >0 and c € R with

M forallneN, zeU,

<
limsupu,(z) <c¢ forall z€ U.
n—+oo

Then for every compact set K C U and all € > 0 there exists N € N such that for alln > N it holds that

sup u,(z) < c+e.

ze€EK
Theorem 8.19 (Hartogs’ theorem on holomorphy). Let f : U — C be holomorphic separately in each
variable. Then f is holomorphic in the sense of Definition 8.1.

2Using arguments from the theory of partial differential equations one can show that this local definition of subharmonic
functions is equivalent to require the mean-value inequality for all closed balls contained in U.
31t holds that
lg| = |elo8(9)| = |eRellos(g))+ilm(log(9))| — |eRe(log(g))eiIm(log(g))| = eRellog(9))

so that log(|g|) = Re(log(g)).
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Proof. We shall show that f can locally be written as an absolutely converging power series, that is, for
all zg € U there exists » > 0 such that

f(z) = Z ca(z — 20)° for all z € D] (zo).
aeNy
The claim then follows by general properties of converging power series (one shows that all partial
derivatives exist and are continuous. Then one can prove the differentiability as on R™).
We split it into several steps. Without loss of generality we can assume that zp = 0 and let us choose
r > 0 such that D% (0) C U.
Step 1: Assuming local boundedness

Here we assume that f is bounded on D7 (0). Iterating Cauchy’s integral formula, the separate holomorphy
of f implies that for all z € DI'(0) we have

- _ SO
f(2) = (2ﬂi>"/1_r”'/n|_r e o o o

For |z;| < |&;], using the geometric series formula we have that

oo nj
v _ 3 i
L n;+1
§7 25 n;=0 €J]

and the sum converges absolutely and uniformly with respect to |¢;| = r and |z;| < ro < 7. Using the
boundedness of f, the local uniform convergence of the geometric series allows us to switch sums and
integrals to obtain

_ a _ 1! f€)
f(z)_ Z Ca % 9 Ca—W‘/lgll_’r.../l\n_’rwdgn...dgl

a€eNy

and the series converges absolutely and locally uniformly on D! (0). This is the claimed power series
representation and we conclude that f is holomorphic in the sense of Definition 8.1.

We now start an induction proof on the dimension n. For n = 1 the statement is clear. Next, assuming
that f is jointly holomorphic in the first n — 1-variables and holomorphic in the last variable and we will
show that f is locally bounded, hence jointly holomorphic in n variables.

Step 2: Local boundedness in a smaller polydisc via the Baire category theorem
We claim that there exist closed discs E; C B,(0) C C with non-empty interior and E,, = B,(0) such
that f is bounded on E; x ... x E,. Note, however, that in general 0 ¢ Ej, so this step is not sufficient
to prove complex-differentiability in the origin. Given N € N we define the sets

n—1
oy {2 TI B0 s 1l <
j=1 zn €B,(0)

Using the induction hypothesis, we know that the function 2z’ — f(2’,z,) is in particular continuous,
so that by Lemma 8.15 the function 2’ — sup_ cB0) |f(Z, z,)| is lower semicontinuous. Hence, again
by Lemma 8.15, the set Qy is a closed set. Moreover, for any fixed 2z’ € H;:ll B,(0) the function
zn = f(Z, zn) is holomorphic on Bs,-(0) and thus bounded on B,.(0). It follows that

n—1

U QNZHT(O)

NeN

The set on the right-hand side has non-empty interior, so that by the Baire category theorem there exists
N € N such that Qx has non-empty interior. In particular, this set {2 contains a closed polydisc with
non-empty interior. The definition of the set Q2 yields the claim of Step 2.

Step 3: From boundedness on smaller to boundedness on larger polydiscs via subharmonic functions
We show that if f : D(z9) — C is separately holomorphic in z’ and in z, and bounded in a smaller
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polydisc D, ., (z0) with r’ < r, then it is holomorphic on D(zp). Note that the center of the two
polydiscs is the same in contrast to what we obtained in Step 2. To reduce notation, we assume for
simplicity again that zo = 0. By assumption, for (2/, z,,) € D*(0) we can write

f@ )= Y calza)(), (9)
aeNg !
the series converges absolutely and locally uniformly with respect to 2’ and the coefficients are given by

9*  f(0,z,
Col(zn) = TG (a! )

Due to the holomorphy in 2z’ we can use Cauchy’s integral formula for the derivative (cf. Corollary 8.6)
to obtain that

1 f(gla"'afn—hzn)
Ca(zn) = (27_‘_2)”/ :i . / ) :L, o1 11 dgn—l e dgl (10)
‘Ell 2 |§n 1| 2

1 6

Since f is bounded and thus holomorphic on DZL (20), one can use a result from measure theory

r.rlr
about the differentiability of integrals with respect to a pa)rarneter to show that ¢, is complex-differentiable
on B,(0) C C. Hence vy (zn) = ITl\ log(|ca(#n)|) defines a family of subharmonic functions on B,.(0).

We next verify the assumption of Lemma 8.18, implicitly numbering the countably many multi-indices
o€ Ng_l, so that v, can be seen as a sequence. First, note that since the sum in (9) converges absolutely
and locally uniformly with respect to 2’ it follows that for any 0 < ro <r

lim |ca(zn)|r‘2a| =0 forall z, € B,(0),
|ae] —=+o00
which implies that pointwise
lim sup vy (z,) < —log(rs).
|a] —=+o0

Moreover, from (10) we deduce from the standard estimate for contour integrals that
SupzleD"/_l(()) |f(zlv Zn)| B
r'/2 < ‘ I
r |Oz‘ - r\ 1 ’
(%) (%)
where B is a bound for |f| on the smaller polydisc D}, ., .(0). Taking the logarithm, we find that for
all z, € B,(0) it holds that

|Ca<zn)| <

valzn) < ﬁ log(B) — log(%y) < log(B) — log(%).

Hence v,, is uniformly bounded from above and we can apply Lemma 8.18 to deduce that for all 0 < r; < ro
there exists N € N such that for all |o| > N and all z,, € B,,(0) it holds that v4(2,) < —log(r1), which
is equivalent to

lca(zn)|r™ <1 for all 2, € B,, (0).
From exercise H 12.4 b) we thus infer that the series

f(z’,zn): Z Ca(zn)(zl)a

a6N371

converges uniformly on D7 (0) for all 0 < 7o < r1. In particular, it is bounded on this set and hence
jointly holomorphic on the interior by Step 1. Since the radii ro < 71 < 72 < r were arbitrary, we deduce
that f is holomorphic on DI(0).

Step 4: Geometric conclusion
By Step 2 we find a closed polydisc D! (z9) x B,.(0) on which f is bounded. In addition, we know that
(20,0) € D(0) since the closed polydisc is a subset of D7(0). By Step 3 we know that f is holomorphic on
D"~ 1(z) x B,(0) and the inclusion zy € D?~1(0) yields that (0’,0) € D*~1(2g) x B,.(0). This concludes
the proof. O
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