
LECTURE NOTES ’TOPICS IN COMPLEX ANALYSIS’

MATTHIAS RUF

0. Recapitulation of some results in complex analysis

In this section we recall some standard theorems from complex analysis that we will use in the course.
We give no proofs as they can be found in (almost) any text book on complex analysis.

If not stated otherwise we shall use the following notation:

• C: complex numbers
• U : an open subset of C
• D: a domain (open and path-connected subset of C)
• Br(z0) = {z ∈ C : |z − z0| < r} open ball with radius r > 0 and center z0 ∈ C

Definition 0.1. A function f : U → C is called complex differentiable in z0 ∈ U if there exists the limit

f ′(z0) = lim
h→0
h̸=0

f(z0 + h)− f(z0)

h
∈ C.

It is called holomorphic on U if it is complex differentiable in every z0 ∈ U .

Theorem 0.2 (Cauchy’s integral formula). Let f : U → C be holomorphic and suppose that the closed

disc Br(z0) is contained in U . Then for every a ∈ Br(z0) we have

f(a) =
1

2πi

∫
∂Br(z0)

f(z)

z − a
dz,

where the circle ∂Br(z0) is oriented counterclockwise.

Corollary 0.3 (Analyticity of holomorphic functions). Under the assumptions of Theorem 0.2 the func-
tion f is analytic on U and each f (k) : U → C is holomorphic with

f (k)(a) =
k!

2πi

∫
∂Br(z0)

f(z)

(z − a)k+1
dz.

Corollary 0.4 (Liouville’s theorem). Every bounded holomorphic function f : C → C is constant.

Theorem 0.5 (Morera’s theorem). Let f : U → C be continuous. If for each triangle ∆ ⊂ U it holds
that ∫

∂∆

f(z) dz = 0,

then f is holomorphic on U .

Theorem 0.6 (Identity theorem). Let D ⊂ C be a domain and f, g : D → C be holomorphic. If the set
{z ∈ C : f(z) = g(z)} has an accumulation point in D, then f = g.

Theorem 0.7 (Open mapping theorem). Let D ⊂ C be a domain and f : D → C be a non-constant
holomorphic function. Then f(D) is a domain as well.

Corollary 0.8 (Maximum principle). Let D ⊂ C be a domain and let f : D ⊂ C be a holomorphic
function. If |f | attains its maximum on D then f is constant.
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Singularities of holomorphic functions. Isolated singularities of holomorphic functions are subdi-
vided into three categories.

Definition 0.9. Let U ⊂ C be open and let z0 ∈ U . Assume that f : U \ {z0} → C is holomorphic. z0 is
called

(i) a removable singularity if f can be extended to a holomorphic function f̃ : U → C;
(ii) a pole if there exists m ∈ N such that z 7→ (z − z0)

mf(z) has a removable singularity in z0. The
smallest such m is called the order of the pole;

(iii) an essential singularity if z0 is neither a removable singularity nor a pole.

Theorem 0.10 (Laurent series expansion). Let 0 ≤ r < R and let f : {z ∈ C : r < |z − z0| < R} → C
be holomorphic. Then f has the representation

f(z) =

∞∑
n=−∞

cn(z − z0)
n,

where, for all n ∈ Z and r < ρ < R,

cn =
1

2πi

∫
∂Bρ(z0)

f(z)

(z − z0)n+1
dz.

The term
∑−1

n=−∞ cn(z − z0)
n is called principal part of f , while the term

∑∞
n=0 cn(z − z0)

n is called
regular (or holomorphic) part of f .

Corollary 0.11. Let f : U \ {z0} → C be holomorphic. Then z0 is

(i) a removable singularity ⇐⇒ ck = 0 ∀k < 0 ⇐⇒ f is bounded near z0;
(ii) a pole of order m ⇐⇒ ck = 0 ∀k < −m and c−m ̸= 0;
(iii) an essential singularity ⇐⇒ ck ̸= 0 for infinitely many k < 0.

1. Sequences of holomorphic functions

Next we consider sequences of holomorphic functions fn : U → C and their convergence properties,
i.e., compactness, convergence criteria and properties of the limit. As we shall see the following notion of
convergence is well-suited with regard to the above properties.

Definition 1.1. A sequence fn : U → C of holomorphic functions is said to converge locally uniformly
to some function f : U → C if for each z0 ∈ U there exists r > 0 such that

sup
z∈Br(z0)

|fn(z)− f(z)| → 0 as n → +∞.

Remark 1.2. Local uniform convergence is equivalent to uniform convergence on each compact subset
of U .

The following theorem shows that local uniform convergence preserves holomorphy.

Theorem 1.3. Assume that a sequence fn : U → C of holomorphic functions converges locally uniformly
to some f : U → C. Then f is holomorphic.

Proof. Note that f is continuous as the locally uniform limit of continuous functions. Hence by Morera’s
theorem it suffices to check that for each triangle ∆ ⊂ U we have∫

∂∆

f(z) dz = 0.

Since fn → f uniformly on ∆ by Remark 1.2 we conclude from Cauchy’s theorem that

0 = lim
n→+∞

∫
∂∆

fn(z) dz =

∫
∂∆

f(z) dz,

where the last equality can be justified for instance by Lebesgue’s dominated convergence theorem. This
proves the claim. □
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Remark 1.4. Theorem 1.3 is in general false for pointwise converging sequences of holomorphic functions
(an example can be found in [1]). However, Osgood’s theorem [4, p. 151] (see also exercise H 2.4) ensures
that the pointwise limit is holomorphic on a dense, open subset of U .

For sequences fn : R → R uniform convergence does not allow to conclude convergence of the
derivatives. For instance, the sequence fn(x) = 1

n sin(nx) converges uniformly to 0, but its derivative
f ′
n(x) = cos(nx) does not even converge pointwise. As we prove next, holomorphic functions behave
much better.

Theorem 1.5. Let fn : U → C be a sequence of holomorphic functions that converges locally uniformly

to f : U → C. Then for each k ∈ N the sequence f
(k)
n converges locally uniformly to f (k).

Proof. Let z0 ∈ U and r > 0 be such that B2r(z0) ⊂ U . Due to Cauchy’s integral formula, for all
z′ ∈ Br(z0) we can write

f (k)(z′)− f (k)
n (z′) =

k!

2πi

∫
∂B2r(z0)

f(z)− fn(z)

(z − z′)k+1
dz.

Note that for z′ ∈ Br(z0) and z ∈ ∂B2r(z0) it holds that |z− z′| ≥ r. Since the length of ∂B2r(z0) equals
4πr we deduce that

sup
z′∈Br(z0)

|f (k)(z′)− f (k)
n (z′)| ≤ 2k!

rk
sup

z′∈B2r(z0)

|f(z′)− fn(z
′)|.

Due to Remark 1.2 the right hand side converges to 0 when n → +∞ and we conclude the proof. □

The previous theorem allows to control the number of zeros of the limit of holomorphic functions.

Corollary 1.6. Let D ⊂ C be a domain and fn : D → C be a sequence of holomorphic functions that
converges locally uniformly to f : D → C. If each fn has at most m zeros (counted with multiplicity),
then either f ≡ 0 or f has at most m zeros.

Proof. Let f ̸≡ 0 and assume by contradiction that f has distinct zeros z1, . . . , zℓ with total multiplicity
larger than m. By the identity theorem the zeros of f are isolated, so that for each zj we find a ball
Br(zj) such that

(i) {f = 0} ∩Br(zj) = {zj},

(ii) Br(zj) ∩Br(zi) = ∅ ∀1 ≤ j ̸= i ≤ ℓ.

The argument principle then implies

m+ 1 ≤
ℓ∑

j=1

1

2πi

∫
∂Br(zj)

f ′(z)

f(z)
=

ℓ∑
j=1

lim
n→+∞

1

2πi

∫
∂Br(zj)

f ′
n(z)

fn(z)
dz ≤ m,

where in the second equality we used Theorem 1.5 and that for n large enough we have fn ̸= 0 on the
compact set ∂Br(zj). This yields a contradiction. □

Next we turn our attention to convergence criteria. The first one is a general compactness result.

Theorem 1.7 (Montel’s theorem). Let fn : U → C be a sequence of holomorphic functions that is locally
uniformly bounded, i.e., for each z0 ∈ U there exists r > 0 and C < +∞ such that

sup
n∈N

sup
z∈Br(z0)

|fn(z)| ≤ C.

Then there exists a subsequence fnk
that converges locally uniformly to a holomorphic function f : U → C.

Proof. Take a countable, dense subset S of U (e.g. (Q + iQ) ∩ U) and let us write S = {z1, z2, z3, . . . }.
Since the sequence {fn(z1)}n∈N is bounded, we may apply the Bolzano-Weierstrass theorem in order
to extract a subsequence nk,1 such that fnk,1

(z1) converges to some value fz1 ∈ C. In a next step we
note that the sequence {fnk,1

(z2)}k∈N is again bounded, so that by the same reasoning we find another
subsequence nk,2 of the previous subsequence such that {fnk,2

(z2)}k∈N converges to some value fz2 ∈ C.
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In the jth step we choose a subsequence nk,j of all previous subsequences such that {fnk,j
}k∈N converges

to some value fzj ∈ C. For k ∈ N we finally set nk := nk,k. Then the sequence fnk
(zj) converges to fzj

for all j ∈ N since except for finitely many terms the sequence nk is a subsequence of {nk,j}k∈N. Thus we
found a subsequence fnk

such that fnk
(z) converges to some value fz ∈ C.

Next we show that fn is equicontinuous, i.e., the ε−δ definition of continuity is valid with δ independent
of n. Fix z0 ∈ U and let r > 0 be such that B2r(z0) ⊂ U and such that there exists C < +∞ with

sup
n∈N

sup
z∈B2r(z0)

|fn(z)| ≤ C.

By Cauchy’s integral formula, for all z′ ∈ Br(z0) we have

|fn(z′)− fn(z0)| =

∣∣∣∣∣ 1

2πi

∫
∂B2r(z0)

fn(z)

z − z′
− fn(z)

z − z0
dz

∣∣∣∣∣ = |z′ − z0|
2π

∣∣∣∣∣
∫
∂B2r(z0)

fn(z)

(z − z′)(z − z0)
dz

∣∣∣∣∣
≤|z′ − z0|

2π

C · 4πr
2r2

=
C|z′ − z0|

r
,

where we used that |z−z′| ≥ r and |z−z0| ≥ 2r for all z ∈ ∂B2r(z0). The right hand side is independent of
n, so given ε > 0 we can choose δε = min{r, ε r

C } in the definition of continuity. Hence fn is equicontinuous.
Equicontinuity allows us to show that {fnk

(z)}k∈N is a Cauchy sequence for all z ∈ U . To reduce
notation, we skip the subscript k. For z ∈ U and ε > 0 we first choose z∗ ∈ S such that |z − z∗| < δε,z,
where δε,z satisfies the equicontinuity condition

|y − z| < δε,z ⇒ |fn(y)− fn(z)| <
ε

3
∀n ∈ N. (1)

To find such a z∗ is possible due to the density of S in U . For m ≥ n we then have

|fm(z)− fn(z)| ≤ |fm(z)− fm(z∗)|︸ ︷︷ ︸
<ε/3

+|fm(z∗)− fn(z
∗)|+ |fn(z∗)− fn(z)|︸ ︷︷ ︸

<ε/3

Since z∗ ∈ S the convergence on S implies that there exists nε ∈ N such that for all m ≥ n ≥ nε we have
|fm(z∗)− fn(z

∗)| < ε
3 . Then for all m ≥ n ≥ nε we conclude that

|fm(z)− fn(z)| < ε.

Hence {fn(z)}n∈N is Cauchy sequence as claimed, so that there exists fz = limn→+∞ fn(z) for all z ∈ U .
Finally, we show that fn converges locally uniformly to f(z) := fz. Fix a compact set K ⊂ U . Given

ε > 0 and z ∈ K we choose δε,z > 0 satisfying (1) above. Then the family of discs {Bδε,z (z)}z∈K forms an

open cover of K. By the (topological) definition of compactness there exists a finite sub-family {Bδε,zi
}Ni=1

with zi ∈ K that still covers K. Thus for any z ∈ K we find zi such that |z − zi| < δε,zi . Since the {zi}
are only finitely many there exists nε ∈ N such that for all n ≥ nε it holds that

|f(zi)− fn(zi)| <
ε

3
.

Moreover, observe that (1) also holds for the limit function f as we can pass to the limit in this estimate.
Consequently, for n ≥ nε we deduce that for all z ∈ K we have

|f(z)− fn(z)| ≤ |f(z)− f(zi)|︸ ︷︷ ︸
ε/3

+ |f(zi)− fn(zi)|︸ ︷︷ ︸
<ε/3

+ |fn(zi)− fn(z)|︸ ︷︷ ︸
<ε/3

< ε,

which shows the uniform convergence of fn to f and we conclude the proof. □

Finally, we state two criteria which ensure the convergence along the whole sequence.

Theorem 1.8 (Vitali’s theorem). Let D ⊂ C be a domain and let fn : D → C be a sequence of
holomorphic functions that is locally uniformly bounded. If the set L := {z ∈ D : limn→+∞ fn(z) exists}
has an accumulation point in D, then fn converges locally uniformly to some holomorphic function f :
D → C.
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Proof. Due to Montel’s theorem there exists a subsequence fnk
that converges locally uniformly to a

holomorphic function f : D → C. Note that local uniform convergence is induced by a topology. Hence
the non-convergence of the whole sequence to f implies that there exists another subsequence which
has no subsequence that does converge locally uniformly to f . Applying Montel’s theorem along this
subsequence, we obtain another subsequence fnk,1

that converges locally uniformly to a holomorphic
function h : D → C. Then h ̸= f , but h(z) = f(z) for all z ∈ L, which contradicts the identity
theorem. □

Theorem 1.9. Let D ⊂ C be a domain and let fn : D → C be a sequence of holomorphic functions that

is locally uniformly bounded. If for all k ∈ N∪{0} and some z0 ∈ D the sequences f
(k)
n (z0) converge, then

fn converges locally uniformly to some holomorphic function f : D → C.
Proof. See Exercise H 2.1. □

Local normal convergence. In the next chapter the focus will be on series of holomorphic functions.
For those the following concept of convergence will be useful.

Definition 1.10. Let fj : U → C be a sequence of complex-valued functions. The series
∑∞

j=1 fj is called
locally normally convergent if for each z0 ∈ U there exists r > 0 such that

∞∑
j=1

sup
z∈Br(z0)

|fj(z)| < +∞.

As shown in the lemma below, local normal convergence implies local uniform convergence. In the
exercises we will see that the converse is false in general.

Lemma 1.11. Let fj : U → C be a sequence of complex-valued functions. If the series
∑∞

j=1 fj con-
verges locally normally, then it also converges locally uniformly. In particular, if each fj is in addition
holomorphic, then z 7→

∑∞
j=1 fj(z) is holomorphic, too.

Proof. See exercise H 3.4 and Theorem 1.3 □

2. The Mittag-Leffler theorem

We start with the following simple observation: If {d1, . . . , dn} ⊂ C is a finite set and for each dn the
function qn : C \ {dn} → C denotes a finite principle part at dn given by qn(z) =

∑mn

j=1 anj(z − dn)
−j ,

then the function

f(z) =

N∑
n=1

qn(z)

is meromorphic on C and at each dn ∈ C the principal part of its Laurent series agrees with qn. In
1876/77 the Swedish mathematician Gösta Mittag-Leffler extended the above result to (in C) discrete
sets {dn}n∈N (i.e. with no accumulation point). In 1880 Karl Weierstraß found a simplified proof which
in general also allows for mn = +∞ (albeit some implicit growth conditions on the coefficients anj by
requiring that qn : C \ {dn} is holomorphic). In this course we shall follow the argument of Weierstrass
but prove a more general version valid on open sets. To reduce notation, we introduce some vocabulary.

Definition 2.1. Let d ∈ C and q : C \ {d} → C be a holomorphic function. q is called a principal part
at d when its Laurent series expansion around d has no regular part.

With this definition the theorem of Mittag-Leffler on C reads as follows:

Theorem 2.2 (Mittag-Leffler on C). Let S = {dn}n∈N ⊂ C be a discrete set. For each dn ∈ S let
qn : C \ {dn} → C be a principal part. Then there exists a holomorphic function f : C \ S → C such that
at each dn ∈ S its principal part of the Laurent series is given by qn. The function f can be taken to be
of the form

f(z) =

∞∑
n=1

qn(z)− pn(z),

where pn : C → C is a polynomial and the sum converges locally normally on C \ S.
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Proof. Without loss of generality we may assume that 0 < |d1| ≤ |d2| ≤ . . . (if d1 = 0 then set p1 ≡ 0
and separate this term from the analysis). Once cannot expect that the series

∑∞
n=1 qn converges. Hence

we have to use the polynomials to ensure convergence. As they should be close to qn we take suitable
Taylor-polynomials. Since qn is holomorphic on B|dn|(0) it has a convergent series expansion on this ball,
i.e., for any z ∈ B|dn|(0) it holds that

qn(z) =

∞∑
j=0

anj z
j .

By general properties of power series we know that on the smaller ball B1/2|dn|(0) the above series
converges uniformly. Hence for each n ∈ N there exists a number jn ∈ N such that

sup
z∈B1/2|dn|(0)

∣∣qn(z)− jn∑
j=0

anj z
j

︸ ︷︷ ︸
=:pn(z)

∣∣ ≤ 2−n. (2)

Next fix a compact set K ⊂ C \ S. Due to the discreteness of S we know that limn |dn| = +∞. As K is
in particular bounded we find a number n(K) ∈ N such that for all n ≥ n(K) we have K ⊂ B1/2|dn|(0).
Consequently, from (2) we infer that∑

n≥n(K)

sup
z∈K

|qn(z)− pn(z)| ≤
∑

n≥n(K)

sup
z∈B1/2|dn|(0)

|qn(z)− pn(z)| ≤
∑

n≥n(K)

2−n < +∞.

Since K is a compact subset of C \S all functions qn − pn are bounded on K. Hence we have shown that
the series

f :=

∞∑
n=1

qn − pn

converges locally normally on C \ S. In particular, by Lemma 1.11 it is holomorphic. Finally, in order to
obtain the principal part at a point dn we argue as follows: choose ρ > 0 such that B2ρ(dn) ∩ S = {dn}.
Then by the formula for the Laurent coefficients and local uniform convergence of f we deduce that the
jth Laurent coefficient at dn, denoted here by aj(dn), is given by

aj(dn) =
1

2πi

∫
∂Bρ(dn)

f(z)

(z − dn)j+1
dz =

∞∑
k=1

1

2πi

∫
∂Bρ(dn)

qk(z)− pk(z)

(z − dn)j+1
dz.

For j ≤ −1 the only integrand that is not holomorphic on B2ρ(dn) is qn(z)(z − dn)
−(j+1). All other

contributions vanish due to Cauchy’s integral theorem. Hence for j ≤ −1 we deduce that

aj(dn) =
1

2πi

∫
∂Bρ(dn)

qn(z)

(z − dn)j+1
dz,

which coincides with the jth Laurent coefficient at dn of qn. Thus the principal part at dn is given by qn
as claimed. □

Remark 2.3. Any other holomorphic function f̃ : C \ S → C with the same principal parts at dn ∈ S

differs from f by an entire function. Indeed, the difference f − f̃ has removable singularities at each
dn ∈ S since all its Laurent coefficients with negative index vanish.

Now we prepare for extending the previous theorem to general open sets U ⊂ C and point sets
S = {dn}n∈N ⊂ U , which are discrete in U (but may have accumulation points at ∂U). Instead of
polynomials we will use truncated Laurent series to ensure convergence of the series.

Definition 2.4. Given a principal part q(z) =
∑∞

j=1 a−j(z − d)−j and k ∈ N we define the truncated

Laurent series qk(z) =
∑k

j=1 a−j(z − d)−j .

Before we prove the general Mittag-Leffler theorem for special sets S we need some auxiliary results
concerning principal parts.
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Lemma 2.5. Let q : C \ {d} → C be holomorphic.

(i) q is a principal part ⇐⇒ lim|z|→+∞ q(z) = 0.
(ii) If q is a principal part then on the annulus Ac = {z ∈ C : |z − c| > |d− c|}, c ∈ C, the function

q admits a Laurent series expansion of the form

q(z) =

∞∑
j=1

ã−j(z − c)−j .

Proof. (i) By Theorem 0.10 we can write q = q+ + q−, where the regular part q+ : C → C is an entire
function and the principal part q− : C \ {d} → C is of the form q−(z) =

∑∞
j=1 a−j(z − d)−j . First we

recall a general bound on the coefficients of a Laurent series expansion. In our case, for all ρ > 0 and
j ∈ Z it holds that

|aj | =

∣∣∣∣∣ 1

2πi

∫
∂Bρ(d)

q(z)

(z − d)j+1

∣∣∣∣∣ ≤ 1

2π
Length(∂Bρ(d))︸ ︷︷ ︸

=2πρ

supz∈∂Bρ(d) |q(z)|
ρj+1

≤ sup
z∈∂Bρ(d)

|q(z)| ρ−j . (3)

Inserting ρ = 1 we see that |aj | ≤ C for some constant independent of j. From that it is not difficult to
prove that

lim
|z|→+∞

q−(z) = 0. (4)

If q is a principal part, then q+ ≡ 0 so that (4) implies that lim|z|→+∞ q(z) = 0. On the other hand, if

lim|z|→+∞ q(z) = 0 then (4) yields that lim|z|→+∞ q+(z) = 0. Since q+ is an entire function we deduce

from Liouville’s theorem that q+ ≡ 0, so that q is a principal part. This proves the equivalence (i).

(ii) In order to prove the second statement, note that since q is holomorphic on Ac ⊂ C \ {d} it admits
a Laurent series representation centered at c. Similar to (3) the coefficients satisfy for any ρ > |d− c| the
estimate

|ãj | ≤ sup
z∈∂Bρ(c)

|q(z)| ρ−j

For ρ ≫ 1 the factor ρ−j is bounded for all j ≥ 0. By (i) we know that the supremum vanishes when
ρ → +∞. Hence ãj = 0 for all j ≥ 0 as claimed. □

Now we can prove the general Mittag-Leffler theorem for a special class of sets S. First some notation.
Given a set S ⊂ U that is discrete in U , we define S′ = S \ S as the set of its accumulation points in C.

Proposition 2.6. Let S = {dn}n∈N ⊂ U be a countable set that is discrete in U and for each dn ∈ S let
qn : C\{dn} → C be a principal part. If there exists a sequence {cn}n∈N ⊂ S′ such that limn |dn− cn| = 0
then there exist truncated principal parts qkn

n centered in cn (cf. Lemma 2.5(ii)) such that the series

f =

∞∑
n=1

qn − qkn
n

converges locally normally in C \ S ⊃ U \ S and at each point dn ∈ S the principal part of f is given by
qn.

Proof. Note that by Lemma 2.5(ii) and general properties of Laurent series the sequence of truncated
Laurent series centered at cn converges uniformly to qn on the smaller annulus A2

cn := {z ∈ C : |z−cn| ≥
2|dn − cn|}. Hence for each n ∈ N there exists kn ∈ N such that

|qn(z)− qkn
n (z)| ≤ 2−n ∀z ∈ A2

cn . (5)

Now fix a compact subset K of C \ S. Then dist(S,K) > ε for some ε > 0 and since limn |dn − cn| = 0
we find an index n(K) ∈ N such that for all n ≥ n(K) it holds that

K ⊂ A2
cn = {z ∈ C : |z − cn|︸ ︷︷ ︸

≥ε on K

≥ 2|dn − cn|︸ ︷︷ ︸
→0

},
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where we recall that cn ∈ S′ ⊂ S. Consequently we can use (5) to estimate∑
n≥n(K)

sup
z∈K

|qn(z)− qkn
n (z)| ≤

∑
n≥n(K)

2−n < +∞.

Since the singularities of qn and qkn
n are contained in S all functions qn − qkn

n are bounded on K. Hence
we have shown the local normal convergence of

f =

∞∑
n=1

qn − qkn
n .

In particular, f is holomorphic on C \S. Finally, since each qkn
n is holomorphic on U (recall that we have

chosen the centers of the truncated Laurent series in S′ ⊂ ∂U), by the same reasoning as for Theorem 2.2
we conclude that at each dn ∈ S the principal part of f is given by qn. □

As a next step we divide the set of singularities S in suitable way so that for one subset we can apply
the Mittag-Leffler theorem on C and on the other set we apply the special version above. The basic idea
is to split the points into a closed set and sets close to an accumulation point. The following lemma makes
this splitting precise.

Lemma 2.7. Let S ⊂ U be a discrete set in U such that S′ = S \ S ̸= ∅. Define

S1 := {z ∈ S : |z|dist(S′, z) ≥ 1}, S2 := {z ∈ S : |z|dist(S′, z) < 1}.
Then S1 is closed and for every ε > 0 the set S2(ε) := {z ∈ S2 : dist(S′, z) ≥ ε} is finite.

Proof. We first prove that S1 is closed. Let {zn}n∈N ⊂ S1 be a sequence such that zn → z∗ for some
z∗ ∈ C. Due to the continuity of the function z 7→ |z|dist(S′, z) we know that |z∗|dist(S′, z∗) ≥ 1. We
claim that z∗ ∈ S which shows that S1 is closed. Indeed, assume by contradictions that z∗ /∈ S. Then by
definition z∗ ∈ S′, which contradicts the fact that |z∗|dist(S′, z∗) ≥ 1.

In order to prove the second assertion, note that for any z ∈ S2(ε) we have by definition

|z| ≤ dist(S′, z)−1 ≤ 1

ε
.

Thus, assuming by contradiction that the cardinality of S2(ε) is infinite for some ε > 0, there exists a
sequence of distinct points {zn}n∈N ⊂ S2(ε) such that zn → z∗ for some z∗ ∈ S. Since S ⊂ U does not
contain any accumulation point it follows that z∗ ∈ S′. But due to continuity it holds that dist(S′, z∗) ≥ ε,
which yields a contradiction. □

The splitting S = S1 ∪ S2 can be further justified by the following property which will allow us to
apply Proposition 2.6.

Lemma 2.8. Let S2 = {dn}n∈N ⊂ U be as in Lemma 2.7 and assume that S′
2 ̸= ∅. Then there exists a

sequence {cn}n∈N ⊂ S′
2 such that limn |dn − cn| = 0.

Proof. First note that S′
2 is closed (this is a general fact which can be proven by a diagonal argument).

Hence for each n ∈ N there exists cn ∈ S′
2 such that dist(S′

2, dn) = |dn − cn|. If the latter term does not
converge to zero, then for some ε > 0 the cardinality of S2(ε) defined in Lemma 2.7 would be infinite.
Indeed, the assumption S′

2 ̸= ∅ implies that the cardinality of S2 is infinite. Moreover, we have that
S′ = S′

2 since the set S1 is closed. □

Now we can state and prove the full theorem of Mittag-Leffler on open sets, which will be the final
result of this chapter.

Theorem 2.9. Let U ⊂ C be open and let S = {dn}n∈N ⊂ U be discrete in U . For each dn let qn :
C \ {dn} → C be a principal part. Then there exists a holomorphic function f : U \ S → C such that at
each dn its principal part is given by qn. The function f can be taken to be of the form

f =

∞∑
n=1

qn − hn,
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where each hn : U → C is holomorphic and the series converges locally normally on U \ S.

Proof. Without loss of generality we may assume that S′ = S \ S ̸= ∅ (otherwise S is discrete in C and
we can apply Theorem 2.2). Let S1 and S2 be defined as in Lemma 2.7. Since S1 is closed by that lemma
we know that S′

1 = ∅ and therefore S′
2 = S′. Let us write S1 = {dn,1}n and S2 = {dn,2}n (we don’t claim

that both are infinite). Since S1 ⊂ S is discrete in C we can apply Theorem 2.2 to deduce that there
exists a family of polynomials pn,1 : C → C such that

f1 =
∑

dn,1∈S1

qn,1 − pn,1

is holomorphic on C \ S1, at each dn,1 ∈ S1 its principle part is given by qn,1 and the series converges
locally normally on C \ S1.

Next we treat the set S2. On this set we can apply Proposition 2.6 (cf. Lemmata 2.7 & 2.8) to deduce
that there exists holomorphic functions hn,2 : U → C such that

f2 =
∑

dn,2∈S2

qn,2 − hn,2

is holomorphic on U \ S2, at each dn,2 ∈ S2 its principle part is given by qn,2 and the series converges
locally normally on U \ S2.

Since S = S1∪̇S2 the function f = f1 + f2 thus satisfies all the claimed properties. □

3. Infinite products

In this chapter we deal with the counterpart of series for products. The definition of infinite products∏
j≥1 aj seems quite obvious considering the Cauchy-criterion for finite partial products. However, it is

customary to exclude some cases, for instance when some factors aj equal zero or also when the limit
equals zero. In this course we allow for the first case. Then the definition reads as follows:

Definition 3.1. Let {aj}j∈N ⊂ C be a sequence of complex numbers. The infinite product
∏∞

j=1 aj is
said to converge if there exists j0 ∈ N such that aj ̸= 0 for all j ≥ j0 and there exists the limit

a(j0) := lim
m→+∞

m∏
j=j0

aj ̸= 0.

In this case we set
∏∞

j=1 aj = a(j0)
∏j0−1

j=1 aj . Note that this definition is independent of the number j0.

With the above definition an infinite product is zero if and only if one factor is zero. Moreover, similar
to series we have a simple necessary condition for convergence.

Lemma 3.2. Assume that the infinite product a =
∏∞

j=1 aj converges. Then for all m ∈ N the infinite

product a(m) =
∏∞

j=m aj exists. Moreover, lim
m→+∞

a(m) = 1 and lim
j→+∞

aj = 1.

Proof. Without loss of generality we may assume that aj ̸= 0 for all j ∈ N. The existence of the products
a(m) follows from the definition. Moreover we have

a

a(m)
= lim

n→+∞

∏n
j=1 aj∏n
j=m aj

=

m−1∏
j=1

aj︸ ︷︷ ︸
→a as m→+∞

.

Letting m → +∞, we deduce that

lim
m→+∞

a(m)a = a.

Since a ̸= 0 by definition we deduce that lim
m→+∞

a(m) = 1. Moreover, since aj = a(j)/a(j + 1) we also

conclude that lim
j→+∞

aj = 1 □
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Next we prove an elementary, but useful criterion for the convergence of infinite products. Without
loss of generality we shall assume that all factors differ from the non-positive real axis.

Lemma 3.3. Let {aj}j∈N ⊂ C \ {(−∞, 0]} be a sequence. Then
∏∞

j=1 aj exists if and only if the series∑∞
j=1 log(aj) exists, where log denotes the principal branch of the logarithm.

Proof. First assume that
∑∞

j=1 log(aj) exists. Then taking the complex exponential we deduce that

0 ̸= exp
( ∞∑

j=1

log(aj)
)
= lim

n→+∞
exp

( n∑
j=1

log(aj)
)
= lim

n→+∞

n∏
j=1

aj .

This proves the convergence of the infinite product since we assumed that all factors are different from
zero.

To prove the reverse direction, we set Pn =
∏n

j=1 aj . It seems natural to take the logarithm of Pn.

However, the equality log(z1z2) = log(z1) + log(z2) is only valid up to an additive multiple of 2π on
C \ {0}. Nevertheless, since

∏∞
j=1 aj ̸= 0 we can find n0 ∈ N such that for all m ≥ n ≥ n0 it holds that

|Pn − Pm| ≤ 1

2
|Pn| ,

or equivalently, ∣∣∣∣1− Pm

Pn

∣∣∣∣ ≤ 1

2
.

In particular, all the products
∏m

j=n+1 aj are contained in the right half-plane. Hence we have by the
definition of the principal branch of the logarithm that

log
( m∏

j=n0+1

aj

)
=

m∑
j=n0+1

log(aj).

Passing to the limit as m → +∞ we deduce the claim from the continuity of z 7→ log(z) on the right
half-plane. □

For infinite products defining absolute convergence as the convergence of
∏∞

j=1 |aj | is not beneficial.

On the one hand, it would not imply the convergence of
∏∞

j=1 aj (for instance, take aj = (−1)j). On the

other hand, the convergence of
∏∞

j=1 aj always implies the convergence of
∏∞

j=1 |aj | due to the property

|a · b| = |a| · |b|. However, Lemma 3.3 motivates the following definition.

Definition 3.4. An infinite product
∏∞

j=1 aj is called absolutely convergent when there exists an n0 ∈ N
such that for all n ≥ n0 we have an /∈ (−∞, 0] and if the series

∑∞
j=n0

log(aj) is absolutely convergent.

With this definition absolute convergence implies convergence by the corresponding result for series
and Lemma 3.3. Moreover, we can formulate the second useful convergence criterion.

Lemma 3.5. An infinite product

∞∏
j=1

(1 + aj) converges absolutely if and only if

∞∑
j=1

|aj | converges.

Proof. See Exercise H 4.2. □

Next we deal with infinite products of (holomorphic) functions. Given a sequence fj : U → C we
distinguish two types of convergence of the product

∏∞
j=1 fj : local uniform and local normal convergence

(cf. the corresponding notions for series).

Definition 3.6. Let fj : U → C be a sequence of continuous functions. An infinite product
∏∞

j=1 fj :
U → C is called locally uniformly convergent if for every z0 ∈ U there exist r > 0 and j0 ∈ N such that∏n

j=j0
fj converges uniformly on Br(z0) to some non-vanishing function.

It follows from the definition that a locally uniformly convergent product converges also pointwise.
There are further immediate consequences that we summarize in the corollary below.
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Corollary 3.7. Let fj : U → C be a sequence of continuous functions. Assume that f =
∏∞

j=1 fj : U → C
converges locally uniformly.

(i) Then the sequence
∏∞

j=n fj converges locally uniformly to 1 as n → +∞. In particular, we have
that fj → 1 locally uniformly as j → +∞;

(ii) if
∏∞

j=1 gj : U → C is also locally uniformly converging, then so is
∏∞

j=1 fjgj;

(iii) if each fj is holomorphic then so is
∏∞

j=1 fj.

Proof. (i) By Lemma 3.2 the sequence gn(z) =
∏∞

j=n fj(z) is pointwise well-defined. Fix z0 ∈ U and let
r > 0 and j0 ∈ N be as in Definition 3.6. The continuity of each fj and the local uniform convergence
imply that gj0 is continuous. Since gj0(z) ̸= 0 for all z ∈ Br(z0) it holds that

inf
z∈Br/2(z0)

|gj0(z)| =: 2c > 0.

Since
∏n−1

j=j0
fj(z) → gj0 uniformly on Br(z0) we find an index n0 ∈ N such that for all n ≥ n0

inf
z∈Br/2(z0)

∣∣∣∣∣∣
n−1∏
j=j0

fj(z)

∣∣∣∣∣∣ > c.

Then, for n > max{j0, n0} and z ∈ Br/2(z0),

|gn(z)− 1| ≤

∣∣∣∣∣ gj0(z)∏n−1
j=j0

fj(z)
− 1

∣∣∣∣∣ ≤ 1

c

∣∣∣∣∣∣gj0(z)−
n−1∏
j=j0

fj(z)

∣∣∣∣∣∣ .
This proves the first part of (i) as by assumption the last term vanishes uniformly on Br/2(z0) for

n → +∞. The second one follows from the first one since fj =
gj

gj+1
.

(ii) This follows essentially from the definition since the product of two locally uniformly converging
sequences that are locally equibounded still converges locally uniformly.

(iii) Apply Theorem 1.3. □

One drawback of local uniform convergence of products is that there is no invariance under rearrange-
ment, i.e., the limit of infinite products might depend on the order of the sequence fj . Hence we introduce
the more stable notion of local normal convergence relying on Lemma 3.5.

Definition 3.8. An infinite product of the form
∏∞

j=1(1+ gj) with gj : U → C is called locally normally

convergent if the series
∑∞

j=1 gj is locally normally convergent.

We next prove that local normal convergence of products implies local uniform convergence.

Lemma 3.9. Assume that the product
∏∞

j=1(1 + gj) converges locally normally. Then it converges also
locally uniformly.

Proof. Fix z0 ∈ U and let r > 0 be such that
∞∑
j=1

sup
z∈Br(z0)

|gj(z)| < +∞.

Then there exists j0 ∈ N such that for all j ≥ j0 we have supz∈Br(z0) |gj(z)| < δ, where 0 < δ < 1
2 is

chosen such that
1

2
|z| ≤ | log(1 + z)| ≤ 2|z| ∀z ∈ Bδ(0).

In particular, we have ∑
j≥j0

sup
z∈Br(z0)

| log(1 + gj(z)| < +∞.

Hence by Lemma 1.11 the series
∑

j≥j0
log(1+gj) converges uniformly on Br(z0). Taking the exponential

yields the claim as the exponential function never vanishes and is continuous. □
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Remark 3.10. If
∏∞

j=1(1 + gj) converges locally normally, then taking the logarithm of
∏∞

j=j0
(1 + gj)

for a suitable large j0 we also see that local normal convergence is invariant under rearrangements of the
sequence {gj}j∈N.

In Chapter 4 we will analyze the zeros of infinite products that converge locally normally. Given a
holomorphic function f : U → C we denote by Z(f) the set of its zeros and by oc(f) ∈ N ∪ {0,+∞} the
order of a zero c ∈ U (with the convention that oc(f) = 0 means f(c) ̸= 0, while oc(f) = +∞ if and only
if f vanishes in a neighborbood of c).

Note that if f1, . . . , fN : U → C is a finite family of such functions, then

Z(f1 · . . . · fN ) =

N⋃
i=1

Z(fj), oc(f1 · . . . · fN ) =

N∑
i=1

oc(fi).

In the proposition below we generalize this result to infinite products that converge locally uniformly.

Lemma 3.11. Let fj : U → C be a sequence of holomorphic functions. Assume that f =
∏∞

j=1 fj
converges locally uniformly. Then

Z(f) =

∞⋃
j=1

Z(fj), oc(f) =

∞∑
j=1

oc(fj) ∀c ∈ U.

Proof. Fix c ∈ U . Since
∏∞

j=1 fj(c) converges there exists j0 ∈ N such that fj(c) ̸= 0 for all j ≥ j0. Write

f = f1 · . . . · fj0−1 ·
∞∏

j=j0

fj︸ ︷︷ ︸
=:g

Since g is holomorphic due to the local uniform convergence, and g(c) ̸= 0, we conclude that

oc(f) =

j0−1∑
j=1

oc(fj) + oc(g) =

∞∑
j=1

oc(fj).

The previous equality also proves that Z(f) =
⋃∞

j=1 Z(fj). □

In the exercise classes we will show the product formula for the sinus

sin(πz) = πz

∞∏
n=1

(
1− z2

n2

)
.

For the proof we need the logarithmic derivative of infinite products, which will be the last topic of
this chapter. Recall that the logarithmic derivative of a holomorphic function f : U → C (f ̸≡ 0) is

by definition the holomorphic function h : U \ Z(f) → C given by h = f ′

f . For infinite products the

logarithmic derivative has a special structure.

Proposition 3.12. Let fj : U → C be a sequence of holomorphic functions such that the product

f =
∏∞

j=1 fj : U → C converges locally normally. Then the logarithmic derivative f ′

f : U \ Z(f) → C is

given by

f ′

f
=

∞∑
j=1

f ′
j

fj
,

where the series

∞∑
j=1

f ′
j

fj
converges locally normally on U \ Z(f).
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Proof. Note that all functions hj =
f ′
j

fj
are holomorphic on U \ Z(f). Moreover, we can write

f = f1 · . . . · fn−1

∞∏
j=n

fj︸ ︷︷ ︸
=:gn

,

with gn holomorphic due to local normal convergence and gn(z) ̸= 0 for all z ∈ U \Z(f). By iteration of
the standard product rule we then calculate

f ′

f
=

∑n−1
j=1 f ′

j

∏n−1
ℓ=1
ℓ̸=j

fℓgn +
∏n−1

j=1 fjg
′
n.∏n−1

j=1 fjgn
=

n−1∑
j=1

f ′
j

fj
+

g′n
gn

.

Combining Lemma 3.9 and Corollary 3.7 (i) we know that gn converges locally uniformly to 1. From
Theorem 1.5 we infer that also g′n → 0 locally uniformly. In particular, since gn converges to a non-

vanishing function, this implies that the logarithmic derivative
g′
n

gn
converges locally uniformly to 0. Thus

f ′

f
= lim

n→+∞

n−1∑
j=1

f ′
j

fj
=

∞∑
j=1

f ′
j

fj
locally uniformly.

It remains to show that the series converges locally normally on U \ Z(f). Fix z0 ∈ U \ Z(f) and let

r > 0 be such that B2r(z0) ⊂ U \ Z(f). By Corollary 3.7 (i) the sequence fj converges locally uniformly
on U to 1. Hence we find an index j0 ∈ N such that |fj(z)| ≥ 1

2 for all j ≥ j0 and z ∈ Br(z0). Setting
gj = fj − 1 we conclude that

∞∑
j=j0

sup
z∈Br(z0)

∣∣∣∣f ′
j(z)

fj(z)

∣∣∣∣ ≤ 2

∞∑
j=j0

sup
z∈Br(z0)

|g′j(z)| ≤ 4

∞∑
j=j0

1

r
sup

z∈∂B2r(z0)

|gj(z)|, (6)

where in the last inequality we used the standard Cauchy estimate for derivatives derived from Corollary
0.3 in the form

|g′j(ẑ)| =

∣∣∣∣∣ 1

2πi

∫
∂B2r(z0)

gj(z)

(z − ẑ)2
dz

∣∣∣∣∣ ≤ 2

r
sup

z∈∂B2r(z0)

|gj(z)| ∀ẑ ∈ Br(z0).

By the local normal convergence of the infinite product the last sum in (6) is finite. This proves the claim.
□

Remark 3.13. (i) Proposition 3.12 holds verbatim if we replace local normal convergence by local
uniform convergence everywhere. The proof remains unchanged except that we do not need the
last argument.

(ii) Even if each fj ̸≡ 0, it can happen that Z(f) = U when U is not connected (take for each
connected component an fj that vanishes only on this component). If instead U is connected,
then Z(fj) is at most a countable set, so that Z(f) can be at most countable.

This was the last result we wanted to prove on infinite products. Next we apply them to prove the
celebrated product theorem of Weierstrass.

4. The Weierstrass product theorem

The zeros of a non-constant entire function are always discrete by the identity theorem. In this chapter
we study the reverse problem: given a discrete set S = {an}n∈N ⊂ C, does there exist an entire function
f : C → C such that Z(f) = S with prescribed multiplicity at each zero. If the set S is finite, say
a1, . . . , aN (with multiple occurrences allowed), then the polynomial

P (z) =

N∏
j=1

(z − an)

satisfies all properties. The Weierstrass product theorem gives an existence result in the infinite case.
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In general one cannot expect the convergence of the infinite product
∞∏

n=1

(
1− z

an

)
.

Hence we add factors gn : C → C\{0} such that (1− z
an

)gn(
z
an

) is close to 1. Since |an| → +∞ it suffices

to note that for |z| small enough we have

(1− z)e− log(1−z) = 1.

Hence we consider a suitable Taylor-polynomial of the function z 7→ − log(1− z) at the origin. Note that
for |z| ≤ 1

2 we can write

− log(1− z) =

∞∑
k=1

zk

k
.

This motivates the definition of the so-called Weierstrass factors given by

E0(z) = 1− z, En(z) = (1− z)e
∑n

k=1
zk

k .

The following estimate turns out to be very useful for proving the Weierstrass product theorem.

Lemma 4.1. It holds that |En(z)− 1| ≤ |z|n+1 for all z ∈ B1(0).

Proof. The claim is trivial for n = 0. Hence fix n ≥ 1. To reduce notation we set pn(z) =
∑n

k=1
zk

k . Then
on the one hand

(1− z)p′n(z) = (1− z)

n−1∑
k=0

zk = 1− zn

and therefore by the product rule

E′
n(z) = −epn(z) + (1− z)epn(z)p′n(z) = −znepn(z).

On the other hand, denoting by
∑∞

k=0 akz
k the Taylor series of En at the origin we have that

E′
n(z) =

∞∑
k=0

kakz
k−1 = −znepn(z).

The right hand side term has a zero of order n in z = 0. Hence we conclude that

ak = 0 ∀1 ≤ k ≤ n.

Moreover, as the coefficients of the Taylor series of z 7→ epn(z) are all non-negative, we conclude that

|ak| = −ak ∀k > n.

Since 1 = En(0) = a0 and therefore 0 = En(1) = 1 +
∑

k>n ak, we conclude by Hölder’s inequality that

|En(z)− 1| ≤
∞∑

k=n+1

|ak||z|k ≤ sup
k>n

|z|k︸ ︷︷ ︸
=|z|n+1

∞∑
k=n+1

|ak|︸ ︷︷ ︸
=1

= |z|n+1,

where we used that |z| ≤ 1. This concludes the proof. □

With the previous lemma at hand we can now show the Weierstrass product theorem on the complex
plane. Note that the existence result remains valid on any open set, but the structure of the function f
will be slightly different (cf. the non-mandatory exercise H 7.3).

Theorem 4.2. Let (an)n∈N be a sequence of complex numbers that is discrete in C. For each n ∈ N set
on := #{k ∈ N : ak = an}. Assume that an ̸= 0 and on < +∞ for all n ∈ N. Then

f(z) :=

∞∏
n=1

En(
z
an

) =

∞∏
n=1

(
1− z

an

)
e

z
an

+
1
2

(
z
an

)2
+...+

1
n

(
z
an

)n
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converges locally normally and defines an entire function with Z(f) = {an}n∈N and oan(f) = on for all
n ∈ N.

Remark 4.3. Note that the function z 7→ zkf(z) allows to add a zero in z = 0 with multiplicity k ∈ N
to the above result.

Proof of Theorem 4.2. We show that the infinite product defining f converges locally normally on C. To
this end, fix a compact set K ⊂ C. First note that limn→+∞ |an| = +∞. Hence there exists n0 ∈ N such

that
∣∣∣ z
an

∣∣∣ ≤ 1
2 for all z ∈ K and n ≥ n0. In particular, we can apply Lemma 4.1 to deduce that

∞∑
n=n0

sup
z∈K

|En(
z
an

)− 1| ≤
∞∑

n=n0

2−(n+1) < +∞.

By definition this shows the local normal convergence of the product. Corollary 3.7(iii) then implies that
the function f is entire. Moreover, by Lemma 3.11 we know that

Z(f) =

∞⋃
n=1

Z
(
En

( ·
an

))
= {an}n∈N, oan(f) =

∞∑
j=1

oan

(
En

( ·
an

))
= on,

where in the last equality we used that each En as a first order zero in z = 1. □

The Weierstrass product theorem implies the following representation result of entire functions.

Corollary 4.4. Let g : C → C be an entire function such that g ̸≡ 0 and write its zeros in C \ {0} as

(a1, . . . , a1︸ ︷︷ ︸
oa1

(g) times

, a2, . . . , a2︸ ︷︷ ︸
oa2

(g) times

, . . .) =: (s1, s2, s2, . . .) = s

Then we can write

g(z) = eh(z)zo0(g)
dim(s)∏
n=1

En

(
z
sn

)
,

where h : C → C is an entire function.

Proof. Applying the Weierstrass product theorem (or its finite analogue) to the sequence (sn)n∈N yields
that the function

f(z) = zo0(g)
dim(S)∏
n=1

En

(
z
sn

)
is entire with Z(f) = Z(g) and oz(f) = oz(g) for all z ∈ C. Hence the quotient g/f has only removable
singularities and therefore represents an entire function that never vanishes. It is a well-known result
from complex analysis that on the simply connected domain C this implies that g/f = eh for some entire
function h : C → C (see also Corollary 5.8). This finishes the proof. □

5. Picard’s little and great theorem

We now come to two celebrated theorems in complex analysis for functions in one variable. The two
theorems by Picard provide a very fine description of the image of entire functions (Picard’s little theorem)
or the image of a neighborhood of an essential singularity (Picard’s great theorem). We will see that the
little theorem follows (in an even stronger form) from Picard’s great theorem. Let us first formulate the
two theorems.

Theorem 5.1 (Picard’s little theorem). Let f : C → C be a non-constant, entire function. Then f
assumes each value in C except at most one.

Theorem 5.2 (Picard’s great theorem). Let f : Br(z0) \ {z0} → C be holomorphic and let z0 be an
essential singularity. Then in each punctured neighborhood of z0 f assumes each value in C infinitely
many times except at most one.
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Proof of Theorem 5.1 based on Theorem 5.2. If f is a polynomial then the claim follows by the funda-
mental theorem of algebra as z 7→ f(z)− w as a zero for every w ∈ C, so that f is surjective. If f is not
a polynomial, then z 7→ f( 1z ) has an essential singularity in z = 0 (this follows from the characterization
via the principal part of the Laurent series expansion). Hence the claim follows from Theorem 5.2 as the
map z 7→ 1

z is one-to-one from C \ {0} onto itself. □

Remark 5.3. (i) The above proof shows that if f is not a polynomial then f assumes each value
even infinitely many times except at most one.

(ii) Considering the function z 7→ ez shows that Theorem 5.1 is sharp.

Next we turn to the proof of Picard’s great theorem. On the way we prove several theorems that are
interesting on their own. Picard’s great theorem will then be a consequence of a strengthened version of
Montel’s compactness theorem. Let us mention that Picard proved the two theorems by different means.

We start with Bloch’s theorem which gives a lower bound on the size of maximal discs contained in
the image of non-constant holomorphic functions. In what follows we denote by H(U) those functions
which are holomorphic in a neighborhood of U .

Theorem 5.4 (Bloch’s theorem). Let f ∈ H(B1(0)) be such that f ′(0) = 1. Then there exists p ∈ C such
that B 3

2−
√
2
(p) ⊂ f(B1(0)).

Proof. We divide the proof into three steps. The first two are more general statements.
Step 1: We show that if U ⊂ C is a bounded domain, g ∈ H(U) is not constant and a ∈ U is such

that s = infz∈∂U |g(z)− g(a)| > 0, then Bs(g(a)) ⊂ g(U).
Indeed, due to the boundedness of g on U the set ∂g(U) is compact. Hence there exists w ∈ ∂g(U)

such that dist(∂g(U), g(a)) = |w − g(a)|. We argue that |w − g(a)| ≥ s which proves the first step. To
this end, note that there exists a sequence zn ∈ U such that g(zn) → w and without loss of generality
also zn → z ∈ U . Then by continuity g(z) = w ∈ ∂g(U). By the open mapping theorem it follows that
z ∈ ∂U . Hence by definition |w − g(a)| ≥ s.

Step 2: Next we prove that if g ∈ H(Br(a)) is not constant and supz∈Br(a) |g
′(z)| ≤ 2|g′(a)|, then

BR(g(a)) ⊂ g(Br(a)) for R = (3− 2
√
2)r|g′(a)|.

Here comes the argument. Upon considering z 7→ g(z + a) − g(a) we can assume that a = g(a) = 0.
Then the function A(z) = g(z)− g′(0)z satisfies

A(z) =

∫
[0,z]

g′(ζ)− g′(0) dζ,

so that by the definition of the path-integral we have the bound

|A(z)| ≤
∫ 1

0

|g′(tz)− g′(0)||z|dt.

In order to bound the difference in the integrand we express it by Cauchy’s integral formula as

g′(v)− g′(0) =
1

2πi

∫
∂Br(0)

g′(ζ)

ζ − v
− g′(ζ)

ζ
dζ =

v

2πi

∫
∂Br(0)

g′(ζ)

ζ(ζ − v)
dζ ∀v ∈ Br(0),

so that still for v ∈ Br(0) we have

|g′(v)− g′(0)| ≤ |v|
r − |v|

sup
z∈Br(0)

|g′(z)|.

Combined with our assumption this yields the following bound on A(z):

|A(z)| ≤
∫ 1

0

|tz|
r − |tz|

sup
z∈Br(0)

|g′(z)||z|dt ≤ 1

2

|z|2

r − |z|
sup

z∈Br(0)

|g′(z)| ≤ |z|2

r − |z|
|g′(0)|.

Since also |A(z)| ≥ |g′(0)||z| − |g(z)|, we deduce that for all z ∈ Br(0) it holds that

|g(z)| ≥
(
|z| − |z|2

r − |z|

)
|g′(0)|.
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In order to apply Step 1 in the most efficient way we consider the sphere ∂Bρ∗(0) where the term
in brackets gets maximal. With elementary analysis one can show that the real-valued function ρ 7→
ρ− ρ2(r − ρ)−1 takes its maximum on (0, r) at ρ∗ = (1− 1

2

√
2)r with value (3− 2

√
2)r. Hence applying

Step 1 with U = Bρ∗(0) and a = g(a) = 0 yields BR(0) ⊂ g(Br(0)) with R as claimed.
Step 3: Conclusion.
To the function f ∈ H(B1(0)) we associate the function z 7→ h(z) := |f ′(z)|(1−|z|), which is continuous

on B1(0). Since by assumption f ′(0) = 1 it follows that the maximum of h on B1(0) is assumed at some
point p ∈ B1(0) with M := h(p) ≥ |f ′(0)| = 1. Setting r = 1

2 (1 − |p|) we have M = 2r|f ′(p)| and
Br(p) ⊂ B1(0). Moreover, note that for z ∈ Br(p) it holds that

|z| ≤ |p|+ r = 1− r,

or equivalently (1− |z|) ≥ r. Using the maximality |f ′(z)|(1− |z|) ≤ 2r|f ′(p)| we conclude that |f ′(z)| ≤
2|f ′(p)| for all z ∈ Br(p), so that Step 2 implies that BR(f(p)) ⊂ f(B1(0)) for

R = (3− 2
√
2)r|f ′(p)| ≥ ( 32 −

√
2)M ≥ ( 32 −

√
2)

as claimed □

Bloch’s theorem might seem quite restrictive as formulated only on the unit disc. But there are some
straightforward consequences.

Corollary 5.5. If f : U → C is holomorphic and f ′(c) ̸= 0 at a point c ∈ U , then f(U) contains

discs of every radius ( 32 −
√
2)s|f ′(c)| for 0 < s < dist(c, ∂U). In particular, if f : C → C is entire and

non-constant, then f(C) contains discs of arbitrarily large radii.

Proof. See Exercise H 8.1. □

Both Picard’s little and Picard’s great theorem deal with functions that omit two values. Hence we
need to study them more in detail. Before we continue, we recall the notion of simply connected (open)
sets.

Definition 5.6. Let G ⊂ C be an open set. We say that G is simply connected if it is path-connected
and every closed curve γ ⊂ G can be contracted in G to a point, that is, for every continuous curve
γ : [0, 1] → G with γ(0) = γ(1) there exists a point z0 ∈ G and a continuous map H : [0, 1]× [0, 1] → G
such that

(i) H(0, t) = γ(t) ∀t ∈ [0, 1];
(ii) H(1, t) = z0 ∀t ∈ [0, 1];
(iii) H(s, 0) = H(s, 1) ∀s ∈ [0, 1].

We will heavily rely on the fact that on simply connected domains every holomorphic function has a
primitive. We omit its proof as it is treated in basic courses on complex analysis.

Theorem 5.7. Let G ⊂ C be a simply connected domain and let f : G → C be holomorphic. Then there
exists a holomorphic function F : G → C such that F ′(z) = f(z) for all z ∈ G. □

Based on that theorem we can show that on simply connected domains there always exist holomorphic
logarithms and nth-roots.

Corollary 5.8. Let G ⊂ C be a simply connected domain and let f : G → C \ {0}. Then there exists a
holomorphic function log(f) : G → C such that exp(log(f)) = f . Moreover, for each n ∈ N there exists a
holomorphic function n

√
f : G → C such that ( n

√
f)n = f .

Proof. Consider the logarithmic derivative h : G → C defined by h = f ′/f , which is holomorphic on G.
Choose a primitive H : G → C such that for some z0 ∈ G we have H(z0) = log(f(z0)). Then by the
product rule we have

d

dz
(f(z) exp(−H(z))) = f ′(z) exp(−H(z))− f(z) exp(−H(z))

f ′(z)

f(z)
= 0.
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Since also exp(H(z0)) = f(z0) we deduce from the path-connectedness of G that exp(H(z)) = f(z) for
all z ∈ G. Thus setting log(f) = H shows the first assertion.

In order to prove the second statement, it suffices to define n
√
f : G → C by n

√
f(z) = exp( 1nH(z)). □

Now we are in a position to show the following auxiliary result on holomorphic functions that omit
two values.

Lemma 5.9. Let G ⊂ C be a simply connected domain and let f : G → C be holomorphic such that
{−1, 1} ∩ f(G) = ∅. Then there exists a holomorphic function h : G → C such that

f = cos(h).

Proof. Note that the function z 7→ 1− f(z)2 never vanishes on G. Hence by Corollary 5.8 there exists a

holomorphic square root g =
√
1− f2, which satisfies in particular

(f + ig)(f − ig) = f2 + g2 = 1. (7)

Thus (f + ig) has no zeros in G and therefore we can write (f + ig) = eih for some holomorphic function
h : G → C. Then by (7) it holds that (f − ig) = e−ih, so that f = 1

2 (e
ih + e−ih) = cos(h) as claimed. □

With this lemma we can prove the following crucial proposition.

Proposition 5.10. Let G ⊂ C be a simply connected domain and let f : G → C be holomorphic such
that {0, 1} ∩ f(G) = ∅. Then there exists a holomorphic function h : G → C such that

f =
1

2
(1 + cos(π cos(πh))) .

If h̃ : G → C is any holomorphic function satisfying the above equation, then h̃(G) contains no disc of
radius larger or equal than 1.

Proof. First note that the function 2f − 1 omits the values −1 and 1, so that by Lemma 5.9 we find
a holomorphic function h1 : G → C such that 2f − 1 = cos(πh1). Observe further that h1 must omit
all integer values. Hence again by Lemma 5.9 we can write h1 = cos(πh) for some holomorphic function
h : G → C. The first claim then follows by rearranging terms.

Now let h̃ : G → C be any such function. Define the grid-like set

L = {m± iπ−1 log(n+
√
n2 − 1) : m ∈ Z, n ∈ N \ {0}}.

We shall prove that L ∩ h̃(G) = ∅. Indeed, for ẑ := m± iπ−1 log(n+
√
n2 − 1) ∈ L we have that

cos(πẑ) =
1

2
(eiπẑ + e−iπẑ) =

1

2
(−1)m

(
(n+

√
n2 − 1)∓ + (n+

√
n2 − 1)±

)
=
1

2
(−1)m

n2 + n2 − 1 + 2n
√
n2 − 1 + 1

n+
√
n2 − 1

= (−1)mn.

Thus cos(π cos(πẑ)) = ±1 for all ẑ ∈ L. Since f(G) ∩ {0, 1} = ∅ we conclude that h̃(G) ∩ L = ∅ as
claimed. It remains to estimate the grid-size of L. Note that the ’vertical’ distance between neighboring
grid points is bounded by

| log(n+ 1 +
√
(n+ 1)2 − 1)− log(n+

√
n2 − 1)| =

∣∣∣∣∣log
(
1 + n−1 +

√
1 + 2n−1

1 +
√
1− n−2

)∣∣∣∣∣
≤ log(1 + n−1 +

√
1 + 2n−1) ≤ log(2 +

√
3) < π,

where we assumed without loss of generality that the two points are in the upper half plane (note that
for n = 1 the points in L are on the real line so that there are no neighboring points in different half-
planes). The ’horizontal’ distance is exactly 1. Hence for every z ∈ C there exists ẑ ∈ L such that
|Re(z) − Re(ẑ)| ≤ 1/2 and |Im(z) − Im(ẑ)| < 1/2. Hence |z − ẑ| < 1. So every disc of radius 1 in C
intersects L. Hence h̃(G) cannot contain a disc of radius larger or equal than one. □
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With Proposition 5.10 one obtains Picard’s little theorem (cf. exercise H 9.1). Towards the proof of
Picard’s great theorem it helps us to prove Schottky’s theorem which controls the growth of functions
omitting the two values 0 and 1.

Denote by β > 0 a constant for which Bloch’s theorem holds (e.g. β = (3/2−
√
2)). Let us define the

positive function L : (0, 1)× (0,+∞) → R+ by

L(θ, r) := exp

(
π exp

(
π

(
3 + 2r +

θ

β(1− θ)

)))
Then we have the following result:

Theorem 5.11 (Schottky’s theorem). Let f ∈ H(B1(0)) be such that |f(0)| ≤ r and {0, 1}∩f(B1(0)) = ∅.
Then

|f(z)| ≤ L(θ, r) ∀|z| ≤ θ, 0 < θ < 1.

Proof. We divide the proof into several steps.
Step 1: We first show that if cos(πa) = cos(πb), then b = ±a + 2n for some n ∈ Z and that for every
w ∈ C there exists v ∈ C such that cos(πv) = w and |v| ≤ 1 + |w|. The first claim follows from the
formula cos(πa)− cos(πb) = −2 sin(π2 (a+ b)) sin(π2 (a− b)) and from {sin = 0} = πZ. Since z 7→ cos(z) is
surjective onto C, for every w ∈ C we can thus find v ∈ C with Re(v) ∈ [−1, 1] and cos(πv) = ω. Since

|w|2 = cos2(πRe(v)) + sinh2(πIm(v))

and sinh2(x) ≥ x2 for all x ∈ R (proof by power series representation of sinh for x ≥ 0), we deduce that

|v| =
√
Re(v)2 + Im(v)2 ≤

√
1 + |w|2/π2 ≤ 1 + |w|.

Step 2: There exists a function g ∈ H(B1(0)) such that

(i) f = 1
2 (1 + cos(π cos(πg))) with |g(0)| ≤ 3 + 2|f(0)|;

(ii) |g(z)| ≤ |g(0)|+ θ/(β(1− θ)) for all |z| ≤ θ, 0 < θ < 1.

Indeed, by Lemma 5.9 we find a function F̃ ∈ H(B1(0)) such that 2f − 1 = cos(πF̃ ). Due to Step 1 there
exists b ∈ C such that cos(πb) = 2f(0) − 1 and |b| ≤ 1 + |2f(0) − 1| ≤ 2 + 2|f(0)|. Moreover, again by

Step 1 b = ±F̃ (0) + 2k with k ∈ Z. Define F = ±F̃ + 2k, so that F ∈ H(B1(0)). Then 2f − 1 = cos(πF )

and F (0) = b. Since F omits all integer values there exists g̃ ∈ H(B1(0)) such that F = cos(πg̃). Using
one more time Step 1 we find a ∈ C such that cos(πa) = b and |a| ≤ 1+ |b| ≤ 3+2|f(0)|. By construction

cos(πa) = cos(πg̃(0)), so that we can again define g = ±g̃ + 2m ∈ H(B1(0)) for some m ∈ Z such that
g(0) = a and F = cos(πg). Then f = 1

2 (1 + cos(π cos(πg))) and |g(0)| = |a| ≤ 3 + 2|f(0)| as claimed in
(i).

In order to show (ii), note that by Proposition 5.10 g(B1(0)) contains no disc of radius larger or equal
than 1. Since dist(z, ∂B1(0)) ≥ (1− θ) for all |z| ≤ θ, the generalized Bloch theorem (cf. exercise H 8.1)
implies that β(1− θ)|g′(z)| ≤ 1 for all |z| ≤ θ. Rearranging terms yields |g′(z)| ≤ (β(1− θ))−1. Thus by
the fundamental theorem of calculus

|g(z)| ≤ |g(z)− g(0)|+ |g(0)| ≤
∫
[0,z]

|g′(ζ)|dζ + |g(0)|

≤ |z|
β(1− θ)

+ |g(0)| ≤ θ

β(1− θ)
+ |g(0)|

for all |z| ≤ θ.
Step 3: Conclusion. We finish the proof by noting that | cos(ω)| ≤ e|w| (proof via power series) and
1
2 |1+cos(ω)| ≤ e|w| (triangle inequality). Indeed, using those bounds and properties (i) and (ii) of Step 2
we deduce that

|f(z)| ≤ exp(π exp(π|g(z)|)) ≤ exp(π exp(π(3 + 2|f(0)|+ θ(β(1− θ))−1))) ≤ L(θ, r),

where in the last estimate we used that |f(0)| ≤ r. □

Schottky’s theorem allows to prove a sharpened version of Montel’s compactness theorem that reads
as follows:
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Theorem 5.12 (Sharpened version of Montel’s theorem). Let D ⊂ C be a domain and

F := {f : D → C holomorphic, {0, 1} ∩ f(D) = ∅}.
Let {fn}∈N ⊂ F . Then either {fn} contains a subsequence that converges locally uniformly to some
holomorphic function f : D → C or the whole sequence |fn| converges locally uniformly to +∞.

Remark 5.13. The local uniform convergence to +∞ is defined by requiring that 1/fn converges locally
uniformly to 0.

Proof of Theorem 5.12. We divide the proof into several steps.
Step 1: For z0 ∈ D and r ∈ (0,+∞) define F(z0, r) := {f ∈ F : |f(z0)| ≤ r}. We argue that there exists
a neighborhood of z0 on which F(z0, r) is equibounded.

Indeed, choose δ > 0 such that B2δ(z0) ⊂ D. Applying Schottky’s Theorem 5.11 to each function

z 7→ f(2δz + z0) ∈ H(B1(0)) for f ∈ F(z0, r) we infer that

sup
f∈F(z0,r)

sup
z∈Bδ(z0)

|f(z)| ≤ L(1/2, r).

This proves the first step.
Step 2: The family F(z0, r) is locally bounded in D.

To prove this claim, first note that U := {z ∈ D : F(z0, r) is equibounded in a neighborhood of z}
is open in D. Moreover z0 ∈ U by Step 1. We argue that U is also closed in D. Then connectedness
of D implies that U = D and the claim of Step 2 follows by a covering argument. Let w ∈ ∂U ∩ D be
such that F(z0, r) is not bounded in a neighborhood of w. Then by Step 1 we know that there exists
a sequence {fn}n∈N ⊂ F(z0, r) such that limn |fn(w)| = +∞. Define gn = 1/fn (which is well-defined),
so that limn gn(w) = 0. Hence {gn}n∈N ⊂ F(w,R) for some suitable 0 < R < +∞. Thus by Step 1 the
sequence {gn} is bounded in a neighborhood of w and therefore by Montel’s Theorem 1.7 we can pass to
a subsequence that converges uniformly in a disc Br(w) to some holomorphic function g : Br(w) → C.
Since all gn have no zeros and g(w) = 0, it follows from Corollary 1.6 that g ≡ 0. Since Br(w) ∩ U ̸= ∅
we conclude that lim supn |fn(z)| = +∞ also for some z ∈ U , which gives a contradiction.
Step 3: Conclusion.

Fix z0 ∈ D and let {fn} ⊂ F be a sequence. If infinitely many fn ∈ F(z0, 1) then the claim follows
from Step 2 and Montel’s theorem 1.7. If only finitely many fn belong to F(z0, 1), then infinitely many
gn = 1/fn belong to F(z0, 1). By Step 2 we conclude that either all subsequences gn converge locally
uniformly to g ≡ 0 or along a subsequence gn converges to a non-zero limit which has then no zero at all
by Corollary 1.6. In the second case also fn converges locally uniformly along that subsequence. In the
first case |fn| → +∞ locally uniformly as claimed. □

Now we can finally prove Picard’s great theorem.

Proof of Theorem 5.2. We have seen in exercise H 9.3 the remarkable statement that Picard’s great
theorem is equivalent to prove that given a holomorphic function f : B1(0) \ {0} → C \ {0, 1} either f or
1/f is bounded in a neighborhood of the origin.

Consider the sequence of holomorphic functions fn(z) = f(z/n) : B1(0) \ {0} → C \ {0, 1}. By
Theorem 5.12 there exists a subsequence fnk

such that either fnk
or 1/fnk

is locally uniformly bounded
on B1(0) \ {0}. In the first case there exists 0 < C < +∞ such that

sup
k

|f(z/nk)| ≤ C ∀|z| = 1

2
.

Hence by the maximum principle |f(z)| ≤ C on each annulus Ak = {z ∈ C : 1
2nk+1

≤ |z| ≤ 1
2nk

}. Since

A :=
⋃
k∈N

Ak

is a (punctured) neighborhood of the origin, we conclude that f is bounded in a neighborhood of the
origin. The case when 1/fnk

is locally bounded can be treated the same way and hence we conclude the
proof. □
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6. The Riemann mapping theorem

In this chapter we will prove one of the main theorems in complex analysis. The Riemann mapping
theorem classifies all sets that are biholomorphically equivalent to the open unit disc B1(0). Here two
sets U1, U2 ⊂ C are said to be biholomorphically equivalent if there exists a bijective holomorphic map
f : U1 → U2 such that the inverse map f−1 : U2 → U1 is also holomorphic. It follows from the definition
that biholomorphic equivalence of open sets is an equivalence relation.

In order to study the family of sets which are biholomorphically equivalent to the unit disc B1(0), first
note that by Liouville’s theorem C cannot belong to that class. Moreover, as biholomorphic functions are
in particular homeomorphisms, all sets belonging to that class share the same topological invariances. In
particular, such sets have to be path-connected (as the unit disc) and also simply connected (cf. Definition
5.6).

Simply connected sets in C can be formally described as having no holes. The surprising fact of the
Riemann mapping theorem is that this topological restriction already ensures biholomorphic equivalence
to the unit disc. In particular, no smoothness of the boundary is required.

In the proof of the Riemann mapping theorem we will use the fact that injective holomorphic functions
are already biholomorphic onto their image. For the sake of completeness we include the proof.

Lemma 6.1. Let f : U → C be holomorphic and injective. Then f ′(z0) ̸= 0 for all z0 ∈ U and the
inverse function f−1 : f(U) → C is also holomorphic.

Proof. Assume by contradiction that f ′(z0) = 0 for some z0 ∈ U . Upon considering the function z 7→
f(z + z0) − f(z0) we may assume that z0 = f(z0) = f ′(z0) = 0. Since f is injective it is not constantly
zero on any open set, so there exists a minimal k ∈ N such that f (k)(z0) ̸= 0. Hence we can write

f(z) =

∞∑
n=k

anz
n = zk

∞∑
n=0

ak+nz
n =: zkg(z),

with g : U → C holomorphic and g(0) ̸= 0. Since g is in particular continuous, there exists r > 0
such that Br(0) ⊂ U and infz∈Br(0) |g(z)| > 0. Since Br(0) is a simply connected domain, we can apply

Corollary 5.8 to infer that there exists a holomorphic function h : Br(z0) → C such that hk = g. Then
for all z ∈ Br(0) we can write

f(z) = (zh(z))k

Note that the function z 7→ zh(z) is non-constant and holomorphic. Hence by the open mapping theorem
there exists r1 > 0 and z1, z2 ∈ Br(0) such that z1h(z1) = r1 and z2h(z2) = r1 exp(2πi/k). This
contradicts the injectivity of f since f(z1) = f(z2).

Moreover, by the open mapping theorem it follows that the set f(U) is open. Since f ′(z0) ̸= 0 for all
z ∈ U the inverse function theorem yields that the inverse map is differentiable as a function of R2 to R2.
Since the differential of f is pointwise a scalar multiple of a rotation by the Cauchy-Riemann equations
the differential of the inverse has the same structure. Hence it satisfies the Cauchy-Riemann equations,
too. We conclude that the inverse map is holomorphic. □

The remainder of this chapter will be about the proof of the Riemann mapping theorem. In the proof
we will apply the Schwarz lemma which we recall here.

Lemma 6.2 (Schwarz Lemma). Let f : B1(0) → B1(0) be a holomorphic function such that f(0) = 0.
Then |f(z)| ≤ |z| for all z ∈ B1(0) and |f ′(0)| ≤ 1. Moreover, if any of the two is an equality (for some
z ∈ B1(0) \ {0}) then f(z) = az for some a ∈ C with |a| = 1.

Proof. Consider the decomposition f(z) = zg(z). Due to the assumptions we know that g : B1(0) → C is
holomorphic and g(0) = f ′(0). For 0 < r < 1 and z ∈ ∂Br(0) we have

|g(z)| ≤ |f(z)|
|z|

≤ 1

r
.

Due to the maximum principle this inequality holds true for all z ∈ Br(0). Letting r ↑ 1 yields that
|g(z)| ≤ 1 for all z ∈ B1(0). This implies |f(z)| ≤ |z| and |f ′(0)| ≤ 1. If one of the two is an equality
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we deduce that |g(z0)| = 1 for some z0 ∈ B1(0). Again by the maximum principle it follows that g is
constant. Hence g(z) = a for some a ∈ C with |a| = 1. This yields the claim. □

Theorem 6.3 (Riemann mapping theorem). Let G ⊊ C be a simply connected domain. Then there exists
a biholomorphic map f : G → B1(0).

Proof. Due to Lemma 6.1 it suffices to find a bijective holomorphic map f : G → B1(0). We will prove
the existence of such a map in three steps.

(1) We show the existence of an injective holomorphic map g : G → B1(0) with 0 ∈ g(G). This allows
us to assume that G ⊂ B1(0) and 0 ∈ G;

(2) For an injective map f : G ⊂ B1(0) → B1(0) with f(0) = 0 we show that surjectivity is ensured
by the maximality of |f ′(0)|;

(3) We find a bijective function by maximizing |f ′(0)| under all injective holomorphic functions such
that f(0) = 0.

The desired function can then be obtained as the composition f ◦ g.
Step 1: Assume for the moment that the complement C \ G contains an open ball B2r(z0). Then

the map g1 : G → B1(0) given by g1(z) = r(z − z0)
−1 is well-defined, holomorphic and injective. Let

z1 ∈ g(G) ⊂ B1/2(0). Then the map g(z) = 1
2 (g1(z) − z1) is still injective, holomorphic and 0 ∈ g(G) ⊂

B1(0). This gives the desired map of step 1. However, in general we cannot assume that C \G contains
an open ball. Therefore we have to transform it via an injective, holomorphic function. The idea is to use
a holomorphic square-root. By assumption there exists z0 ∈ C \G. Then the function z 7→ z − z0 never
vanishes on G. Hence by Corollary 5.8 there exists a holomorphic function G ∋ z 7→

√
z − z0. We claim

that this square-root is injective. Indeed, if
√
z1 − z0 =

√
z2 − z0, then by definition

z1 − z0 =
√
z1 − z0

2
=

√
z2 − z0

2
= z2 − z0,

which implies that z2 = z1. Moreover, we argue that C \
√
G− z0 contains an interior point. By the

open mapping theorem there exists ẑ ̸= 0 and r > 0 such that B2r(ẑ) ⊂
√
G− z0. We claim that

−B2r(ẑ) ⊂ C \
√
G− z0. Indeed, assume that there exists z1, z2 ∈ G such that

√
z1 − z0 = −

√
z2 − z0.

Taking the square yields z1 = z2 which is only possible if z1 = z0. This contradicts the fact that z0 /∈ G.
Thus we are in a position to apply the first part of this step and from now on we can assume that
0 ∈ G ⊂ B1(0). Here we also used that the image of G under an injective holomorphic function is still
simply connected (see exercise H 10.1).

Step 2: We claim that if 0 ∈ G ⊂ B1(0) and f : G → B1(0) is injective, holomorphic, satisfies

f(0) = 0, but fails to be surjective, then there exists a holomorphic, injective function f̃ : G → B1(0)

with f̃(0) = 0 and |f̃ ′(0)| > |f ′(0)|.
As a first step we note that for any z0 ∈ B1(0) the map φz0 : B1(0) → C defined by

φz0(z) =
z − z0
1− z0z

is a biholomorphic map onto B1(0) (cf. exercise H 8.2). We assume that there exists z0 ∈ B1(0) \ f(G).
Then φz0 ◦ f : G → B1(0) satisfies φz0(f(z)) ̸= 0 for all z ∈ G. By Corollary 5.8 we can define a

holomorphic square-root of this map. Then the function
√

φz0 ◦ f is holomorphic, injective and z1 :=√
φz0(f(0)) =

√
−z0 ∈ B1(0). We define a competitor for f as

f̃ := φz1 ◦
√
φz0 ◦ f : G → B1(0),

which is injective, holomorphic and satisfies f̃(0) = 0. Moreover, setting h : B1(0) → B1(0) as h =

φ−1
z0 ◦ (φ−1

z1 )2 it follows that h is holomorphic, satisfies h(0) = 0 and h ◦ f̃ = f . By the Schwarz Lemma
we know that |h′(0)| < 1 since h is no pure rotation (not even injective). Hence the chain rule implies

|f ′(0)| = |h′(f̃(0))f̃ ′(0)| = |h′(0)f̃ ′(0)| < |f̃ ′(0)|

as claimed.
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Step 3: In order to construct a bijective holomorphic function f : G → B1(0) it is enough to find a
solution to the following optimization problem:

sup{|f ′(0)| : f : G → B1(0) holomorphic and injective, f(0) = 0}.
Indeed, by Step 2 such a function is surjective and therefore satisfies the claimed properties. We have
already seen in exercise H 3.3 that a maximizer for the above extremal problem exists provided the class
of competitors is not empty. Since we reduced the analysis to the case that 0 ∈ G ⊂ B1(0) the function
z 7→ z is admissible. This concludes the proof. □

Remark 6.4. One can prove that under the assumption that f(z0) = 0 and f ′(z0) ∈ (0,+∞) for some
z0 ∈ G the function f is unique. Indeed, suppose there is another function g : G → B1(0) with the given
properties. Then h := f ◦ g−1 : B1(0) → B1(0) satisfies h(0) = 0 and h′(0) ∈ (0,+∞). The inverse map
h−1 satisfies the same properties. Applying the Schwarz Lemma to both functions yields |h(z)| = |z| for
all z ∈ B1(0). Hence again by the Schwarz Lemma h(z) = az for some a ∈ C with |a| = 1. Then from
h′(0) = a ∈ (0,+∞) we infer that a = 1. This proves uniqueness.

We will not discuss whether the map f given by the Riemann mapping theorem can be extended to
the boundary. Let us just mention that such an extension requires some regularity of the boundary of G.

7. Holomorphic functions on the Riemann sphere

In many situations it is convenient to allow the value ∞ either in the domain or the image of functions
(cf. meromorphic functions, the sharpened version of Montel’s theorem). This can be done via the one-

point compactification of C, denoted by Ĉ = C ∪ {∞}. Open sets in Ĉ are defined to be exactly those

sets Û ∈ Ĉ such that

(i) Û is open in C if ∞ /∈ Û ;

(ii) Û \ {∞} = C \K for some compact set K ⊂ C if ∞ ∈ Û .

With this topology one can prove that Ĉ is a compact metrizable space which is homoeomorphic to the
unit sphere S2 in R3 (cf. exercise H 11.1). Moreover, a sequence {zn}n∈N converges to ∞ if and only if

1/zn converges to zero, while the convergence on Ĉ \ {∞} = C remains unaffected. In this sense we do
not distinguish in which direction the sequence approaches infinity. Hence in what follows we tacitly set

1/∞ = 0 and 1/0 = ∞. Then we have the following definition of holomorphic functions f : Û → Ĉ:

Definition 7.1. Let Û ⊂ Ĉ be open and let f : Û → Ĉ be continuous. Then f is called complex

differentiable in z0 ∈ Û if

(i) f is complex differentiable in the usual sense if z0, f(z0) ∈ C;
(ii) g(z) = f( 1z ) is complex differentiable in 0 if z0 = ∞ and f(z0) ∈ C;
(iii) g(z) = 1

f(z) is complex-differentiable in z0 if z0 ∈ C and f(z0) = ∞;

(iv) g(z) = 1

f(
1
z )

is complex differentiable in 0 if z0 = f(z0) = ∞.

f is called holomorphic on Û if f is complex differentiable in every point z0 ∈ Û .

Remark 7.2. In the theory of Riemann surfaces the above notion corresponds to holomorphic functions

on a manifold since z 7→ z and z 7→ 1/z are charts for the one-dimensional complex manifold Ĉ.

Similar to the case of domains D ⊂ C the identity theorem also holds for holomorphic functions

f : D̂ → Ĉ (domains D̂ in Ĉ are defined to be open, path-connected subsets).

Theorem 7.3 (Identity theorem). Let D̂ ⊂ Ĉ be a domain and let f, g : D̂ → Ĉ be holomorphic. If the

set {f = g} has an accumulation point in D̂, then f = g.

Proof. Let us define S := {z ∈ D̂ : f = g in a neighborhood of z}. We argue that S = D̂. First note

that S is open. Next we show that S ̸= ∅. To this end, let z0 ∈ D̂ be an accumulation point of {f = g}.
Then by continuity also f(z0) = g(z0). We apply the classical identity theorem to one of the following
four holomorphic functions for a suitably small r > 0:
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(i) f, g : Br(z0) → C when z0, f(z0) ∈ C;
(ii) 1/f, 1/g : Br(0) → C when z0 ∈ C and f(z0) = ∞;
(iii) Br(0) ∋ z 7→ f( 1z ), g(

1
z ) if z0 = ∞ and f(z0) ∈ C;

(iv) Br(0) ∋ z 7→ 1

f(
1
z )
, 1

g(
1
z )

if z0 = f(z0) = ∞.

In all four cases we deduce from the classical identity theorem that f = g in a neighborhood of z0. It

thus remains to show that S is also closed. Then connectedness of D̂ yields that S = D̂. Consider a

point s0 ∈ D̂ such that there exists a sequence {sn}n∈N ⊂ S with sn → s0. If s0 /∈ S, then s0 is also an
accumulation point of {f = g} and as above we can prove that s0 ∈ S, which yields a contradiction. This
concludes the proof. □

One can show that holomorphic functions f : Û → Ĉ which are not constantly ∞ can be identified

with meromorphic functions since by the previous theorem the set f−1(∞) is discrete in Û \∞. We will

show that holomorphic functions f : Ĉ → Ĉ are exactly rational functions. To this end, we prove several
auxiliary results with a similar flavor.

Lemma 7.4. Let f : Ĉ → C be holomorphic. Then f is constant.

Proof. Since Ĉ is compact (see exercise H 11.1), it follows that its image is also compact. Hence f(C) ⊂
f(Ĉ) ⊂ C is bounded, so that by Liouville’s theorem f |C is constant. By continuity of f at ∞ we conclude

that f is constant on Ĉ. □

When P : C → C is a non-constant polynomial, then one can show that P (∞) := ∞ gives a holomor-

phic extension P : Ĉ → Ĉ. Our next result states that polynomials are the only class of functions for
which such an extension works.

Lemma 7.5. Let f : Ĉ → Ĉ be holomorphic and such that f(z) ∈ C for all z ∈ C. Then f |C is a
polynomial.

Proof. See exercise H 11.3. □

The next theorem provides a complete characterization of holomorphic functions f : Ĉ → Ĉ.

Theorem 7.6. Let f : Ĉ → Ĉ be holomorphic. Then there exist two polynomials P,Q : Ĉ → Ĉ such that

f(z) =
P (z)

Q(z)
∀z ∈ C \ f−1(∞).

Proof. See exercise H 11.4. □

Remark 7.7. Without loss of generality we can assume that P and Q have no common zeros. The

statement of the above theorem then holds on Ĉ in the sense that (in general) the fraction ∞/∞ at
z = ∞ has to be interpreted depending on the degree (and possibly the leading coefficient) of P and Q.

In that sense one can also show that every rational function is holomorphic on Ĉ.

With the above theorem we can easily identify the biholomorphic functions from Ĉ to itself.

Corollary 7.8. A function f : Ĉ → Ĉ is biholomorphic if and only if f is a so-called Möbius transfor-
mation, i.e., there exist a, b, c, d ∈ C with ad− bc ̸= 0 and

f(z) =
az + b

cz + d

with the convention that f(∞) = a/c ∈ Ĉ and f(−d/c) = ∞.

Proof. First note that when f is of the above type then f is rational, hence holomorphic on Ĉ. It has its
only pole in z = −d/c (note that the condition ad− bc ̸= 0 rules out cancellations in the singularity). A
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direct calculation shows that its inverse is given by

f−1(z) =


dz−b
−cz+a if z ∈ C \ {a/c},
∞ if z = a/c ∈ Ĉ,
−d

c if z = ∞.

.

This is again a rational function, so that it is holomorphic on Ĉ. Thus f is biholomorphic.
Now we prove the converse statement. If f(∞) = ∞, then f(C) ⊂ C and by exercise H 10.4 b) we

know that f is affine which yields a ̸= 0, b ∈ C, c = 0 and d = 1. Hence assume without loss of generality
that f(∞) ∈ C. Composing f with the Möbius transformation

φ(z) =
1

z − f(∞)

we obtain a biholomorphic function f̃ : Ĉ → Ĉ such that f̃(∞) = ∞. Hence again exercise H 10.4 b)

implies that f̃ is affine, so that there exists a, b ∈ C with a ̸= 0 such that f̃(z) = az + b for all z ∈ C.
Hence by the first part of the proof

f(z) = (φ−1 ◦ f̃)(z) = −f(∞)(az + b)− 1

−(az + b)
=

−f(∞)az + (−1− f(∞)b)

−az − b

is a Möbius transform since f(∞)ab − a(1 + f(∞)b) = −a ̸= 0 (from a more abstract point of view, we
used that the Möbius transforms form a group with respect to the composition of functions). □

We stop here with the short introduction on holomorphic functions on the Riemann sphere. Further
details should be studied from the more general viewpoint of Riemann surfaces.

8. An introduction to complex analysis in several variables

In the final chapter of the course we briefly discuss functions f : U → C, where U ⊂ Cn is open
(n ≥ 2). This introduction is by no means complete and we will omit several proofs.

First let us define what we mean by holomorphic functions in higher dimensions. In what follows we
let ∥ · ∥ be any norm on Cn (recall that all norms on finite dimensional spaces are equivalent).

Definition 8.1. Let U ⊂ Cn be open and f : U → C. Then f is called complex-differentiable in a ∈ U
if there exists a C-linear map Df(a) : Cn → C such that

lim
h→0
h ̸=0

|f(a+ h)− f(a)−Df(a)h|
∥h∥

= 0.

f is called holomorphic on U if f is complex differentiable in every point a ∈ U . A function f : U → Cm

is called holomorphic if each component is holomorphic.

Remark 8.2. Similar to the theory of one complex variable there are several equivalent definitions of
holomorphic functions f : U → C:

(i) for each fixed (z1, . . . , zj−1, zj+1, . . . , zn) the function z 7→ f(z1, . . . , zj−1, z, zj+1, . . . zn) is holo-
morphic on the open set

U(z1, . . . , zj−1, zj+1, . . . , zn) := {z ∈ C : (z1, . . . , zj−1, z, zj+1, . . . , zn) ∈ U}.

(ii) f is C1 in each complex variable separately and satisfies

∂

∂zj
f ≡ 0,

where ∂
∂zj

= 1
2

(
∂

∂xj
+ i ∂

∂yj

)
; cf. exercise H 12.1.
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(iii) for each a ∈ U there exists r > 0 such that on Br(a) the function f can be written as an absolutely
convergent power series

f(z) =
∑
α

cα(z − a)α,

where α ∈ (N0)
n stands for a multi-index.

(iv) f is continuous in each complex variable separately and locally bounded. Moreover, for any w ∈ U

there exists r > 0 such that Dr(w) ⊂ U and for all z ∈ Dr(w) it holds that

f(z) =
1

(2πi)n

∫
|ζn−wn|=r

· · ·
∫
|ζ1−w1|=r

f(ζ1, . . . , ζn)

(ζ1 − z1) · · · (ζn − zn)
dξ1 . . . dζn,

where Dr(w) := {z ∈ Cn : |zi − wi| < r ∀i} is the so-called polydisc.

One can show that those four conditions are all equivalent to Definition 8.1. There is however a subtle
point in this statement. While Definition 8.1, (iii) and (iv) imply a local boundedness (or even continuity),
this is not clear from (i) and (ii). It is indeed a deep result due to Hartogs that separately holomorphic
functions are continuous (and smooth) (cf. Theorem 8.19 or [2, Section 2.4] for a proof with all details).

As in the multidimensional real-variable case one can show that the differential Df(z0) is unique,
linear in f and that the chain rule holds.

Next we will introduce a technique that allows to transfer some results on holomorphic functions in
one complex-variable to the several variables case. This is the so-called method of slicing, which is also
used in the calculus of variations.

Lemma 8.3. Let U ⊂ Cn be open and a ∈ U . For ξ ∈ Cn define the set Ua,ξ by

Ua,ξ = {t ∈ C : a+ tξ ∈ U}.

Given a holomorphic function f : U → C we define fa,ξ : Ua,ξ → C by

fa,ξ(t) = f(a+ tξ).

Then Ua,ξ ⊂ C is open with 0 ∈ Ua,ξ and fa,ξ is holomorphic on Ua,ξ.

Proof. Clearly a ∈ U implies 0 ∈ Ua,ξ. Note that Ua,ξ is open as the preimage of the open set U under
the continuous map t 7→ a+ tξ. By the chain rule fa,ξ is holomorphic on Ua,ξ. □

Corollary 8.4. We have the analogues of the following results from the one-dimensional theory:

1. Liouville’s theorem: Every bounded entire function f : Cn → C is constant.
2. Identity theorem: Let D ⊂ Cn be a domain and f : D → C be holomorphic. If f |Br(a) ≡ 0 for

some a ∈ D and r > 0, then f ≡ 0.
3. Open mapping theorem: Let D ⊂ Cn be a domain and f : D → C be non-constant and

holomorphic. Then f(D) is again a domain.
4. Maximum principle: Let D ⊂ Cn be a domain and f : D → C be holomorphic. If |f | attains

its maximum on D then f is constant.

Proof. See exercise H 12.2. □

We saw that slices of holomorphic functions f : U ⊂ Cn → C allow to transfer some results from
the one-dimensional theory to the several variables case. By a similar consideration one can prove a
suitable higher-dimensional version of Cauchy’s integral formula (see also Remark 8.2(iv)) which implies
also several analogues of the one-dimensional theory (the proofs are almost identical).

In what follows, given a vector r = (r1, . . . , rn) ∈ (0,+∞)n and a ∈ Cn we define the polydisc Dn
r (a)

by

Dn
r (a) := {z ∈ Cn : |zi − ai| < ri}.

Then we have the following result.
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Theorem 8.5 (Cauchy’s integral formula for polydiscs). Let U ⊂ Cn be open and f : U → C be

holomorphic. Let a ∈ U and r ∈ (0,+∞)n be such that Dn
r (a) ⊂ U . Then for all z ∈ Dn

r (a) it holds that

f(z) =
1

(2πi)n

∫
|ζn−an|=rn

· · ·
∫
|ζ1−a1|=r1

f(ζ)∏n
i=1(ζi − zi)

dζ.

Proof. We prove the statement by induction on n. For n = 1 the claim coincides with Theorem 0.2,
so there is nothing to prove. Next assume that n ≥ 2. Given z ∈ Dn

r (a) it follows that zn ∈ Brn(an)
and (z1, . . . , zn−1) ∈ Dn−1

(r1,...,rn−1)
(a1, . . . , an−1), whose closure is contained in the open set Un−1 = {z ∈

Cn−1 : (z, zn) ∈ U}. Hence by the induction hypothesis we can write

f(z) =
1

(2πi)n−1

∫
|ζn−1−an−1|=rn−1

· · ·
∫
|ζ1−a1|=r1

f(ζ1, . . . , ζn−1, zn)∏n−1
i=1 (ζi − zi)

dζ1 . . . dζn−1.

Note that for fixed ζ1, . . . , ζn−1 in the domain of integration the function z 7→ f(ζ1, . . . , ζn−1, z) is

holomorphic on Brn(an) and Brn(an) ⊂ U ′ := {z ∈ C : (ζ1, . . . , ζn−1, z) ∈ U}. Hence applying again the
one-dimensional result the claim follows from Fubini’s theorem. □

Similar to the case of one complex variable Cauchy’s integral formula has several consequences that
we list here without proof below. The detailed arguments can be bound for instance in [3].

Corollary 8.6 (Higher dimensional consequences of the Cauchy integral formula). Let U ⊂ Cn be open
and f : U → C be holomorphic. Then

(i) f ∈ C∞(U) and all derivatives are holomorphic. Moreover, in the situation of Theorem 8.5, for
every multi-index α ∈ (N0)

n it holds that

Dαf(z) =
α!

(2πi)n

∫
|ζn−an|=rn

· · ·
∫
|ζ1−a1|=r1

f(ζ)

(ζ − z)α+1
dζ,

where 1 = (1, . . . , 1) ∈ Nn
0 . In particular,

|Dαf(a)| ≤ α!

rα
sup

z∈Dn
r (a)

|f(z)|.

(ii) f is analytic, that is for every w ∈ U there exists an open neighborhood V of w such that on V
we have

f(z) =
∑

α∈(N0)n

Dαf(w)

α!
(z − w)α.

Moreover, the series converges uniformly on every polydisc Dn
r (w) such that Dn

r (w) ⊂ U .

Remark 8.7 (Montel’s theorem). Using the bound of Corollary 8.6 (i) one can prove that Montel’s
theorem (in the version of Chapter 1) also holds in the several variables case. Indeed, the bound implies
that a locally uniformly bounded sequence fn : U ⊂ Cn → C is locally equicontinuous. Then the rest of
the proof of Montel’s theorem remains unchanged. Also the local uniform limit of holomorphic functions
is still holomorphic. This can be shown using the local uniform convergence on slices and the fact that a
function is holomorphic if and only if it is holomorphic in each variable (here we rely on Hartogs’ theorem
in a simpler setting, because we know a priori that the limit is continuous)

Until now we saw that several properties still hold in the multi-dimensional setting. Next we point out
some significant differences.

Remark 8.8 (Some of the differences to the one-variable setting). Let n ≥ 2.

• We will prove below that in Cn holomorphic functions can only have removable isolated singu-
larities. Moreover, there cannot be isolated zeros.

• The above will be a consequence of an extension result which in a more general form reads as
follows: let U ⊂ Cn be open and let K ⊂ U be a compact set and assume that U \K is connected.
If f : U \ K is holomorphic then f can be extended to a holomorphic function on U (see [5,
Theorem 5.4.4]).
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• We will also prove that the sets B1(0) and Dn
1 (0) are not biholomorphically equivalent which

rules out a Riemann mapping theorem.

Let us formulate the announced extension result in a special situation.

Theorem 8.9 (Special case of Hartogs’ extension theorem). Let D ⊂ Cn−1 be a domain and A(r,R) :=
{z ∈ C : r < |z| < R} with 0 ≤ r < R ≤ +∞. Let f : D × A(r,R) → C be holomorphic. Assume that
there exists a ∈ D and ε > 0 such that f can be extended holomorphically to Bε(a)×BR(0). Then f can
be extended holomorphically to D ×BR(0).

Proof. Denote the points in D × C by (z′, zn). Given r < ρ < R we define the function

fρ(z
′, zn) =

1

2πi

∫
|ζ|=ρ

f(z′, ζ)

ζ − zn
dζ.

This function is continuous on D × Bρ(0) and separately holomorphic in each variable. By Hartogs’
theorem (cf. Remark 8.2 or Theorem 8.19, but again here the continuity is guaranteed a priori) it is
therefore holomorphic on D × Bρ(0). By assumption there exists ε > 0 such that f can be extended
holomorphically to the set Bε(a)×BR(0). By the one-dimensional Cauchy-integral formula it holds that
f = fρ on Bε(a)× Bρ(0). Next note that the set D × A(r, ρ) is a domain in Cn, so that by the identity
theorem we deduce that f = fρ on D ×A(r, ρ). Then the function

F (z′, zn) =

{
f(z′, zn) if (z′, zn) ∈ D ×A(r,R),

fρ(z
′, zn) if (z′, zn) ∈ D ×Bρ(0)

is well-defined, holomorphic and extends f . □

Corollary 8.10. Let n ≥ 2.

(i) If f : U \ {a} → C is holomorphic, then f can be extended to a holomorphic function f : U → C.
(ii) If K ⊂ Cn is compact and such that C \ K is connected, then every holomorphic function f :

Cn \K → C can be extended to an entire function.
(iii) If f : U → C is holomorphic, then f cannot have an isolated zero.
(iv) If f : Cn → C is entire, then {f = 0} is either empty or unbounded.

Proof. See exercise H 13.3. □

The next result rules out a Riemann mapping theorem in Cn for n ≥ 2. In the proof we will use the
following auxiliary lemma which cannot be deduced from an open mapping theorem.

Lemma 8.11. Let D ⊂ Cn be a domain and f : D → Cm be holomorphic. If ∥f∥2 is constant, then f is
constant. Here ∥ · ∥2 denotes the Euclidean norm on Cn.

Proof. Let us apply the differential operator ∂
∂zj

= 1
2 (

∂
∂xj

+ i ∂
∂yj

) to the equality ∥f(z)∥22 = c. By the

product rule we deduce that

0 =

m∑
k=1

∂

∂zj
(fk(z)fk(z)) =

m∑
k=1

∂fk(z)

∂zj
fk(z) + fk(z)

∂fk(z)

∂zj
=

m∑
k=1

fk(z)
∂fk(z)

∂zj
,

where we used that ∂f
∂zj

= 0 for every holomorphic function (cf. exercise H 13.1.). Now consider the

differential operator ∂
∂zj

= 1
2 (

∂
∂xj

− i ∂
∂yj

). Note that by definition

∂f

∂zj
=

(
∂f

∂zj

)
,

∂f

∂zj
=

(
∂f

∂zj

)
.

It is a well-known fact that due to the Cauchy-Riemann equations, for holomorphic functions ∂
∂zj

agrees

with the complex partial derivative. Hence we conclude that

0 =

m∑
k=1

∂

∂zj

(
fk(z)

∂fk(z)

∂zj

)
=

m∑
k=1

∣∣∣∣∂fk(z)∂zj

∣∣∣∣2 + fk(z)

(
∂2f

∂zj∂zj

)
=

m∑
k=1

∣∣∣∣∂fk(z)∂zj

∣∣∣∣2 ,
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where we used that the partial derivatives of f are still holomorphic. Since D is connected the above
implies that all fk are constant. Hence f is constant. □

Finally we will prove that in several complex variables there cannot hold a Riemann mapping theorem.
Indeed, we have the following result.

Theorem 8.12 (Failure of the Riemann mapping theorem in higher dimensions). Let n ≥ 2. Then there
exists no biholomorphic map f : Dn

1 (0) → B1(0), where the ball B1(0) is defined with respect to the
Euclidean metric.

Remark 8.13. Since both Dn
1 (0) and B1(0) are convex, they are simply connected. Hence the above

result indeed shows that the Riemann mapping theorem cannot hold in higher dimensions. In [5, Exercise
3.2.3] you find an example of a bijective function φ : D2

1(0) → B1(0) such that φ and φ−1 are real-analytic.

Proof of Theorem 8.12. Assume that there exists a biholomorphic function f : Dn
1 (0) → B1(0). For fixed

w ∈ D1
1(0) ⊂ C define the map

Fw : Dn−1
1 (0) → Cn, z′ 7→ ∂f

∂zn
(z′, w).

We will prove that Fw can be extended continuously to ∂Dn−1
1 (0) by 0. To this end, take a sequence

{z′j}j ⊂ Dn−1
1 (0) such that limj z

′
j ∈ ∂Dn−1

1 (0) and define the sequence fj : D1
1(0) → B1(0) by fj(w) =

f(z′j , w). By Montel’s theorem there exists a subsequence fj (not relabeled) such that fj → g locally

uniformly on D1
1(0) for some holomorphic function g : D1

1(0) → B1(0). By construction, for every w ∈
D1

1(0) the sequence {(z′j , w)}j converges to a point zw ∈ ∂Dn
1 (0). We claim that g(w) ∈ ∂B1(0). Indeed,

otherwise the continuity of f−1 on B1(0) implies that

∂Dn
1 (0) ∋ lim

j
(z′j , w) = lim

j
f−1(f(z′j , w)) = f−1(g(w)) ∈ Dn

1 (0),

which gives a contradiction since Dn
1 (0) is open. Hence g(D1

1(0)) ⊂ ∂B1(0). By the previous lemma g is
constant. Hence Theorem 1.5 implies that

0 = g′(w) = lim
j

f ′
j(w) = lim

j
Fw(z

′
j).

Since the sequence was arbitrary (and the result is independent of the subsequence) it follows that Fw

can be extended continuously to ∂Dn−1
1 (0) via 0. Applying the maximum principle to each coordinate of

Fw we deduce that Fw ≡ 0. By definition of Fw we conclude that det(Df(z′, w)) = 0. However, by the
chain rule

Id = Df−1(f(z′, w))Df(z′, w),

so that Df(z′, w) has a trivial nullspace. This yields a contradiction. □

As a final result, we will prove Hartogs’ theorem on separate holomorphy. For the proof we will need
some results on subharmonic functions and the following definition.

Definition 8.14. Let X be a metric space. A function u : X → R∪{±∞} is called lower semicontinuous
if for every x0 ∈ X and every sequence xn → x0 it holds that

u(x0) ≤ lim inf
n→+∞

u(xn).

It is called upper semicontinuous if for every x0 ∈ X and every sequence xn → x0 it holds that

u(x0) ≥ lim sup
n→+∞

u(xn).

We will use the following elementary properties of lower semicontinuous functions.

Lemma 8.15. Let X be a metric space and I be a set of indices. If for all i ∈ I the function ui :
X → R∪{±∞} is lower semicontinuous, then the function ū(x) := supi∈I ui(x) is lower semicontinuous.
Moreover, a function u : X → R∪{±∞} is lower semicontinuous if and only if the set {x ∈ X : u(x) ≤ t}
is closed for all t ∈ R1.

1In general topological spaces the closedness of sublevel sets can be taken as the definition of lower semicontinuity.
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Proof. Let x ∈ X and consider a sequence xn → x. Then

ū(x) = sup
i∈I

ui(x) ≤ sup
i∈I

lim inf
n→+∞

ui(xn)︸ ︷︷ ︸
≤ū(xn)

≤ sup
i∈I

lim inf
n→+∞

ū(xn) = lim inf
n→+∞

ū(xn).

Hence ū is lower semicontinuous. To prove the second assertion, assume first that u is lower semicontinuous
and that xn ∈ {x ∈ X : u(x) ≤ t} for all n ∈ N and that xn → x for some x ∈ X. Then by the lower
semicontinuity of f we have that

u(x) ≤ lim inf
n→+∞

u(xn)︸ ︷︷ ︸
≤t

≤ t.

Hence x ∈ {x ∈ X : u(x) ≤ t}. Next, assume that the latter set is closed for all t ∈ R. Fix x0 ∈ X and
a sequence (xn)n∈N ⊂ X such that xn → x. If lim infn→+∞ u(xn) = +∞, then there is nothing to prove.
Hence assume that the liminf is not +∞. Passing to a subsequence realizing the liminf we can assume
that the liminf is actually a limit that we denote by u0 ∈ R∪{−∞}. Fix any t > u0. Then for all n large
enough we have that xn ∈ {x ∈ X : u(x) ≤ t}. Since the set is closed, it follows that u(x0) ≤ t. This
holds for any t > u0, so that actually u(x0) ≤ u0. This proves the lower semicontinuity u. □

We next state the definition of subharmonic functions.

Definition 8.16. Let U ⊂ C be open and u : U → R ∪ {−∞}. We say that u is subharmonic in U if u
is upper semicontinuous and for all z0 ∈ U there exists δ > 0 such that for all 0 < r < δ2 it holds that

u(z0) ≤
1

2πr

∫
∂Br(z0)

u(z) dz. (8)

Remark 8.17. An important class of a subharmonic functions is given by the following example: if
g : U → C is holomorphic, then

u(z) =

{
log(|g(z)|) if g(z) ̸= 0,

−∞ if g(z) = 0,

is subharmonic. Indeed, such a function is clearly upper semicontinuous. Moreover, if z0 is such that
g(z0) = 0, then (8) obviously holds. If g(z0) ̸= 0, then locally we can find a holomorphic logarithm log(g)
and log(|g|) = Re(log(g)).3 Thus (8) holds with equality using the mean-value for holomorphic functions,
which is a consequence of Cauchy’s integral formula.

We will use the following compactness result for sequences of subharmonic functions without proof.

Lemma 8.18. Let un : U → R ∪ {−∞} be a sequence of subharmonic functions such that there exists
M > 0 and c ∈ R with

un(z) ≤ M for all n ∈ N, z ∈ U,

lim sup
n→+∞

un(z) ≤ c for all z ∈ U.

Then for every compact set K ⊂ U and all ε > 0 there exists N ∈ N such that for all n ≥ N it holds that

sup
z∈K

un(z) ≤ c+ ε.

Theorem 8.19 (Hartogs’ theorem on holomorphy). Let f : U → C be holomorphic separately in each
variable. Then f is holomorphic in the sense of Definition 8.1.

2Using arguments from the theory of partial differential equations one can show that this local definition of subharmonic

functions is equivalent to require the mean-value inequality for all closed balls contained in U .
3It holds that

|g| = |elog(g)| = |eRe(log(g))+iIm(log(g))| = |eRe(log(g))eiIm(log(g))| = eRe(log(g)),

so that log(|g|) = Re(log(g)).



TOPICS IN COMPLEX ANALYSIS 31

Proof. We shall show that f can locally be written as an absolutely converging power series, that is, for
all z0 ∈ U there exists r > 0 such that

f(z) =
∑
α∈Nn

0

cα(z − z0)
α for all z ∈ Dn

r (z0).

The claim then follows by general properties of converging power series (one shows that all partial
derivatives exist and are continuous. Then one can prove the differentiability as on Rn).

We split it into several steps. Without loss of generality we can assume that z0 = 0 and let us choose
r > 0 such that Dn

2r(0) ⊂ U .
Step 1: Assuming local boundedness

Here we assume that f is bounded onDn
r (0). Iterating Cauchy’s integral formula, the separate holomorphy

of f implies that for all z ∈ Dn
r (0) we have

f(z) =
1

(2πi)n

∫
|ξ1|=r

. . .

∫
|ξn|=r

f(ξ)∏n
j=1(ξj − zj)

dξn . . . dξ1.

For |zj | < |ξj |, using the geometric series formula we have that

1

ξj − zj
=

∞∑
nj=0

z
nj

j

ξ
nj+1
j

and the sum converges absolutely and uniformly with respect to |ξj | = r and |zj | ≤ r0 < r. Using the
boundedness of f , the local uniform convergence of the geometric series allows us to switch sums and
integrals to obtain

f(z) =
∑
α∈Nn

0

cαz
α, cα =

1

(2πi)n

∫
|ξ1|=r

. . .

∫
|ξn|=r

f(ξ)

ξα+(1,...,1)
dξn . . . dξ1

and the series converges absolutely and locally uniformly on Dn
r (0). This is the claimed power series

representation and we conclude that f is holomorphic in the sense of Definition 8.1.

We now start an induction proof on the dimension n. For n = 1 the statement is clear. Next, assuming
that f is jointly holomorphic in the first n− 1-variables and holomorphic in the last variable and we will
show that f is locally bounded, hence jointly holomorphic in n variables.

Step 2: Local boundedness in a smaller polydisc via the Baire category theorem
We claim that there exist closed discs Ej ⊂ Br(0) ⊂ C with non-empty interior and En = Br(0) such
that f is bounded on E1 × . . .× En. Note, however, that in general 0 /∈ Ej , so this step is not sufficient
to prove complex-differentiability in the origin. Given N ∈ N we define the sets

ΩN :=

z′ ∈
n−1∏
j=1

Br(0) : sup
zn∈Br(0)

|f(z′, zn)| ≤ N

 .

Using the induction hypothesis, we know that the function z′ 7→ f(z′, zn) is in particular continuous,
so that by Lemma 8.15 the function z′ 7→ sup

zn∈Br(0)
|f(z′, zn)| is lower semicontinuous. Hence, again

by Lemma 8.15, the set ΩN is a closed set. Moreover, for any fixed z′ ∈
∏n−1

j=1 Br(0) the function

zn → f(z′, zn) is holomorphic on B2r(0) and thus bounded on Br(0). It follows that⋃
N∈N

ΩN =

n−1∏
j=1

Br(0).

The set on the right-hand side has non-empty interior, so that by the Baire category theorem there exists
N ∈ N such that ΩN has non-empty interior. In particular, this set ΩN contains a closed polydisc with
non-empty interior. The definition of the set ΩN yields the claim of Step 2.

Step 3: From boundedness on smaller to boundedness on larger polydiscs via subharmonic functions
We show that if f : Dn

r (z0) → C is separately holomorphic in z′ and in zn and bounded in a smaller
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polydisc Dn
(r′,...,r′,r)(z0) with r′ < r, then it is holomorphic on Dn

r (z0). Note that the center of the two

polydiscs is the same in contrast to what we obtained in Step 2. To reduce notation, we assume for
simplicity again that z0 = 0. By assumption, for (z′, zn) ∈ Dn

r (0) we can write

f(z′, zn) =
∑

α∈Nn−1
0

cα(zn)(z
′)α, (9)

the series converges absolutely and locally uniformly with respect to z′ and the coefficients are given by

cα(zn) =
∂α

∂(z′)α
f(0, zn)

α!
.

Due to the holomorphy in z′ we can use Cauchy’s integral formula for the derivative (cf. Corollary 8.6)
to obtain that

cα(zn) =
1

(2πi)n

∫
|ξ1|=

r′

2

. . .

∫
|ξn−1|=

r′

2

f(ξ1, . . . , ξn−1, zn)

ξα1+1
1 . . . ξ

αn−1+1
n−1

dξn−1 . . . dξ1. (10)

Since f is bounded and thus holomorphic on Dn
(r′,...,r′,r)(z0), one can use a result from measure theory

about the differentiability of integrals with respect to a parameter to show that cα is complex-differentiable
on Br(0) ⊂ C. Hence vα(zn) =

1
|α| log(|cα(zn)|) defines a family of subharmonic functions on Br(0).

We next verify the assumption of Lemma 8.18, implicitly numbering the countably many multi-indices
α ∈ Nn−1

0 , so that vα can be seen as a sequence. First, note that since the sum in (9) converges absolutely
and locally uniformly with respect to z′ it follows that for any 0 < r2 < r

lim
|α|→+∞

|cα(zn)|r|α|2 = 0 for all zn ∈ Br(0),

which implies that pointwise

lim sup
|α|→+∞

vα(zn) ≤ − log(r2).

Moreover, from (10) we deduce from the standard estimate for contour integrals that

|cα(zn)| ≤
supz′∈Dn−1

r′/2(0)
|f(z′, zn)|(

r′

2

)|α| ≤ B(
r′

2

)|α| ,
where B is a bound for |f | on the smaller polydisc Dn

r′,...,r′,r(0). Taking the logarithm, we find that for

all zn ∈ Br(0) it holds that

vα(zn) ≤
1

|α|
log(B)− log( r

′

2 ) ≤ log(B)− log( r
′

2 ).

Hence vα is uniformly bounded from above and we can apply Lemma 8.18 to deduce that for all 0 < r1 < r2
there exists N ∈ N such that for all |α| ≥ N and all zn ∈ Br1(0) it holds that vα(zn) ≤ − log(r1), which
is equivalent to

|cα(zn)|r|α|1 ≤ 1 for all zn ∈ Br1(0).

From exercise H 12.4 b) we thus infer that the series

f(z′, zn) =
∑

α∈Nn−1
0

cα(zn)(z
′)α

converges uniformly on Dn
r0(0) for all 0 < r0 < r1. In particular, it is bounded on this set and hence

jointly holomorphic on the interior by Step 1. Since the radii r0 < r1 < r2 < r were arbitrary, we deduce
that f is holomorphic on Dn

r (0).
Step 4: Geometric conclusion

By Step 2 we find a closed polydisc Dn−1
r′ (z0)×Br(0) on which f is bounded. In addition, we know that

(z0, 0) ∈ Dn
r (0) since the closed polydisc is a subset of Dn

r (0). By Step 3 we know that f is holomorphic on
Dn−1

r (z0)×Br(0) and the inclusion z0 ∈ Dn−1
r (0) yields that (0′, 0) ∈ Dn−1

r (z0)×Br(0). This concludes
the proof. □
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